等差数列(第二课时)
- 格式:ppt
- 大小:562.50 KB
- 文档页数:14
第2课时等差数列的综合问题知识点一等差数列的性质[填一填](1)若{a n}为等差数列,则距首末距离相等的两项之和都相等,且等于首末两项之和,即a1+a n=a2+a n-1=a3+a n-2=….(2)若{a n}为等差数列,m,n,p,q∈N+,且m+n=p+q,则a m+a n=a p+a q.(3)若{a n}为等差数列,m,k,n成等差数列,则a m,a k,a n也成等差数列(m,k,n∈N+),即若m+n=2k,则a m+a n=2a k.[答一答]1.对于性质:若{a n}为等差数列,m,n,p,q∈N+,且m+n=p+q,则a m+a n=a p +a q,请给出证明.提示:证明:设{a n}的公差为d,则a m=a1+(m-1)d,a n=a1+(n-1)d,a p=a1+(p-1)d,a q=a1+(q-1)d,∴a m+a n=2a1+(m+n-2)d,a p+a q=2a1+(p+q-2)d,∵m+n=p+q,∴a m+a n=a p+a q.知识点二 等差数列前n 项和的性质[填一填](1)等差数列前n 项和公式S n =na 1+n (n -1)2d 可写成S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,即S n =An 2+Bn (A ,B 为常数)的形式,当A ≠0时(即d ≠0),S n 是关于n 的二次函数,其图像是抛物线y =Ax 2+Bx 上的一群孤立的点.(2)若{a n },{b n }都是等差数列,则{pa n +qb n }(p ,q 为常数)是等差数列.(3)若等差数列{a n }的公差为d ,前n 项和为S n ,则数列S k ,S 2k -S k ,S 3k -S 2k ,…(k ∈N +)也是等差数列,其公差等于k 2d .(4)若等差数列{a n }的项数为2n (n ∈N +),则S 2n =n (a n +a n +1)(a n ,a n +1为中间两项),且S偶-S 奇=nd ,S 偶S 奇=a n +1a n.(5)若等差数列{a n }的项数为2n -1(n ∈N +),则S 2n -1=(2n -1)a n (a n 为中间项),且S 奇-S偶=a n ,S 偶S 奇=n -1n .[答一答]2.等差数列前n 项和的“奇偶”性质:在等差数列{a n }中,公差为d ,①若数列共有2n 项,则S 2n =n (a n +a n +1),S 偶-S 奇=nd ,S 偶S 奇=a n +1a n ;②若数列共有2n +1项,则S 2n+1=(2n +1)a n +1,S 偶-S 奇=-a n +1,S 偶S 奇=n(n +1).请给出证明.提示:证明:①若数列共有2n 项,则S 2n =2n (a 1+a 2n )2=2n (a n +a n +1)2=n (a n +a n +1),S 偶=n (a 2+a 2n )2=2na n +12=na n +1,S 奇=n (a 1+a 2n -1)2=2na n2=na n ,S 偶-S 奇=na n +1-na n =n (a n +1-a n )=nd , S 偶S 奇=a n +1a n ;②若数列共有2n +1项,则S 2n +1=(2n +1)(a 1+a 2n +1)2=2(2n +1)a n +12=(2n +1)a n +1,S 偶=n (a 2+a 2n )2=2na n +12=na n +1,S 奇=(n +1)(a 1+a 2n +1)2=2(n +1)a n +12=(n +1)a n +1,S 偶-S 奇=-a n +1, S 偶S 奇=n(n +1).1.三数成等差数列的设法为:a -d ,a ,a +d ,其中d 为公差;四数成等差数列的设法为:a -3d ,a -d ,a +d ,a +3d ,其公差为2d .2.会用方程的思想处理等差数列的有关问题.等差数列的通项公式与前n 项和公式涉及五个量:a 1,d ,n ,a n ,S n ,知道其中任意三个就可以通过列方程组求出另外两个(俗称“知三求二”).解等差数列问题的基本方法是方程法,在遇到一些较复杂的方程组时,要注意整体代换,使运算更加迅速和准确.类型一 等差数列的性质的应用【例1】 在等差数列{a n }中,(1)若a 3+a 4+a 5+a 6+a 7=350,则a 2+a 8=________;(2)若a 2+a 3+a 4+a 5=34,a 2·a 5=52,且a 4<a 2,则a 5=________; (3)若a 3=6,则a 1+2a 4=________.【解析】 若设出a 1,d 从通项公式入手,运算过程较为繁琐,若能利用性质,可使问题简化.(1)∵a 3+a 7=a 4+a 6=2a 5=a 2+a 8,又由已知a 3+a 4+a 5+a 6+a 7=350,∴5a 5=350, ∴a 5=70,∴a 2+a 8=2a 5=140.(2)∵a 2+a 3+a 4+a 5=34,又由等差数列的性质知a 3+a 4=a 2+a 5,∴2(a 2+a 5)=34,∴a 2+a 5=17.