北师大版必修5高中数学第一章等差数列第二课时word教案
- 格式:doc
- 大小:102.00 KB
- 文档页数:3
2.1 等差数列-北师大版必修5教案一、教学目标1.了解等差数列的定义和概念;2.掌握等差数列的通项公式和求和公式;3.学会应用等差数列解决实际问题。
二、教学重点1.理解等差数列的概念及其特点;2.掌握等差数列的通项公式和求和公式;3.能够运用等差数列的公式解决实际问题。
三、教学难点1.理解等差数列的特点;2.理解通项公式和求和公式的原理。
四、教学方法1.教师讲授与学生演练相结合的方法;2.课堂练习与小组合作学习相结合的方法;3.让学生通过实例分析来理解概念和方法。
五、教学过程1. 引入(10分钟)教师通过贴近学生生活的例子,引入等差数列的概念和原理。
比如:两个人去旅行,第一个人每次走10米,第二个人每次走20米,问他们能不能相遇?如何计算相遇点的距离?2. 概念讲解(20分钟)教师讲解等差数列的定义和特点,包括公差、通项公式、前n项和公式等。
3. 公示演练(25分钟)教师让学生通过公式来计算等差数列的第n项和前n项和,并让学生互相检查答案。
4. 解决实际问题(20分钟)教师让学生通过实际例子来解决问题。
比如:如何计算摩托车行驶的路程?如果已知起点坐标、速度和时间,如何计算终点坐标?如果已知起点坐标和终点坐标,如何计算旅行时间?5. 小组合作学习(20分钟)将学生分成小组,让他们合作完成几道等差数列的题目,并将答案汇总到黑板上进行讲解。
6. 总结(5分钟)教师帮助学生总结本节课所学的知识。
六、教学资源1.课本;2.计算器;3.练习题。
七、教学评估1.课堂练习;2.作业练习;3.课后测试。
八、教学延伸让学生通过编写程序来计算等差数列的通项公式和前n项和,来巩固和拓展所学知识。
§2.1 等差数列(二)教学目标1.知识与技能:能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。
2. 过程与方法:进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。
3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。
教学重点:会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。
教学难点:等差数列与一次函数之间的联系教学过程:一、等差数列的通项公式)(1d a dn a n -+= )()(1d a dn n f -+=特征:1︒ 等差数列的通项公式是关于n 的一次函数,n 是自变量,+∈N n n a 是函数 2︒ 如果通项公式是关于n 的一次函数,则该数列成等差数列;证明:若A n B A B A n A B An a n )1()()1(-++=++-=+=它是以B A +为首项,A 为公差的等差数列。
3︒ 图象是直线)(1d a dx y -+=上一些等间隔的点,公差d 是该直线的斜率. 4︒ 公式中若 0>d 则数列递增,0<d 则数列递减;0=d 则数列为常数列 图像见教材P13页等差数列与一次函数的异同:例1:已知(1,1),(3,5)是等差数列{an}图像上的两点.(1)求这个数列的通项公式;(2)画出这个数列的图像;(3)判断这个数列的单调性.解:(1)略.(2)图像是直线y=2x-1上一些等间隔的点.(3)因为一次函数y=2x-1是增函数, 所以数列{an}是递增数列.二、等差中项的概念如果在a 与b 中间插入一个数A, 使a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项若A 是a 与b 的等差中项,则2b a A +=或b a A +=2 证明:设公差为d ,则d a A += d a b 2+= ∴A d a d a a b a =+=++=+222 例2:一个木制梯形架的上、下两底边分别为33cm ,75cm ,把梯形的两腰各6等分,用平行木条连接各对应点,构成梯形架的各级。
《等差数列》教学设计一、教材分析1教材的地位和作用:《等差数列》是北师大版新课标教材《数学》必修5第一章第二节的内容,是学生在学习了数列的有关概念和学习了给出数列的两种方法——通项公式和递推公式的基础上,对数列知识的进一步深入和拓展。
同时等差数列也为今后学习等比数列提供了学习对比的依据。
另一方面,等差数列作为一种特殊的函数与函数思想密不可分,有着广泛的实际应用。
2教学目标:a在知识上,要求学生理解并掌握等差数列的概念,了解等差数列通项公式的推导及思想,初步引入“数学建模”的思想方法并能简单运用。
b在能力上,注重培养学生观察、分析、归纳、推理的能力;在领会了函数与数列关系的前提下,把研究函数的方法迁移到研究数列上来,培养学生的知识、方法迁移能力,提高学生分析和解决问题的能力。
c在情感上,通过对等差数列的研究,让学生体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。
3教学重、难点:重点:①等差数列的概念。
②等差数列通项公式的推导过程及应用。
难点:①等差数列的通项公式的推导。
二、学情分析对于高一的学生,知识经验已经比较丰富,他们的智力发展已经到了形式运演阶段,具备了一定的抽象思维能力,但是推理能力和分析能力还比较弱,有待突破。
三、教法、学法分析教法:本节课我采用启发式、讨论式以及讲练结合的教学方法,通过提问题激发学生的求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析并解决问题。
学法:在引导学生分析问题时,留出学生思考的余地,让学生去联想、探索,鼓励学生大胆质疑,围绕等差数列这个中心各抒己见,把需要解决的问题弄清楚。
四、教学过程我把本节课的教学过程分为五个环节:(一)创设情境,提出问题问题情境(通过多媒体给出现实生活中的2个特殊的数列)年北京举办第29届奥运会,预测第32届奥运会的时间?1896,1900,1904,…,2021,2021,2021()2匡威女运动鞋的鞋码25,,24,,24,,23,,22,,21① 50, , 46, 44, 42, 40②1, 1, , 1, 1, 1, 1, …③3, 0, -3, -6, , -12, …[教师活动]引导学生观察以上数列,提出问题:问题1观察下列数列各项间的关系,找出规律,填补空缺项?问题2说出这5个数列有什么共同特点?(二)新课探究[学生活动]对于问题1,学生容易给出答案。
【课题】等差数列的定义【教学目标】(1)理解等差数列的定义;(2)逐步灵活应用等差数列的概念;(3)通过教学,培养学生的观察、分析、归纳、推理的能力,渗透由特殊到一般的思想。
