2014八年级第一学期学科竞赛数学试卷附答案
- 格式:doc
- 大小:279.00 KB
- 文档页数:7
2014年全国初中数学联赛(初二组)决赛试题(3月23日 上午10:30——12:00)题号 一 二 三 四 五 合计得分评卷人复核人一、 选择题 (本大题42分,每小题7分)1,若2x y y x y =-,则22222343x xy y x xy y --++的值是 ( )(A )0 (B )32- (C )-15 (D )-15或32-2,设21,52,103a b c =-=-=-,则a 、b 、c 的大小关系 ( )(A )a b c << (B )a c b << (C )b c a << (D )c b a <<3,设a,b,c 均为正整数,且a ≥b ≥c ,满足a+b+c=15,那么以a,b,c 为边长的三角形有 ( )(A )5个 (B )7个 (C )10个 (D )12个4,如图,已知在平行ABCD 中,邻边邻角均不相等,E 、F分别为BO,DO 的中点,那么这个图形中全等三角形的对数是( )(A )5对 (B )6对 (C )7对 D )8对5,若整数a,b 都不能被5整除,但a+b 能被5整除,则下列式子不能被5整除的是 ()(A )2a+b (B)2a-3b (C)3a+8b (D)3a-7b6,有盐水若干克,盐水浓度为3%,加入a 克清水后,盐水浓度为2%,再加入a 克清水后,,则此时盐水浓度为 ( )(A )1% (B )1.25% (C )1.5% (D )1.75%二、填空题(本大题满分28分,每小题7分)1、a,b,c 为常数,且()()3221x x c x x ax b ++=+++对任意实数x 都成立,则abc 的值为2、如图,两张相同的长方形纸片,长为2宽为1,横竖紧靠放在一起,过F 的直线分别交AH 于M ,CB 于N ,且∆HMF 与梯形DEFN 面积相等,则AM 的长度为3、若a,b 是正整数,且满足5a+7b=50,则ab 的值为4、已知∆ABC 的面积为4,3AB =2BC ,作∠ABC 的角平分线BE 交AC 于E ,过C 作BE 的垂线,垂足为D ,则∆BDC 的面积为三、(本大题满分20分)如图,已知凸四边形ABCD 中,∠ABC+∠ADC =180°,AC 平分∠BAD ,过C 作AB的垂线交AB 于E 。
2014年三门峡市八年级学生综合能力竞赛数 学题号 一 二 三总分 得分13 14 15 16 17一、选择题(每小题4分,共24分)1.若a ,b ,c 为三角形的三边,化简222)()()(a c b a c b c b a -++--+-+的结果是 { }A 、a -b +cB 、a +b -cC 、a +b +cD 、-a +b +c 2.若bk <0,则直线y =kx +b 一定通过 ( ) A .第一、二象限 B .第二、三象限C .第三、四象限D .第一、四象限3.图1是韩老师早晨出门散步时,离家的距离(y )与时间(x )之间的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是( )4.如图,在直角梯形ABCD 中, AB ∥CD ,∠ABC =90°,动点P 从点B 出发,沿B →C →D 的线路匀速运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图所示,则△BCD 的面积是( ) A .3 B .4 C .5 D .6B.yx图1OA.C.D.ABC DPyxO 25 FE M GDACB5.如图,已知正方形ABCD 的边长为4,M 点为CD 边上的中点,若M 点是A 点关于线段EF 的对称点,则EDAE等于( ) A.35 B.53 C.2 D.21 6.如图,已知点E 、F 、G 、H 分别是正方形ABCD 各边的中点,若四边形KIMN 的面积为10,则正方形ABCD 边长为( ).A .5B .6C .52D .8二、填空题(每小题4分,共24分) 7.计算:211++321++431++…+199100+=8.有一油罐,其直径为6米,高为8米,如图2,将一长为12米的金属棒插入油罐中,使金属棒的一端与油罐底部接触,假如金属棒露在外面的长为h 米,试问h 的取值范围是 .9.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点P (a ,2),则关于x 的不等式1x +≥mx n +的解集为 .10.如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,延长BG 交CD 于F 点,若CF =5,FD =7,则BC 的长为 . 11.如图,矩形纸片ABCD 中,AB =4cm ,BC =3cm ,把∠B 、∠D 分别沿CE 、AG 翻折,点B 、D 分别落在对角线AC 的点B '和D '上,则线段EG 的长是________.12.如图,在坐标系中,过A (1,0)作AB x ⊥轴交函数3y x =图象l 于B ,过B 作1A B l ⊥hy xO P2a1l2lB ' ED 'ABCD G交x 轴于1A ;再过1A 作11A B x ⊥轴交l 于1B ,过1B 作21A B l ⊥交x 轴于2A ......