又a 2·a 5=52,联立⎩⎪⎨⎪⎧a 2+a 5=17a 2·a 5=52,解之得⎩⎪⎨⎪⎧a 2=4a 5=13,或⎩⎪⎨⎪⎧a 2=13a 5=4,又∵a 4<a 2,∴a 4-a 2=2d <0, ∴d <0,∴a 2>a 5,∴a 5=4.(3)∵a 3=6,∴a 1+2a 4=a 1+a 3+a 5=a 3+(a 1+a 5)=a 3+2a 3=3a 3=18. 【答案】 (1)140 (2)4 (3)18规律方法 等差数列具有一些性质,例如当m +n =p +q (m ,n ,p ,q ∈N +)时,有a m +a n =a p +a q ,特别地,当m +n =2k (m ,n ,k ∈N +)时,有a m +a n =2a k ;a n =a m +(n -m )d 等等.灵活运用这些性质,可大大简化解题过程.【例2】 在等差数列{a n }中,已知a 2+a 5+a 8=9,a 3a 5a 7=-21,求数列的通项公式. 【思路探究】 要求通项公式,需要求出首项a 1及公差d ,由a 2+a 5+a 8=9和a 3a 5a 7=-21直接求解很困难,这就促使我们转换思路.如果考虑到等差数列的性质,注意到a 2+a 8=2a 5=a 3+a 7,问题就容易解决了.【解】 a 2+a 5+a 8=9,a 3a 5a 7=-21,又由等差数列的性质知a 2+a 8=a 3+a 7=2a 5,∴a 5=3, ∴a 2+a 8=a 3+a 7=6,① 又a 3a 5a 7=-21, ∴a 3a 7=-7,②由①②解得a 3=-1,a 7=7或a 3=7,a 7=-1. ∴a 3=-1,d =2或a 3=7,d =-2. 由通项公式的变形公式a n =a 3+(n -3)d , 得a n =2n -7或a n =-2n +13.规律方法 若m +n =p +q ,则a m +a n =a p +a q ,此性质要求等式两边必须是两项和的形式,否则不成立,如a 10≠a 2+a 8,只能是a 2+a 8=a 3+a 7,使用时应切记它的结构特征.在等差数列{a n }中,a 3+a 7=36,则a 2+a 4+a 5+a 6+a 8=90. 解析:a 3+a 7=a 2+a 8=a 4+a 6=2a 5=36, ∴a 2+a 4+a 5+a 6+a 8==36+36+18=90.类型二 等差数列前n 项和的性质【例3】 项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求这个数列的中间项及项数.【思路探究】 根据等差数列中的奇数项依次仍成等差数列,偶数项依次仍成等差数列可求解.【解】 设等差数列{a n }共有(2n +1)项,则奇数项有(n +1)个,偶数项有n 个,中间项是第(n +1)项,即a n +1,所以S 奇S 偶=12(a 1+a 2n +1)·(n +1)12(a 2+a 2n )·n=(n +1)a n +1na n +1=n +1n =4433=43.解得n =3.又因为S 奇=(n +1)·a n +1=44,所以a n +1=11. 故这个数列的中间项为11,共有2n +1=7项.规律方法 在等差数列{a n }中,(1)若项数为2n +1(n ∈N +),则S 奇S 偶=n +1n ,其中S 奇=(n +1)a n +1,S 偶=na n +1;(2)若数列的项数为2n (n ∈N +),则S 偶-S 奇=nd .【例4】 已知等差数列{a n }的前10项和为30,它的前30项和为210,则前20项和为( )A .100B .120C .390D .540【解析】 方法一:设等差数列{a n }的前n 项和为S n =na 1+n (n -1)2d .由题意,得⎩⎪⎨⎪⎧10a 1+45d =30,30a 1+435d =210,解得⎩⎨⎧a 1=65,d =25.∴S n =65n +n (n -1)2·25=15(n 2+5n ).∴S 20=15×(202+5×20)=100.方法二:设S n =An 2+Bn ,由题意,得⎩⎪⎨⎪⎧100A +10B =30,900A +30B =210,解得⎩⎪⎨⎪⎧A =15,B =1.∴S n =15n 2+n .∴S 20=15×202+20=100.方法三:由题意,知S 10,S 20-S 10,S 30-S 20也是等差数列. ∴2(S 20-S 10)=S 10+S 30-S 20,即S 20=13(3S 10+S 30)=S 10+13S 30=100.【答案】 A规律方法 一个等差数列,从首项起,分成项数相等的若干段后,各段内诸项之和组成新的等差数列.若每段含有n 项,则新公差是原公差的n 2倍.(1)已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为3. (2)在等差数列{a n }中,a 1=-2 017,其前n 项和为S n ,若S 1010-S 88=2,则S 2 017的值等于-2_017.解析:(1)由等差数列前n 项和的性质,得S 偶-S 奇=102×d (d 为该数列的公差),即30-15=5d ,解得d =3.