【教学重点】等差数列的概念【教学难点】等差数列的概念理解【教学方法】合作探究,讨论法【教具准备】黑板,多媒体【课时安排】1课时【教学过程】(一)情境引入问题1:如下图,建筑工地堆放一堆木材,从上到下每层的数目分别为多少?1,2,3,4,5,6,7,8,9,10以此类推,第十一层有多少? 第十二层?第十三层呢? ……思考:上述两个例子中的数列有什么特点?数列从第二项起,每一项减去前一项的差等于同一个常数〔二〕.探究新知〔三〕.例题例1:判断以下数列是否为等差数列?〔1〕1,2,4,6,8,10,12,…;〔2〕0,1,2,3,4,5,6,…;〔3〕3,3,3,3,3,3,3,…;〔4〕2,4,7,11,16,…;〔5〕-8,-6,-4,0,2,4,…;例2:求以下数列的公差。
〔1〕5,5,5,5,5,…〔2〕4,5,6,7,8,9,…〔3〕2,0,-2,-4,-6,-8,-10.例3:等差数列的首项为12,公差为-5,试写出这个数列的第2项到第五项。
解 由于5,121-==d a ,因此 ()751212=-+=+=d a a ; 〔四〕稳固练习{}n a 为等差数列,58a =-,公差2d =,试写出这个数列的第8项8a .2.写出等差数列11,8,5,2,…的第10项. 〔五〕课堂小结本节课你学习到了哪些内容? 〔六〕作业。
等差数列教学设计一、教材分析《等差数列》是北师大版新课标教材《数学》必修5第一章第二节的内容。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了学习对比的依据。
二、学情分析虽然学生刚开始接触数列,但对数列比较感兴趣,愿意研究数列、分析数列,从而归纳结论,这也正是知识产生的过程,学习的本源。
本节课将充分发挥学生的主体作用,引导着学生探究问题,分析问题,归纳结论,从而获得等差数列的系列知识,培养学习兴趣。
部分学生,存在眼高手低现象,简单的运算也会出错,且不擅长检验。
三、教学目标根据教学的要求和学生的实际水平,确定了本次课的教学目标1.知识与技能:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
2.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深刻的理解不完全归纳法。
3.情感态度与价值观:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
四、教材重点和难点分析重点:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
难点:①等差数列的通项公式的推导②用数学思想解决实际问题八、反思总结成功的地方:1.课堂准备充分,环节流程,达到了预期效果!2.课堂注重知识的产生过程,充分发挥学生的主体作用,让学生探究、分析、总结规律。
§2.2等差数列的概念教案新余渝水一中数学教师习先滨教材地位与作用本教学内容是新课标北师大版必修5第一章第2节等差数列,等差数列这一节,在整个高中数学内容中是极其重要的一个内容,就这几十年高考以来,几乎每年都要考等差数列。
数列不仅有着广泛的实际应用,而且启着承上启下的作用一方面,数列作为一种特殊的函数,与函数思想密不可分,另一方面,学习数列也进一步学习数列的极限的内容做好准备。
教学目标1、知识与技能⑴理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想。
⑵能用定义判断一个数列是否为等差数列;会用等差数的通项公式解决相关问题。
2、过程与方法通过实际问题的分析,在引导学生观察、归纳等差数列概念与推导等差数列通项公式过程,使学生认识到等差数列是一种重要的数学模型,能初步从一次函数角度处理等差数列问题。
领会函数与数列关系的前提下,把研究函数的方法迁移过来研究数列,培养学生的知识、方法迁移能力;培养学生观察、分析、归纳能力和应用数学公式的能力。
3、情感、态度与价值观通过对等差数列的研究,使学生体验从特殊到一般,再从一般到特殊的认识事物的规律,养成细心观察、认真分析、善于总结的良好思维习惯;培养学生主动探索、勇于发现的求知精神。
教学重点,难点教学重点:等差数列的定义及等差数列的通项公式。
教学难点:通项公式的推导及从函数的角度理解通项公式。
学情分析:学习等差数列这一内容是在学习了函数和数列的概念、数列的通项公式的基础上对数列知识的进一步深入拓展与研究。
教法分析:由于我校学生生源还存在一定问题,自然我校学生学习基础比较薄弱,大多数学生对数学不感兴趣,为了提高我校学生对数学的学习兴趣和课堂参与教学的积极性,教师在教学时需要多引导学生列举更多的有关生活中能产生等差数列的例子,以便学生更深的理解等差数列的定义。
在讲解等差数列通项公式时,要根据学生的心理特点去研究探讨,顺利的归纳出等差数列的通项公式。
等差数列教学目标1.明确等差中的概念.2.进一步熟练掌握等差数列的通项公式及推导公式3.培养学生的应用意识.教学重点等差数列的性质的理解及应用教学难点灵活应用等差数列的定义及性质解决一些相关问题教学方法讲练相结合教具准备投影片2张(内容见下面)教学过程(I)复习回顾师:首先回忆一下上节课所学主要内容:1. 等差数列定义:d a a n n =--1(n ≥2)2. 等差数列通项公式:d n a a n )1(1-+=(n ≥2)推导公式:d m n a a m n )(-+=(Ⅱ)讲授新课1. 解:由题意可知⎩⎨⎧=+==+=(2)3111(1) 10411215d a a d a a 解之得⎪⎩⎪⎨⎧=-=321d a 即这个数列的首项是-2,公差是3。
或由题意可得:d a a )512(512-+=即:31=10+7d可求得d=3,再由d a a 415+=求得1=-22. 解设{}n a 表示梯子自上而上各级宽度所成的等差数列,由已知条件,可知:a 1=33, a 12=110,n=12∴d a a )112(112-+=,即时10=33+11d解之得:7=d因此,,103,96,89,82,75,68,61,54,47740,40733111098765432=========+==+=a a a a a a a a a a 答:梯子中间各级的宽度从上到下依次是40cm ,47cm ,54cm ,61cm ,68cm ,75cm ,82cm ,89cm ,96cm ,103cm.师:[提问]如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列数列,那么A 应满足什么条件?生:由定义得A-a =b -A 即:2b a A +=反之,若2b a A +=,则A-a =b -A 师:由此可可得:,,2b a b a A ⇔+=成等差数列,若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。