这样作下去,则5A 的坐标是________.三、解答题(本大共5小题,共52分) 13.(本题7分)计算:21112(31)3()2221-⨯-++--14.(本题11分)如图,已知直线12345∥∥∥∥l l l l l ,相邻两平行线间的距离都为6cm ;小明把一张透明矩形卡片放在上面,很容易就能得到一个由矩形的边和平行线构成的平行四边形,小明继续移动卡片,他发现卡片的四顶点A 、B 、C 、D 恰好落在直线1l 、2l 、5l 、4l 上,直线2l 与边AD 的交点为E ,直线4l 与边BC 的交点为F ,四边形BFDE 为菱形.那么把这个矩形卡片在图中摆放,能否得到一个正方形?请说明理由.l 5l 1l 2l 3l 4KFEDCBA15.(本题11分)如图,根据天气预报,台风中心位于A 市正东方向300 km 的点O 处,正以20 km/h 的速度向北偏西60°方向移动,距离台风中心250 km 范围内都会受到影响,若台风移动的速度和方向不变,则A 市受台风影响的时间是有多长?16.(本题11分)学校实行学案式教学,需印制若干份数学学案.印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y (元)与印刷份数x (份)之间的关系如图所示.(1)求甲种收费方式的函数关系式和乙种收费方式的函数关系式;(2)该校八年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算.A O 北 东M17.(本题12分)如图,四边形OABC 是矩形,点C A ,的坐标分别为)1,0(),0,3(,点D 是线段BC 上的动点(与端点C B ,不重合),过点D 作直线b x y +-=21交OA 于点E 。
城东校区2013-2014年第二学期八年级数学竞赛试卷时间100 分钟 满分100分题目 一 二 三 总分 得分一、选择题(每题4分,共32分)1.已知一个直角三角形的两边长分别为3和4,则第三边长是( )A.5B.25C.7D.5或72.已知:a 、b 、c 是△ABC 的三边,化简=( )A .2a ﹣2bB .2b ﹣2aC .2cD .﹣2c3.表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )4.如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABDC与S四边形ECDF的大小关系是( )A .S 四边形ABDC =S 四边形ECDFB .S 四边形ABDC < S 四边形ECDF C .S 四边形ABDC =S 四边形ECDF +1D .S 四边形ABDC =S 四边形ECDF +25.如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为( )A .14B .15C .16D .176.用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第13个“口”字需用棋子颗数为()A .52B .50C .48D .46·····························装··············订·············线··········································· 姓名班级 考号7. 直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( )A. ab=h 2B. a 2+b 2=2h 2C.a 1+b 1=h1 D.21a +21b=21h8.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE =CF ②∠AEB =750③BE+DF =EF ④S 正方形ABCD =2+3,其中正确的序号是( ) 。
2014年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分) 1.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,则x y +的可能的值有( ) A. 1个 B. 2个 C. 3个 D. 4个【答】 C.由已知等式得2244224423x y x y x y xy x y x y++-⋅=⋅,显然,x y 均不为0,所以x y +=0或32()xy x y =-.若32()xy x y =-,则(32)(32)4x y +-=-.又,x y 为整数,可求得12,x y =-⎧⎨=⎩,或21.x y =-⎧⎨=⎩,所以1x y +=或1x y +=-.因此,x y +的可能的值有3个.2.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为 ( ) A .47 B .59 C .916 D .1225【答】 A.21222()2()()4t xy yz zx x y z yz x y z y z =++=++≤+++212(1)(1)4x x x =-+-2731424x x =-++2734()477x =--+,易知:当37x =,27y z ==时,22t xy yz zx =++取得最大值47.3.