(2)方法一:设等差数列{a n }的公差为d ,由S 1010-S 88=2得-2 017×10+10×92d10--2 017×8+8×72d8=2,解得d =2,所以S 2 017=-2 017×2 017+2 017×2 0162×2=-2 017.方法二:由等差数列前n 项和的性质可知,数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列,设其公差为d ,则由S 1010-S 88=2可得2d =2,即d =1.又S 11=-2 017,所以S 2 0172 017=-2 017+(2 017-1)×1=-1,所以S 2 017=-2 017.类型三 等差数列的综合应用题【例5】 已知数列{a n }是等差数列. (1)若a m =n ,a n =m (m ≠n ),求a m +n ; (2)若S m =n ,S n =m (m >n ),求S m +n .【思路探究】 (1)由通项公式或前n 项和公式得a 1和d 的关系,通过解方程组求得a 1和d ,进而求得a m +n 和S m +n .(2)利用等差数列的性质可使问题简化.【解】 设首项为a 1,公差为d , (1)解法一:由a m =n ,a n =m ,得⎩⎪⎨⎪⎧a 1+(m -1)d =n ,a 1+(n -1)d =m ,解得a 1=m +n -1,d =-1.∴a m +n =a 1+(m +n -1)d =m +n -1-(m +n -1)=0. 解法二:由a m =n ,a n =m ,得d =n -mm -n =-1,∴a m +n =a m +(m +n -m )d =n +n ×(-1)=0. (2)解法一:由已知可得 ⎩⎪⎨⎪⎧m =na 1+n (n -1)2d ,n =ma 1+m (m -1)2d ,解得⎩⎪⎨⎪⎧a 1=n 2+m 2+mn -m -nmn ,d =-2(m +n )mn .∴S m +n =(m +n )a 1+(m +n )(m +n -1)2d =-(m +n ).解法二:∵{a n }是等差数列, ∴可设S n =An 2+Bn .则⎩⎪⎨⎪⎧Am 2+Bm =n ,①An 2+Bn =m .②①-②得A (m 2-n 2)+B (m -n )=n -m , ∵m ≠n ,∴A (m +n )+B =-1.∴S m +n =A (m +n )2+B (m +n )=-(m +n ).规律方法 (1)灵活运用性质求等差数列中的量,可以简化运算,提高解题速度及准确性;(2)在应用性质:若m +n =l +k ,则a m +a n =a l +a k 时,首先要找到项数和相等的条件,然后根据需要求解,解决此类问题要有整体代换的意识.数列{a n }满足a 1=1,a n +1=a n +2,且前n 项和为S n . (1)求数列{S nn }的前n 项和T n ;(2)求数列{1T n}的前n 项和.解:(1)由a n +1=a n +2,得数列{a n }是等差数列,且a 1=1,公差d =2, 从而a n =2n -1,∴S n =n (a 1+a n )2=n 2.∴S nn =n ,从而T n =n (n +1)2. (2)由(1)有1T n =2n (n +1)=2(1n -1n +1),其前n 项和为2[(11-12)+(12-13)+(13-14)+…+(1n -1n +1)]=2nn +1.——多维探究系列—— 特殊值法解等差数列问题特殊值法在解一些选择题和填空题中经常用到,就是通过取一些特殊值、特殊点、特殊函数、特殊数列、特殊图形等来求解或否定问题的目的.用特殊值法解题时要注意,所选取的特例一定要简单,且符合题设条件.【例6】 在等差数列{a n }中,a 1=1,前n 项和S n 满足条件S 2n S n =4n +2n +1,n =1,2,…,则a n =________.【思路分析】 因S n =na 1+n (n -1)2d =n +n (n -1)2d ,则S 2n =2na 1+2n (2n -1)2d =2n +n (2n -1)d ,故S 2n S n =2n +n (2n -1)d n +n (n -1)2d=2(2dn +2-d )dn +2-d =4n +2n +1, 解得d =1,则a n =n . 【规范解答】 n已知正数数列{a n }对任意p ,q ∈N +,都有a p +q =a p +a q ,若a 2=4,则a 9=( C ) A .6 B .9 C .18D .20解析:解法一:∵a 2=a 1+1=a 1+a 1=4,∴a 1=2,a 9=a 8+1=a 8+a 1=2a 4+a 1=4a 2+a 1=18.解法二:∵a 2=a 1+1=a 1+a 1=4,∴a 1=2,令p =n ,q =1,所以a n +1=a n +a 1,即a n +1-a n =2,∴{a n }是等差数列,且首项为2,公差为2,故a 9=2+(9-1)×2=18.一、选择题1.设S n 是等差数列{a n }的前n 项和,S 5=10,则a 3的值为( C ) A.65B .1C .2D .3 解析:∵S 5=5(a 1+a 5)2=5a 3,∴a 3=15S 5=15×10=2.2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 1=4,则公差d 等于( C ) A .1 B.53C .