§2.1 等差数列(一)一、教学内容分析本节课是《普通高中课程标准实验教科书·数学必修5》(北师大版)第一章数列第二节等差数列第一课时。
等差数列在生活中有着广泛的应用,是在学生学习了函数、数列的有关概念和数列通项公式的基础上,是学生进一步理解、掌握函数思想,学生探究特殊数列的开始,为今后学习等比数列提供了“联想”、“类比”的思想方法。
它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。
二、学生学习情况分析我所教的是我校高二理科班的学生,经过了一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时针对个体差异,注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
三、设计思想1.教法⑴诱导思维法:有利于学生对等差数列的概念进行主动建构;有利于突出重点,突破难点;在学生参与到知识的形成过程中,有利于调动学生的主动性和积极性,发挥其创造性,诱导学生进行理性分析与推导,从而得出通项公式。
⑵分组讨论法:如何判断一个数列是否为等差数列,学生分组交流探究出判别方法。
⑶讲练结合法:对等差数列的通项公式及时巩固,抓住重点,突破难点。
2.学法引导学生首先从三个现实问题给出的数组特点并抽象概括出等差数列的概念;接着就等差数列定义的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。
用多种方法对等差数列的通项公式进行推导。
在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学目标1、知识与技能目标(1)理解和掌握等差数列的概念;能用定义法在3分钟内判断某一数列是否为等差数列,准确率为95% 。
(2)能在3分钟内写出已知首项和公差的任意一个等差数列的通项公式,准确率为95%。
高中数学 第1章 数列2等差数列同步教学案 北师大版必修5课时目标 1.理解等差数列的概念.2.掌握等差数列的通项公式.1.如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做________数列,这个常数叫做等差数列的________,公差通常用字母d 表示. 2.若三个数a ,A ,b 构成等差数列,则A 叫做a 与b 的__________,并且A =________. 3.若等差数列的首项为a 1,公差为d ,则其通项a n =____________.4.等差数列{a n }中,若公差d >0,则数列{a n }为______数列;若公差d <0,则数列{a n }为________数列.一、选择题1.已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( )A .2B .3C .-2D .-3 2.△ABC 中,三内角A 、B 、C 成等差数列,则角B 等于( )A .30°B .60° C.90° D.120° 3.在数列{a n }中,a 1=2,2a n +1=2a n +1(n ∈N +),则a 101的值为( )A .49B .50C .51D .52 4.一个等差数列的前4项是a ,x ,b,2x ,则a b等于( )A.14B.12C.13D.235.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A .1 B .2 C .4 D .66.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( ) A .a n =2n -2 (n ∈N +) B .a n =2n +4 (n ∈N +) C .a n =-2n +12 (n ∈N +) D .a n =-2n +10 (n ∈N +) 二、填空题7.已知a =13+2,b =13-2,则a 、b 的等差中项是__________.8.一个等差数列的前三项为:a,2a -1,3-a .则这个数列的通项公式为________. 9.若m ≠n ,两个等差数列m 、a 1、a 2、n 与m 、b 1、b 2、b 3、n 的公差为d 1和d 2,则d 1d 2的值为________.10.首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是________. 三、解答题11.已知成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.12.已知数列{a n }满足a 1=4,a n =4-4a n -1(n ≥2),令b n =1a n -2. (1)求证:数列{b n }是等差数列; (2)求数列{a n }的通项公式.能力提升13.一个等差数列的首项为a 1=1,末项a n =41 (n ≥3)且公差为整数,那么项数n 的取值个数是( )A .6B .7C .8D .不确定14.已知数列{a n }满足a 1=15,且当n >1,n ∈N +时,有a n -1a n =2a n -1+11-2a n ,设b n =1a n,n ∈N +.(1)求证:数列{b n }为等差数列.(2)试问a 1a 2是否是数列{a n }中的项?如果是,是第几项; 如果不是,请说明理由.1.判断一个数列{a n }是否是等差数列,关键是看a n +1-a n 是否是一个与n 无关的常数. 2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1、d 、n 、a n 四个量中,只要知道其中任意三个 量,就可以求出另一个量.3.三个数成等差数列可设为:a -d ,a ,a +d 或a ,a +d ,a +2d ;四个数成等差数列可设为:a -3d ,a -d ,a +d ,a +3d 或a ,a +d ,a +2d ,a +3d .§2 等差数列 2.1 等差数列(一)答案知识梳理1.等差 公差 2等差中项a +b23.a 1+(n -1)d 4.递增 递减作业设计1.C 2.B 3.D4.C [⎩⎪⎨⎪⎧2x =a +b ,2b =x +2x ,∴a =x 2,b =32x . ∴a b =13.]5.B [设前三项分别为a -d ,a ,a +d ,则a -d +a +a +d =12且a (a -d )(a +d )=48,解得a =4且d =±2,又{a n }递增,∴d >0,即d =2,∴a 1=2.]6.D [由⎩⎪⎨⎪⎧a 2·a 4=12,a 2+a 4=8,d <0,⇒⎩⎪⎨⎪⎧a 2=6,a 4=2,⇒⎩⎪⎨⎪⎧a 1=8,d =-2,所以a n =a 1+(n -1)d ,即a n =8+(n -1)×(-2),得a n =-2n +10.]7. 