在△ABC 中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则AE = ( )A.2BCD【答】 B .因为A D B C ⊥,BE AC ⊥,所以,,,P D C E 四点共圆,所以12BD BC BP BE ⋅=⋅=,又2B C B D =,所以BD =DP =.又易知△AEP ∽△BDP ,所以AE PEBD DP =,从而可得PE AE BD DP =⋅==.4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是 ( )A .12 B .25 C .23 D .34【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.因此,所求概率为82205=. 5.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x +=,则1{}{}x x+= ( )A .12 B.3 C.1(32D .1 【答】 D . 设1x a x +=,则32223211111()(1)()[()3](3)x x x x x a a x x x x x+=++-=++-=-,所以2(3)18a a -=,因式分解得2(3)(36)0a a a -++=,所以3a =. 由13x x +=解得1(32x =,显然10{}1,0{}1x x <<<<,所以1{}{}x x+=1. 6.在△ABC 中,90C ∠=︒,60A ∠=︒,1AC =,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形, 90ADE ∠=︒ ,则BE 的长为 ( )A.4- B.2 C.11)2D1【答】 A.过E 作EF BC ⊥于F ,易知△ACD ≌△DFE ,△EFB ∽△ACB .设EF x =,则2BE x =,22AE x =-,)DE x =-,1DF AC ==,故2221)]x x +=-,即2410x x -+=.又01x <<,故可得2x =故24BE x ==-二、填空题:(本题满分28分,每小题7分) 1.已知实数,,a b c 满足1a b c ++=,1111a b c b c a c a b++=+-+-+-,则abc =____.【答】 0. 由题意知1111121212c a b++=---,所以 (12)(12)(12)(12)(12)(12)(12)(12)(12)a b b c a c a b c --+--+--=---整理得22()8a b c abc -++=,所以abc =0.A2.使得不等式981715n n k <<+对唯一的整数k 成立的最大正整数n 为 . 【答】144. 由条件得7889k n <<,由k 的唯一性,得178k n -≤且189k n +≥,所以2118719872k k n n n +-=-≥-=,所以144n ≤.当144n =时,由7889k n <<可得126128k <<,k 可取唯一整数值127. 故满足条件的正整数n 的最大值为144.3.已知P 为等腰△ABC 内一点,AB BC =,108BPC ∠=︒,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则PAC ∠= .【答】48︒.由题意可得PEA PEB CED AED ∠=∠=∠=∠,而180PEA PEB AED ∠+∠+∠=︒,所以60PEA PEB CED AED ∠=∠=∠=∠=︒, 从而可得30PCA ∠=︒.又108BPC ∠=︒,所以12PBE ∠=︒,从而24ABD ∠=︒. 所以902466BAD ∠=︒-︒=︒, 11()(6630)1822PAE BAD CAE ∠=∠-∠=︒-︒=︒,所以183048PAC PAE CAE ∠=∠+∠=︒+︒=︒.4.已知正整数,,a b c 满足:1a b c <<<,111a b c ++=,2b ac =,则b = .【答】36.设,a c 的最大公约数为(,)a c d =,1a a d =,1c c d =,11,a c 均为正整数且11(,)1a c =,11a c <,则2211b ac d a c ==,所以22|d b ,从而|d b ,设1b b d =(1b 为正整数),则有2111b a c =,而11(,)1a c =,所以11,a c 均为完全平方数,设2211,a m c n ==,则1b mn =,,m n 均为正整数,且(,)1m n =,m n <.又111a b c ++=,故111()111d a b c ++=,即22()111d m n mn ++=.注意到222212127m n mn ++≥++⨯=,所以1d =或3d =.若1d =,则22111m n mn ++=,验算可知只有1,10m n ==满足等式,此时1a =,不符合题意,故舍去.若3d =,则2237m n mn ++=,验算可知只有3,4m n ==满足等式,此时27,36,48a b c ===,符合题意.因此,所求的36b =.