-2D .3解析:由题意,得6=3×4+3×22d ,解得d =-2.3.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项和S 10等于( C ) A .138 B .135 C .95 D .23解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+d +a 1+3d =4,a 1+2d +a 1+4d =10, 解得a 1=-4,d =3,所以S 10=10a 1+10×92d =95. 二、填空题4.在数列{a n }中,a n =5n -105,则当n =20或21时,S n 取最小值.5.已知{a n }是等差数列,S n 为其前n 项和,n ∈N +,若a 3=16,S 20=20,则S 10的值为110.解析:设等差数列{a n }的首项为a 1,公差为d . a 3=a 1+2d =16,S 20=20a 1+20×192d =20. ∴⎩⎪⎨⎪⎧ a 1+2d =16,2a 1+19d =2.解得⎩⎪⎨⎪⎧ a 1=20,d =-2.∴S 10=10a 1+10×92d =200-90=110. 三、解答题6.等差数列{a n }中,a 2+a 3=-38,a 12=0,求S n 的最小值以及相对应的n 值. 解:解法一:(单调性法)设等差数列{a n }的首项为a 1,公差为d ,则有⎩⎪⎨⎪⎧ (a 1+d )+(a 1+2d )=-38a 1+11d =0, 解得⎩⎪⎨⎪⎧ a 1=-22d =2.∴当⎩⎨⎧ a n ≤0a n +1≥0, 即⎩⎪⎨⎪⎧-22+2(n -1)≤0-22+2n ≥0时,S n 有最小值,解得11≤n ≤12, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132. 解法二:(配方法)由解法一得⎩⎪⎨⎪⎧a 1=-22d =2,∴S n =-22n +n (n -1)2×2=n 2-23n =⎝⎛⎭⎫n -2322-5294, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132. 解法三:(邻项比较法)由解法二得S n =n 2-23n ,又由⎩⎪⎨⎪⎧ S n ≤S n -1,S n ≤S n +1,得⎩⎪⎨⎪⎧n 2-23n ≤(n -1)2-23(n -1),n 2-23n ≤(n +1)2-23(n +1), 解得11≤n ≤12,故S 11=S 12, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132.。
2.2等差数列第二课时人教A版必修五教学目标1.知识与技能在理解等差数列定义及如何判定等差数列, 学习等差数列通项公式的基础上, 掌握等差中项的定义及应用, 明确等差数列的性质, 并用其进行一些相关等差数列的计算.2.过程与方法以等差数列的通项公式为工具, 探究等差数列的性质, 同时进一步培养学生归纳, 总结的一些数学探究的方法.3.情感、态度与价值观在学习的过程中形成主动学习的情感与态度.在运用知识解决问题中体验数学的实际应用价值.教学重点(1)明确等差中项的定义及应用.(2)理解并掌握等差数列的性质.教学难点理解等差数列的性质的应用.教辅手段PPT,多媒体投影幕布教学过程一、复习引入——温故知新【内容设置与处理方式】借助课件引导学生共同回顾所学的等差数列的相关知识1. 等差数列的定义2. 等差数列的通项公式与公差二、 新知探究(一) 等差中项【内容设置与处理方式】直接给出等差中项的定义: 由三个数 组成的等差数列是最简单的等差数列, 此时 叫做 和 的等差中项.同样,在等差数列}{n a 中,就有212+++=n n n a a a 成立.等差中项可应用于判断一个数列是否为等差数列.(二) 等差数列的性质列举几个数列, 观察数列的特点, 研究公差与数列单调性的关系.问题1: 数列1: 1,3,5,7,9,11, ……数列2: 30, 25,20, 15,10,5, ……数列3: 8,8,8,8,8,8, ……引导学生观察, 得到等差数列的一个性质.性质1:若数列 是等差数列, 公差为 .若 >0,则是 递增数列;若 <0,则 是递减数列;若 =0,则 是常数列.2.问题2:在等差数列}{n a 中,探究等差数列中任意两项m n a a ,之间的关系.它们之间的关系可表示为:d m n a a m n )(-+=参考证明: 由等差数列的通项公式 得d m a a m )1(1-+=∴d m n d m a d n a a a m n )(])1([])1([11-=-+--+=-即等式成立由此也可得到公差的另一种表示:mn a a d m n --=性质2: d m n a a m n )(-+=;m n a a d m n --= 问题3: 在等差数列 中, 若 ,则 一定成立吗?特别地, ,则 成立?启发学生应用等差数列的通项公式来证明该问题。