38.a n =14n +1解析 ∵a +(3-a )=2(2a -1),∴a =54.∴这个等差数列的前三项依次为54,32,74.∴d =14,a n =54+(n -1)×14=n4+1.9.43解析 n -m =3d 1,d 1=13(n -m ).又n -m =4d 2,d 2=14(n -m ).∴d 1d 2=13(n -m )14(n -m )=43. 10.83<d ≤3 解析 设a n =-24+(n -1)d , 由⎩⎪⎨⎪⎧a 9=-24+8d ≤0a 10=-24+9d >0解得:83<d ≤3.11.解 设这四个数为a -3d ,a -d ,a +d ,a +3d ,则由题设得⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40,∴⎩⎪⎨⎪⎧4a =26,a 2-d 2=40.解得⎩⎪⎨⎪⎧ a =132,d =32或⎩⎪⎨⎪⎧a =132,d =-32.所以这四个数为2,5,8,11或11,8,5,2.12.(1)证明 ∵a n =4-4a n -1(n ≥2),∴a n +1=4-4a n(n ∈N +).∴b n +1-b n =1a n +1-2-1a n -2=12-4a n-1a n -2=a n 2(a n -2)-1a n -2=a n -22(a n -2)=12.∴b n +1-b n =12,n ∈N +.∴{b n }是等差数列,首项为12,公差为12.(2)解 b 1=1a 1-2=12,d =12.∴b n =b 1+(n -1)d =12+12(n -1)=n2.∴1a n -2=n 2,∴a n =2+2n. 13.B [由a n =a 1+(n -1)d ,得41=1+(n -1)d ,d =40n -1为整数,且n ≥3. 则n =3,5,6,9,11,21,41共7个.]14.(1)证明 当n >1,n ∈N +时,a n -1a n =2a n -1+11-2a n ⇔1-2a n a n =2a n -1+1a n -1⇔1a n -2=2+1a n -1⇔1a n-1a n -1=4⇔b n -b n -1=4,且b 1=1a 1=5.∴{b n }是等差数列,且公差为4,首项为5.(2)解 由(1)知b n =b 1+(n -1)d =5+4(n -1)=4n +1.∴a n =1b n =14n +1,n ∈N +.∴a 1=15,a 2=19,∴a 1a 2=145.令a n =14n +1=145,∴n =11.即a 1a 2=a 11,∴a 1a 2是数列{a n }中的项,是第11项.2.1 等差数列(二)课时目标 1.进一步熟练掌握等差数列的通项公式.2.熟练运用等差数列的常用性质.1.等差数列的通项公式a n =a 1+(n -1)d ,当d =0时,a n 是关于n 的常函数;当d ≠0时,a n 是关于n 的一次函数;点(n ,a n )分布在以____为斜率的直线上,是这条直线上的一列孤立的点.2.已知在公差为d 的等差数列{a n }中的第m 项a m 和第n 项a n (m ≠n ),则a m -a nm -n=____. 3.对于任意的正整数m 、n 、p 、q ,若m +n =p +q .则在等差数列{a n }中,a m +a n 与a p +a q之间的关系为______________.一、选择题1.在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-12a 8的值为( )A .4B .6C .8D .102.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为( ) A. 3 B .± 3C .-33 D .- 33.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( ) A .12 B .8 C .6 D .44.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .355.设公差为-2的等差数列{a n },如果a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99等于( )A .-182B .-78C .-148D .-826.若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q 为( ) A .p +q B .0C .-(p +q ) D.p +q2二、填空题7.若{a n }是等差数列,a 15=8,a 60=20,则a 75=_____________________________. 8.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20=________.9.已知⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 4=6,a 6=4,则a 10=___________________________.10.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m-n |=________.三、解答题11.等差数列{a n }的公差d ≠0,试比较a 4a 9与a 6a 7的大小.12.已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式.能力提升13.在3与27之间插入7个数,使这9个数成等差数列,则插入这7个数中的第4个数值为( )A .18B .9C .12D .1514.已知两个等差数列{a n }:5,8,11,…,{b n }:3,7,11,…,都有100项,试问它们有多少个共同的项?1.在等差数列{a n }中,当m ≠n 时,d =a m -a nm -n为公差公式,利用这个公式很容易求出公差,还可变形为a m =a n +(m -n )d .2.等差数列{a n }中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列.3.等差数列{a n }中,若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N +),特别地,若m +n =2p ,则a n +a m =2a p .2.1 等差数列(二)答案知识梳理1.d 2.d 3.a m +a n =a p +a q 作业设计1.C [由a 2+a 4+a 6+a 8+a 10=5a 6=80,∴a 6=16,∴a 7-12a 8=12(2a 7-a 8)=12(a 6+a 8-a 8)=12a 6=8.]2.D [由等差数列的性质得a 1+a 7+a 13=3a 7=4π,∴a 7=4π3.