第二试D一、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b +的值.解 由已知条件可得222()40a b a b ++=,()8ab a b ++=.设a b x +=,ab y =,则有2240x y +=,8x y +=, ……………………5分 联立解得(,)(2,6)x y =或(,)(6,2)x y =. ……………………10分 若(,)(2,6)x y =,即2a b +=,6ab =,则,a b 是一元二次方程2260t t -+=的两根,但这个方程的判别式2(2)24200∆=--=-<,没有实数根; ……………………15分若(,)(6,2)x y =,即6a b +=,2ab =,则,a b 是一元二次方程2620t t -+=的两根,这个方程的判别式2(6)8280∆=--=>,它有实数根.所以2222222222211()262282a b a b ab a b a b a b ++--⨯+====. ……………………20分二.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECD ACB ∠=∠,AC 的延长线与△ABD 的外接圆交于点F . 证明:DFE AFB ∠=∠.证明 由ABCD 是平行四边形及已知条件知ECD ACB DAF ∠=∠=∠. ……………………5分又A 、B 、F 、 D 四点共圆,所以BDC ABD AFD ∠=∠=∠,所以△ECD ∽△DAF , ……………………15分 所以ED CD ABDF AF AF==. ……………………20分 又EDF BDF BAF ∠=∠=∠,所以△EDF ∽△BAF ,故DFE AFB ∠=∠. ……………………25分三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性FBD质P .在1,5,2013,2014这四个数中,哪些数具有性质P ,哪些数不具有性质P ?并说明理由.解 取1x =,0y z ==,可得33311003100=++-⨯⨯⨯,所以1具有性质P .取2x y ==,1z =,可得33352213221=++-⨯⨯⨯,所以5具有性质P .…………………5分 为了一般地判断哪些数具有性质P ,记333(,,)3f x y z x y z xyz =++-,则33(,,)()3()3f x y z x y z xy x y xyz =++-+- 3()3()()3()x y z x y z x y z xy x y z =++-+++-++=3()3()()x y z x y z xy yz zx ++-++++2221()()2x y z x y z xy yz zx =++++--- 2221()[()()()]2x y z x y y z z x =++-+-+-. 即(,,)f x y z 2221()[()()()]2x y z x y y z z x =++-+-+- ①……………………10分不妨设x y z ≥≥,如果1,0,1x y y z x z -=-=-=,即1,x z y z =+=,则有(,,)31f x y z z =+; 如果0,1,1x y y z x z -=-=-=,即1x y z ==+,则有(,,)32f x y z z =+; 如果1,1,2x y y z x z -=-=-=,即2,1x z y z =+=+,则有(,,)9(1)f x y z z =+; 由此可知,形如31k +或32k +或9k (k 为整数)的数都具有性质P .因此,1,5和2014都具有性质P . ……………………20分 若2013具有性质P ,则存在整数,,x y z 使得32013()3()()x y z x y z xy yz zx =++-++++.注意到3|2013,从而可得33|()x y z ++,故3|()x y z ++,于是有39|()3()()x y z x y z xy yz zx ++-++++,即9|2013,但2013=9×223+6,矛盾,所以2013不具有性质P . ……………………25分。
2014年全国初中数学联赛(初二组)决赛试题(3月23日 上午10:30——12:00)一、 选择题 (本大题42分,每小题7分)1,若2x y y x y =-,则22222343x xy y x xy y --++的值是 ( )(A )0 (B )32- (C )-15 (D )-15或32-2,设1,2,3a b c =-==,则a 、b 、c 的大小关系 () (A )a b c << (B )a c b << (C )b c a << (D )c b a <<3,设a,b,c 均为正整数,且a ≥b ≥c ,满足a+b+c=15,那么以a,b,c 为边长的三角形有 ( )(A )5个 (B )7个 (C )10个 (D )12个 4,如图,已知在平行ABCD 中,邻边邻角均不相等,E 、F 分别为BO,DO 的中点,那么这个图形中全等三角形的对数是 ( )(A )5对 (B )6对 (C )7对 D )8对5,若整数a,b 都不能被5整除,但a+b 能被5整除,则下列式子不能被5整除的是 ( )(A )2a+b (B)2a-3b (C)3a+8b (D)3a-7b6,有盐水若干克,盐水浓度为3%,加入a 克清水后,盐水浓度为2%,再加入a 克清水后,,则此时盐水浓度为 ( )(A )1% (B )1.25% (C )1.5% (D )1.75%二、填空题(本大题满分28分,每小题7分)1、a,b,c 为常数,且()()3221x x c x x ax b ++=+++对任意实数x 都成立,则abc 的值为2、如图,两张相同的长方形纸片,长为2宽为1,横竖紧靠放在一起,过F 的直线分别交AH 于M ,CB 于N ,且∆HMF 与梯形DEFN 面积相等,则AM 的长度为3、若a,b 是正整数,且满足5a+7b=50,则ab 的值为4、已知∆ABC 的面积为4,3AB =2BC ,作∠ABC 的角平分线BE 交AC 于E ,过C 作BE 的垂线,垂足为D ,则∆BDC 的面积为三、(本大题满分20分)如图,已知凸四边形ABCD 中,∠ABC+∠ADC =180°,AC 平分∠BAD ,过C作AB 的垂线交AB 于E 。
2014年全国中学生数学能力竞赛八年级(初赛)试题试题总分:120分 时间:120分钟一 画龙点睛(本题共8小题,每题3分,共计24分)1.数学家发明了一个魔术盒,当任意数对(a,b)放入其中是,会得到一个新的数:a 2+b+1,例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将数对(-2,3)放入其中得到数m ,再将数对(m ,1)放入其中后,得到的数是______。
2.在古代的算书中,经常以诗歌的形式来把一些实际生活背景的题目写出来.下面就有这样一道题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”那么这个客栈有______间房,一共来了______名客人。
3如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2014次碰到矩形的边时,点P 的坐标为4. 若n 满足(n-2014)2+(2015-n)2=1,则(2015-n )(n-2014)= 。
5. 观察下面一列有规律的数:32,83,154,245,356,487,…… 根据此规律可知第10个数应是 。
6. 如图,在△ABC 中,BC 边不动,点A 竖直向上运动,∠A 越来越小,∠B ,∠C 越来越大.若∠A 减小x °,∠B 增加y °,∠C 增加z °,则x ,y ,z 之间的关系是 。
第6题 第7题7. 如图,在三角形ABC 中,点D,E,F 分别是线段BC,AD 、CE 的中点是 且△ABC 的面积为4cm 2,则△BEF 的面积= 。
8.某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少应付给超市元。
二一锤定音(本大题共4小题,每小题3分,共计12分)9.根据图中箭头的指向规律,从2014到2014再到2015,箭头的方向是以下图示中的()。
2014年全国初中数学联合竞赛(初二组)初赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(本题满分42分,每小题7分)1、C2、B3、B4、D5、D6、C二、填空题(本题满分28分,每小题7分)1、41n -2、43、14、3三、(本大题满分20分)解不等式13|2|-<-x x解:(1)当2<x 时,不等式化为132-<-x x ,解此不等式得43>x 故此时243<<x ;(10分) (2)当2≥x 时,不等式化为132-<-x x ,解此不等式得21->x 故此时2≥x . (15分) 综上所述,不等式的解为:34x >.(20分)四、(本大题满分25分) 如图,在等腰梯形ABCD 中,//AD BC ,DE BC ⊥于E .若3,5DE BD ==, 求梯形ABCD 的面积.解:在直角△BDE 中,由勾股定理有:422=-=DE BD BE ;(5分)过D 作AC 的平行线交BC 的延长线于F ,连接DF 、CF ,则ACFD 是平行四边形,故CF =AD ,DF AC BD ==,所以DE 是等腰△DBF 底边上的高,故28BF BE ==(15分) 所以1221)(21=⋅=+=DE BF DE AD BC S ABCD (25分).五、(本大题满分25分)已知正整数a 、b 满足332)(b a b a +=+,试求a 、b 的值.解:由已知得b a b ab a +=+-22,(5分)则2)1()1()(222=-+-+-b a b a .(10分)因为a 、b 均为正整数,故01≥-a ,01≥-b ,(1)当a=b 时,1)1()1(22=-=-b a ,即a =b=2;(15分)(2)当a b ≠时,2()1a b -=,从而2(1)1a -=且2(1)0b -=;或者2(1)0a -=且2(1)1b -=; 所以,2,1a b ==,或者1,2a b ==.(20分)综上所述,所求,a b 的值是:2a b ==;或者1,2a b ==;或者2,1a b ==.(25分)。