∴tan(a 2+a 12)=tan(2a 7)=tan 8π3=tan 2π3=- 3.]3.B [由等差数列性质a 3+a 6+a 10+a 13=(a 3+a 13)+(a 6+a 10)=2a 8+2a 8=4a 8=32, ∴a 8=8,又d ≠0, ∴m =8.]4.C [∵a 3+a 4+a 5=3a 4=12,∴a 4=4.∴a 1+a 2+a 3+…+a 7=(a 1+a 7)+(a 2+a 6)+(a 3+a 5)+a 4=7a 4=28.] 5.D [a 3+a 6+a 9+…+a 99=(a 1+2d )+(a 4+2d )+(a 7+2d )+…+(a 97+2d ) =(a 1+a 4+…+a 97)+2d ×33 =50+2×(-2)×33 =-82.]6.B [∵d =a p -a q p -q =q -pp -q=-1,∴a p +q =a p +qd =q +q ×(-1)=0.]7.24解析 ∵a 60=a 15+45d ,∴d =415,∴a 75=a 60+15d =20+4=24.8.1解析 ∵a 1+a 3+a 5=105,∴3a 3=105,a 3=35. ∴a 2+a 4+a 6=3a 4=99.∴a 4=33,∴d =a 4-a 3=-2.∴a 20=a 4+16d =33+16×(-2)=1. 9.125解析 1a 6-1a 4=14-16=2d ,即d =124.所以1a 10=1a 6+4d =14+16=512,所以a 10=125.10.12解析 由题意设这4个根为14,14+d ,14+2d ,14+3d .则14+⎝ ⎛⎭⎪⎫14+3d =2,∴d =12, ∴这4个根依次为14,34,54,74,∴n =14×74=716,m =34×54=1516或n =1516,m =716, ∴|m -n |=12.11.解 设a n =a 1+(n -1)d ,则a 4a 9-a 6a 7=(a 1+3d )(a 1+8d )-(a 1+5d )(a 1+6d )=(a 21+11a 1d +24d 2)-(a 21+11a 1d +30d 2)=-6d 2<0,所以a 4a 9<a 6a 7.12.解 ∵a 1+a 7=2a 4,a 1+a 4+a 7=3a 4=15,∴a 4=5. 又∵a 2a 4a 6=45,∴a 2a 6=9,即(a 4-2d )(a 4+2d )=9,(5-2d )(5+2d )=9,解得d =±2. 若d =2,a n =a 4+(n -4)d =2n -3;若d =-2,a n =a 4+(n -4)d =13-2n .13.D [设这7个数分别为a 1,a 2,…,a 7,公差为d ,则27=3+8d ,d =3. 故a 4=3+4×3=15.]14.解 在数列{a n }中,a 1=5,公差d 1=8-5=3. ∴a n =a 1+(n -1)d 1=3n +2.在数列{b n }中,b 1=3,公差d 2=7-3=4, ∴b n =b 1+(n -1)d 2=4n -1.令a n =b m ,则3n +2=4m -1,∴n =4m3-1.∵m 、n ∈N +,∴m =3k (k ∈N +),又⎩⎪⎨⎪⎧0<m ≤1000<n ≤100,解得0<m ≤75. ∴0<3k ≤75,∴0<k ≤25, ∴k =1,2,3,…,25∴两个数列共有25个公共项.2.2 等差数列的前n 项和(一)课时目标 1.掌握等差数列前n 项和公式及其性质.2.掌握等差数列的五个量a 1,d ,n ,a n ,S n 之间的关系.1.把a 1+a 2+…+a n 叫数列{a n }的前n 项和,记做____________________________. 例如a 1+a 2+…+a 16可以记作______;a 1+a 2+a 3+…+a n -1=______ (n ≥2). 2.若{a n }是等差数列,则S n 可以用首项a 1和末项a n 表示为S n =__________;若首项为a 1,公差为d ,则S n 可以表示为S n =____________. 3.等差数列前n 项和的性质(1)若数列{a n }是公差为d 的等差数列,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且公差为________.(2)S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列.(3)设两个等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,则a n b n =S 2n -1T 2n -1.一、选择题1.设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( ) A .13 B .35 C .49 D .63 2.等差数列{a n }中,S 10=4S 5,则a 1d等于( )A.12 B .2 C.14D .4 3.已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( ) A .-9 B .-11 C .-13 D .-154.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36.则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .275.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .6636.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是( )A .3B .-3C .-2D .-1二、填空题7.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________.8.两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,则a 5b 5的值是________.9.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 的值为________.10.等差数列{a n }的前m 项和为30,前2m 项和为100,则数列{a n }的前3m 项的和S 3m 的值是________.三、解答题11.在等差数列{a n }中,已知d =2,a n =11,S n =35,求a 1和n .12.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .能力提升13.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .2914.已知两个等差数列{a n }与{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .51.等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五个量,通常已知其中三个量,可求另外两个量.在求等差数列的和时,一般地,若已知首项a 1及末项a n ,用公式S n =n (a 1+a n )2较好,若已知首项a 1及公差d ,用公式S n =na 1+n (n -1)2d 较好.2.等差数列的性质比较多,学习时,不必死记硬背,可以在结合推导过程中加强记忆,并在解题中熟练灵活地应用.2.2 等差数列的前n 项和(一)答案知识梳理1.S n S 16 S n -1 2.n (a 1+a n )2 na 1+12n (n -1)d3.(1)d2作业设计1.C [S 7=7(a 1+a 7)2=7(a 2+a 6)2=49.]2.A [由题意得:10a 1+12×10×9d =4(5a 1+12×5×4d ),∴10a 1+45d =20a 1+40d ,∴10a 1=5d ,∴a 1d =12.]3.D [由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15.]4.B [数列{a n }为等差数列,则S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6),∵S 3=9,S 6-S 3=27,则S 9-S 6=45.∴a 7+a 8+a 9=S 9-S 6=45.]5.B [因a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.] 6.B [由⎩⎪⎨⎪⎧a 1+a 3+…+a 2n -1=na 1+n (n -1)2×(2d )=90,a 2+a 4+…+a 2n=na 2+n (n -1)2×(2d )=72,得nd =-18.又a 1-a 2n =-(2n -1)d =33,所以d =-3.] 7.15解析 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1, S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8. 由⎩⎪⎨⎪⎧ a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2. 故a 9=a 1+8d =-1+8×2=15. 8.6512解析 a 5b 5=9(a 1+a 9)9(b 1+b 9)=S 9T 9=6512.9.10解析 S 奇=(n +1)(a 1+a 2n +1)2=165,S 偶=n (a 2+a 2n )2=150.∵a 1+a 2n +1=a 2+a 2n ,∴n +1n =165150=1110,∴n =10. 10.210解析 方法一 在等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列. ∴30,70,S 3m -100成等差数列.∴2×70=30+(S 3m -100),∴S 3m =210.方法二 在等差数列中,S m m ,S 2m 2m ,S 3m3m成等差数列, ∴2S 2m 2m =S m m +S 3m3m. 即S 3m =3(S 2m -S m )=3×(100-30)=210. 11.解 由⎩⎪⎨⎪⎧a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d ,得⎩⎪⎨⎪⎧a 1+2(n -1)=11,na 1+n (n -1)2×2=35,解方程组得⎩⎪⎨⎪⎧n =5a 1=3或⎩⎪⎨⎪⎧n =7,a 1=-1.12.解 设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d ,∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧7a 1+21d =715a 1+105d =75,即⎩⎪⎨⎪⎧a 1+3d =1a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12,∴T n =n ×(-2)+n (n -1)2×12=14n 2-94n . 13.B [钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n =n (n +1)2.当n =19时,S 19=190. 当n =20时,S 20=210>200.∴n =19时,剩余钢管根数最少,为10根.]14.D [a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7(n +1)+12n +1=7+12n +1,∴n =1,2,3,5,11.]2.2 等差数列的前n 项和(二)课时目标 1.熟练掌握等差数列前n 项和的性质,并能灵活运用.2.掌握等差数列前n 项和的最值问题.3.理解a n 与S n 的关系,能根据S n 求a n .1.前n 项和S n 与a n 之间的关系对任意数列{a n },S n 是前n 项和,S n 与a n 的关系可以表示为a n =⎩⎪⎨⎪⎧(n =1), (n ≥2).2.等差数列前n 项和公式S n =____________=______________. 3.等差数列前n 项和的最值 (1)在等差数列{a n }中当a 1>0,d <0时,S n 有________值,使S n 取到最值的n 可由不等式组________ 确定; 当a 1<0,d >0时,S n 有________值,使S n 取到最值的n 可由不等式组____________确定.(2)因为S n =d2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有________值;当d <0时,S n 有________值;且n 取最接近对称轴的自然数时,S n 取到最值. 一个有用的结论:若S n =an 2+bn ,则数列{a n }是等差数列.反之亦然.一、选择题1.已知数列{a n }的前n 项和S n =n 2,则a n 等于( )A .nB .n 2C .2n +1D .2n -12.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是( ) A .