2014——2015学年度第一学期期末质量检测八年级数学试题时间:120分钟; 满分:120分.一、选择题(每小题3分,共36分. 在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.) 1.化简分式112-+aa 的结果是( ). A .1-a a B .11-a C .11+a D .1+a2.下列四副图案中,不是轴对称图形的是( ).3.如图,□ABCD 中,ο108=∠C ,BE 平分ABC ∠,则ABE ∠等于( ). A .18° B .36° C .72° D .108°4.如图所示,已知ABE ∆≌ACD ∆,21∠=∠,C B ∠=∠,下列不正确的等式是( ).A .AC AB = B .CAD BAE ∠=∠C .DC BE =D .DE AD =等级A .B .C .D .5.如果0622=---x x x ,则x 等于( ).A . ±2B . -2C . 2D . 36.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是( ). A .96,94.5 B .96,95 C .95,94.5 D .95,95 7.下列命题中,是假命题的是( ).A .同角的余角相等B .一个三角形中至少有两个锐角C .如果a >b ,a >c ,那么c b =D .全等三角形对应角的平分线相等 8.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级 参加人数 中位数 方差 平均数 甲 55 149 191 135 乙55151110135某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字达150个以上为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小. 上述结论中正确的是( ).A .(1)(2)(3)B .(1)(2)C .(1)(3)D .(2)(3) 9.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ). A .当BC AB =时,它是菱形 B .当BD AC ⊥时,它是菱形 C .当ο90=∠ABC 时,它是矩形 D . 当BD AC =时,它是正方形10.如图,在△中,,,BC BD AC AB ==若ο40=∠A ,则BDC ∠的度数是( ). A .ο80B .ο70C .ο60D .ο50第9题图D CBA11.如图,ABC ∆中,E D ,分别是AC BC ,的中点,BF 平分ABC ∠,交DE 于点F ,若6=BC ,则DF 的长是( ).A .2B .3C .25D .412.国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB EF DC ∥∥,BC GH AD ∥∥,那么下列说法中错误的是( ).. A .红花、绿花种植面积一定相等 B .紫花、橙花种植面积一定相等 C .红花、蓝花种植面积一定相等 D .蓝花、黄花种植面积一定相等 二、填空题(每小题3分,共24分. 只要求填写最后结果.) 13.若n m 43=,则m :=n .14.命题“相等的角是对顶角”的条件是 ,结论是 ; 它的逆命题是 .15.若一组数据2,4,5,1,a 的平均数为a ,则=a ;这组数据的方差=2S .16.如图所示,根据四边形的不稳定性制作的边长均为cm 15 的可活动菱形衣架,若墙上钉子间的距离cm BC AB 15==, 则=∠1_______. 17.已知分式方程441+=+-x mx x 有增根,则_______.黄 蓝 紫 橙 红 绿 AG EDH CB第12题图18.将一张等边三角形纸片沿着一边上的高剪开,可以拼成不同形状的四边形.试写出其中一种四边形的名称 .19.小明家去年的旅游、教育、饮食支出分别出3600元、1200元、7200元,今年这三项支出依次比去年增长10%、20%、30%,则小明家今年的总支出比去年增长的百分数是_________.20.如图,矩形ABCD 的面积为5,它的两条对角线交于 点O 1,以AB 、A O 1为两邻边作平行四边形AB C 1 O 1, 平行四边形ABC 1O 1的对角线交于点O 2,同样以 AB 、AO 2为两邻边作平行四边形ABC 2O 2,……, 依次类推,则平行四边形ABC n O n 的面积为 .三、解答题(本大题共8小题,共60分.要求写出必要的文字说明和说理过程.) 21.计算与化简:(每小题5分,共10分) (1)ab b a b a a -+--443;(2) 先化简,再求值:422232-÷⎪⎭⎫ ⎝⎛--+x x x x x x ,其中6=x .22.(本题6分)如图,画出ABC ∆关于y 轴对称的111C B A ∆, 并写出111C B A ∆的各顶点1A 、1B 和1C 的坐标.23.(本题8分)阅读并理解下面的证明过程,并在每步后的括号内填写该步推理的依据. 已知:如图,DF BE ABC ADC ,,∠=∠分别 平分,,ADC ABC ∠∠且21∠=∠.求证:C A ∠=∠.