-2 B .-1 C .0 D .13.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 为( ) A .9 B .8 C .7 D .64.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( )A.310B.13C.18D.195.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2 D.126.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5D .S 6与S 7均为S n 的最大值二、填空题7.数列{a n }的前n 项和为S n ,且S n =n 2-n ,(n ∈N +),则通项a n =________. 8.在等差数列{a n }中,a 1=25,S 9=S 17,则前n 项和S n 的最大值是________.9.在等差数列{a n }中,已知前三项和为15,最后三项和为78,所有项和为155,则项数n =________.10.等差数列{a n }中,a 1<0,S 9=S 12,该数列在n =k 时,前n 项和S n 取到最小值,则k 的值是________.三、解答题11.设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.12.已知等差数列{a n }中,记S n 是它的前n 项和,若S 2=16,S 4=24,求数列{|a n |}的前n 项和T n .能力提升13.数列{a n }的前n 项和S n =3n -2n 2(n ∈N +),则当n ≥2时,下列不等式成立的是( ) A .S n >na 1>na n B .S n >na n >na 1 C .na 1>S n >na n D .na n >S n >na 114.设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0. (1)求公差d 的范围;(2)问前几项的和最大,并说明理由.1.公式a n =S n -S n -1并非对所有的n ∈N +都成立,而只对n ≥2的正整数才成立.由S n 求通项公式a n =f (n )时,要分n =1和n ≥2两种情况分别计算,然后验证两种情况能否用统一解析式表示,若不能,则用分段函数的形式表示. 2.求等差数列前n 项和的最值(1)二次函数法:用求二次函数的最值方法来求其前n 项和的最值,但要注意n ∈N +,结合二次函数图像的对称性来确定n 的值,更加直观.(2)通项法:当a 1>0,d <0,⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0时,S n 取得最大值;当a 1<0,d >0,⎩⎪⎨⎪⎧a n ≤0,a n +1≥0时,S n 取得最小值.3.求等差数列{a n }前n 项的绝对值之和,关键是找到数列{a n }的正负项的分界点.2.2 等差数列的前n 项和(二)答案知识梳理1.S 1 S n -S n -1 2.n (a 1+a n )2 na 1+n (n -1)2d3.(1)最大 ⎩⎪⎨⎪⎧a n ≥0a n +1≤0 最小 ⎩⎪⎨⎪⎧a n ≤0a n +1≥0 (2)最小 最大作业设计1.D2.B [等差数列前n 项和S n 的形式为:S n =an 2+bn , ∴λ=-1.]3.B [由a n =⎩⎪⎨⎪⎧S 1, n =1S n -S n -1, n ≥2,∴a n =2n -10.由5<2k -10<8,得7.5<k <9,∴k=8.] 4.A [方法一S 3S 6=3a 1+3d 6a 1+15d =13⇒a 1=2d ,S 6S 12=6a 1+15d 12a 1+66d =12d +15d 24d +66d =310. 方法二 由S 3S 6=13,得S 6=3S 3.S 3,S 6-S 3,S 9-S 6,S 12-S 9仍然是等差数列,公差为(S 6-S 3)-S 3=S 3,从而S 9-S 6=S 3+2S 3=3S 3⇒S 9=6S 3,S 12-S 9=S 3+3S 3=4S 3⇒S 12=10S 3,所以S 6S 12=310.]5.A [由等差数列的性质,a 5a 3=2a 52a 3=a 1+a 9a 1+a 5=59,∴S 9S 5=92(a 1+a 9)52(a 1+a 5)=95×59=1.]6.C [由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0,所以d <0.由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0即S 9<S 5.] 7.2n -2 8.169解析 方法一 利用前n 项和公式和二次函数性质.由S 17=S 9,得25×17+172×(17-1)d =25×9+92×(9-1)d ,解得d =-2,所以S n =25n+n2(n -1)×(-2)=-(n -13)2+169,由二次函数性质可知,当n =13时,S n 有最大值169. 方法二 先求出d =-2,因为a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2(n -1)≥0,a n +1=25-2n ≤0, 得⎩⎪⎨⎪⎧n ≤1312,n ≥1212.所以当n =13时,S n 有最大值.S 13=25×13+13×(13-1)2×(-2)=169.因此S n 的最大值为169.方法三 由S 17=S 9,得a 10+a 11+…+a 17=0, 而a 10+a 17=a 11+a 16=a 12+a 15=a 13+a 14, 故a 13+a 14=0.由方法一知d =-2<0, 又因为a 1>0,所以a 13>0,a 14<0, 故当n =13时,S n 有最大值.S 13=25×13+13×(13-1)2×(-2)=169.因此S n 的最大值为169. 9.10解析 由已知,a 1+a 2+a 3=15,a n +a n -1+a n -2=78,两式相加,得 (a 1+a n )+(a 2+a n -1)+(a 3+a n -2)=93,即a 1+a n =31.由S n =n (a 1+a n )2=31n 2=155,得n =10.10.10或11解析 方法一 由S 9=S 12,得d =-110a 1,由⎩⎪⎨⎪⎧a n =a 1+(n -1)d ≤0a n +1=a 1+nd ≥0,得⎩⎪⎨⎪⎧1-110(n -1)≥01-110n ≤0,解得10≤n ≤11.∴当n 为10或11时,S n 取最小值, ∴该数列前10项或前11项的和最小.方法二 由S 9=S 12,得d =-110a 1,由S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,得S n =⎝ ⎛⎭⎪⎫-120a 1·n 2+⎝ ⎛⎭⎪⎫2120a 1·n =-a 120⎝ ⎛⎭⎪⎫n -2122+44180a 1 (a 1<0),由二次函数性质可知n =212=10.5时,S n 最小.但n ∈N +,故n =10或11时S n 取得最小值.11.解 (1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得 ⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎪⎨⎪⎧a 1=9,d =-2, 所以数列{a n }的通项公式为a n =11-2n .(2)由(1)知,S n =na 1+n (n -1)2d =10n -n 2.因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.12.解 由S 2=16,S 4=24,得⎩⎪⎨⎪⎧2a 1+2×12d =16,4a 1+4×32d =24.即⎩⎪⎨⎪⎧2a 1+d =16,2a 1+3d =12.解得⎩⎪⎨⎪⎧a 1=9,d =-2.所以等差数列{a n }的通项公式为a n =11-2n (n ∈N +).(1)当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n .(2)当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-a 6-a 7-…-a n =2S 5-S n=2×(-52+10×5)-(-n 2+10n )=n 2-10n +50,故T n =⎩⎪⎨⎪⎧-n 2+10n (n ≤5),n 2-10n +50 (n ≥6).13.C [由a n =⎩⎪⎨⎪⎧S 1 (n =1)S n -S n -1 (n ≥2),解得a n =5-4n .∴a 1=5-4×1=1,∴na 1=n ,∴na n =5n -4n 2,∵na 1-S n =n -(3n -2n 2)=2n 2-2n =2n (n -1)>0. S n -na n =3n -2n 2-(5n -4n 2)=2n 2-2n >0. ∴na 1>S n >na n .]14.解 (1)根据题意,有:⎩⎪⎨⎪⎧12a 1+12×112d >0,13a 1+13×122d <0,a 1+2d =12,整理得:⎩⎪⎨⎪⎧2a 1+11d >0,a 1+6d <0,a 1+2d =12.解之得:-247<d <-3.(2)∵d <0,∴a 1>a 2>a 3>…>a 12>a 13>…,而S 13=13(a 1+a 13)2=13a 7<0,∴a 7<0.又S 12=12(a 1+a 12)2=6(a 1+a 12)=6(a 6+a 7)>0,∴a 6>0.∴数列{a n }的前6项和S 6最大.。
§2.1 等差数列(二)
教学目标
1.知识与技能:能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问
题;体会等差数列与一次函数的关系。
2. 过程与方法:进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概
念、性质、表达式得到对等差数列相应问题的研究。
3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。
教学重点:会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。
教学难点:等差数列与一次函数之间的联系
教学过程:
一、等差数列的通项公式
特征:
1︒ 等差数列的通项公式是关于n 的一次函数,n 是自变量,+∈N n n a 是函数 2︒ 如果通项公式是关于n 的一次函数,则该数列成等差数列;
证明:若A n B A B A n A B An a n )1()()1(-++=++-=+=
它是以B A +为首项,A 为公差的等差数列。
3︒ 图象是直线)(1d a dx y -+=上一些等间隔的点,公差d 是该直线的斜率.
4︒ 公式中若 0>d 则数列递增,0<d 则数列递减;0=d 则数列为常数列 图像见教材P13页
等差数列与一次函数的异同:
例1:已知(1,1),(3,5)是等差数列{an}图像上的两点.
(1)求这个数列的通项公式;
(2)画出这个数列的图像;
(3)判断这个数列的单调性.
解:(1)略.
(2)图像是直线y=2x-1上一些等间隔的点.
(3)因为一次函数y=2x-1是增函数, 所以数列{an}是递增数列.
二、等差中项的概念
如果在a 与b 中间插入一个数A, 使a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项
若A 是a 与b 的等差中项,则2
b a A +=
或b a A +=2 证明:设公差为d ,则d a A += d a b 2+= ∴A d a d a a b a =+=++=+222 例2:一个木制梯形架的上、下两底边分别为33cm ,75cm ,把梯形的两腰各6等分,用平行
木条连接各对应点,构成梯形架的各级。
试计算梯形架中间各级的宽度。
解: 记梯形架自上而下各级宽度所构成的数列为{an},则由梯形中位
线的性质,易知每相邻三项均成等差数列,从而{an}成等差数列。
依题意有cm a 331= cm a 757=
现要求65432,,,a a a a a ,即中间5层的宽度。
)(76
33751717cm a a d =-=--=cm a 407332=+=, cm a 477403=+=,cm a 544=, cm a 615=,cm a 686=
答:梯形架中间各级的宽度自上而下依次是40cm,47cm,54cm,61cm,68cm.
例3:在-1与7之间顺次插入三个数c b a ,,使这五个数成等差数列,求此数列。
解:∵成等差数列7,,,,1c b a - ∴b 是-1与7 的等差中项 ∴ 3271=+-=
b a 又是-1与3的等差中项 ∴12
31=+-=a c 又是1与7的等差中项 ∴52
73=+=c 7533
解:设11-=a 75=a ∴d )15(17-+-= 2=⇒d ∴所求的数列为-1,1,3,5,7 小结:
❖ 这节课你学习了哪些知识?
❖ 体会到了哪些数学思想方法?
❖ 你最大的收获是什么?
思考题:1、证明你刚才关于等差数列特征的猜想。
2、总结归纳:证明一个数列为等差数列的方法有哪些?
作业: P 19 习题1-2 第9、11、13题。