证明:∵DF BE ,分别平分ADC ABC ∠∠,( 已知 ), ∴ADC ABC ∠=∠∠=∠213,211( ),∵ADC ABC ∠=∠( 已知 ). ∴ADC ABC ∠=∠2121( ), ∴31∠=∠( ),又因为∵21∠=∠( ), ∴32∠=∠( ).∴AB ∥CD ( ),∴οο180,180=∠+∠=∠+∠ABC C ADC A ( ). ∴C A ∠=∠( ).24.(本题6分)如图,已知在ABC ∆中,D 是BC 的中点,AB DE ⊥于点E ,AC DF ⊥ 于点F ,且CF BE =.求证:AD 平分BAC ∠.25.(本题7分)当今,青少年视力水平下降已引起了社会的关注,为了了解某校3000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据绘制的条形图(长方形的高表示该组人数)如下:请解答下列问题:(1)本次抽样调查共抽测了多少名学生?(2)参加抽测学生的视力的众数在什么范围内?(3)若视力为4.9,5.0,5.1及以上为正常,试估计该校学生视力正常的人数约为多少?y (人数)403010205026.(本题7分)如图,在□ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F .求证:(1)ABE ∆≌FCE ∆;(2)21=∆∆的周长的周长AFD ABE .27.(本题7分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克.如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元? (2)超市销售这种干果共盈利多少元?28.(本题9分)以四边形ABCD 的边DA CD BC AB ,,,为斜边分别向外侧作等腰直角三角形,直角顶点分别为H G F E ,,,,顺次连结这四个点,得四边形EFGH .如图1,当四边形ABCD 为正方形时,我们发现四边形EFGH 是正方形.(1)如图2,当四边形ABCD 为矩形时,请判断:四边形EFGH 的形状(不要求证明);(2)如图3,当四边形ABCD 为一般平行四边形时,若ο40=∠ADC , ①试求HAE ∠的度数; ②求证:HG HE =;③请判定四边形EFGH 是什么四边形?并说明理由.A BCDHEFG(图2)E BFGD HAC(图3)(图1)A BCDH EFG八年级数学试题参考答案一、选择题(每小题3分,共36分.)1. B2.A3.B4.D5.C6.A7.C8.B9.D 10.B 11.B 12. C. 二、填空题(每小题3分,共24分.) 13.34; 14.两个角相等,这两个角是对顶角,对顶角相等; 15.3,2; 16.120o ;17.;18. 答案不唯一:平行四边形或矩形或菱形; 19.23%; 20.n25. 三、解答题(本大题共7小题,共60分.) 21.(1)ba b a 44-+;…………5分(2)解:原式3(2)(2)(2)(2)(2)(2)(2)(2)2x x x x x x x x x x x ⎡⎤-++-=-⨯⎢⎥+-+-⎣⎦2(4)(2)(2)(2)(2)2x x x x x x x-+-=⨯+-4x =- (3)分当x=6时,原式=6-4=2.…………5分22.如图…………3分;()2,31A ,()3,41-B ,()1,11-C .…………6分23.(每空1分)证明:∵DF BE ,分别平分ADC ABC ∠∠,(已知), ∴ADC ABC ∠=∠∠=∠213,211( 角平分线定义),∵ADC ABC ∠=∠( 已知).∴ADC ABC ∠=∠2121(等式性质), ∴31∠=∠(等量代换),又因为∵21∠=∠(已知),∴32∠=∠(等量代换). ∴AB ∥CD (内错角相等,两直线平行),∴οο180,180=∠+∠=∠+∠ABC C ADC A (两直线平行,同旁内角互补).A∴C A ∠=∠( 等角的补角相等). 24.证明:∵BE=CF ,BD=CD …………2分 ∴Rt △BDE ≌Rt △CDF ,∴DE=DF ,…………4分 又DE ⊥AB 于E ,DF ⊥AC ∴AD 平分∠BAC …………6分25.解:(1)150;…………2分(2)4.25~4.55;…………4分(3)600…………7分26.证明:(1)在平行四边形ABCD 中,AB ∥CD ,∴∠FAB=∠F 在△ABE 和△FCE 中, ∠FAB=∠F 又∠AEB=∠FEC ,BE=CE. ∴ △ABE ≌△FCE .…………4分(2)根据(1),△ABE ≌△FCE ,AE=EF ,BF=CE ,AB=CD=CF ,…………5分 ∴AD=2BE ,DF=2AB ,AF=2AE.∴21=∆∆的周长的周长AFD ABE .…………7分27.解:解:(1)设该种干果的第一次进价是每千克x 元,则第二次进价是每千克(1+20%)x 元,…………1分 由题意,得=2×+300,解得x=5,经检验x=5是方程的解.…………3分答:该种干果的第一次进价是每千克5元…………4分 (2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000 =1500×9+4320﹣12000 =13500+4320﹣12000 =5820(元).…………6分答:超市销售这种干果共盈利5820元.…………7分28.(1)四边形EFGH 是正方形.…………2分 (2) ①∵∠ADC =ο40,在□ABCD 中,AB ∥CD ,∴∠BAD=180°-∠ADC=140°; ∵△HAD 和△EAB 都是等腰直角三角形,∴∠HAD=∠EAB=45°,∴∠HAE=360°-∠HAD-∠EAB-∠BAD=360°-45°-45°-140°=130°.………4分②∵△AEB和△DGC都是等腰直角三角形,∴△AEB≌△CGD,∴AE=BE=CG=DG,在□ABCD中,AB=CD,∴AE=DG,∵△HAD和△GDC都是等腰直角三角形,∴∠DHA=∠CDG= 45°,∴∠HDG=∠HAE.∵△HAD是等腰直角三角形,∴HA=HD,∴△HAE≌△HDG,∴HE=HG.…………6分③四边形EFGH是正方形.由②同理可得:GH=GF,FG=FE,∵HE=HG(已证),∴GH=GF=FG=FE,∴四边形EFGH是菱形;∵△HAE≌△HDG(已证),∴∠DHG=∠AHE,又∵∠AHD=∠AHG+∠DHG=90°,∴∠EHG=∠AHG+∠AHE=90°,∴四边形EFGH是正方形.………………9分八年级数学试题第11 页(共11页)。
初三数学竞赛试题 2014年全国初中数学联合竞赛试题参考答案及评分标准A.B. C. D.2014年全国初中数学联合竞赛试题参考答案及评分标准2.【答】 A.,易知:当,时,取得最大值.4.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.6.【答】 A.过作于,易知△≌△,△∽△.设,则,,,,故,即.又,故可得.故.1.【答】 0.由题意知,所以2.【答】144.由条件得,由的唯一性,得且,所以,所以.当时,由可得,可取唯一整数值127.故满足条件的正整数的最大值为144.4.【答】36.设的最大公约数为,,,均为正整数且,,则,所以,从而,设(为正整数),则有,而,所以均为完全平方数,设,则,均为正整数,且,.又,故,即.注意到,所以或.若,则,验算可知只有满足等式,此时,不符合题意,故舍去.解由已知条件可得,.设,,则有,,……………………5分若,即,,则是一元二次方程的两根,但这个方程的判别式,没有实数根;……………………15分若,即,,则是一元二次方程的两根,这个方程的判别式,它有实数根.所以. ……………………20分解取,,可得,所以1具有性质.取,,可得,所以5具有性质.…………………5分为了一般地判断哪些数具有性质,记,则=.即……………………10分如果,即,则有;如果,即,则有;如果,即,则有;由此可知,形如或或(为整数)的数都具有性质.因此,1,5和2014都具有性质. ……………………20分若2013具有性质,则存在整数使得.注意到,从而可得,故,于是有,即,但2013=9×223+6,矛盾,所以2013不具有性质. ……………………25分2014年全国初中数学联合竞赛试题参考答案及评分标准,易知:当,时,取得最大值.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.A.B. C. D.【答】 A.设,则,,,,故,即.又,故可得.故.。
八年级第一学期学科竞赛数学试卷请同学们注意:1、本试卷分试题卷和答题卷两部分,满分为120分,考试时间为100分钟。
2、所有答案都必须写在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
3、考试结束后,只需上交答题卷,试卷请同学们妥然保管。
一、选择题(每小题3分,共3 6分)1.在平面直角坐标系中,点P (-1,2)的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列语句是命题的是( ) A .作直线AB 的平行线B .在线段AB 上取一点C C .同角的余角相等D .垂线段最短是吗?3.满足不等式153->-x 的最小整数是( )A .-1B .1C .2D .3 4.如图所示,在Rt△ABC 中,∠A=90°,BD 平分∠ABC,交AC 于点D , 且AB=4,BD=5,则点D 到BC 的距离是( ).A .3B .4C .5D .6 5.下列判断正确的是( )A 、顶角相等的两个等腰三角形全等;B 、有一边及一锐角相等的两个直角三角形全等;C 、腰相等的两个等腰三角形全等;D 、顶角和底边分别相等的两个等腰三角形全等。
6. 已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为( )A. 20°B. 120°C. 20°或120°D. 36°7..根据下列条件判断,以a,b,c 为边的三角形不是..直角三角形的是 ( ) A.a=32,b=42,c=52 B.a=30, b=60, c=90 C.a=1, b=2, c=3 D.a :b :c=5:12:138. 已知点P 1(a -1,4)和P 2(2,b )关于x 轴对称,则(a +b )2013 的值为( ) A.72013 B. -1 C.1 D.(-3)2013 9.下列判断正确的是( )A .若-a b <-,则a b >B .若0a <,则2a a <C .若a b ≠,则2a 一定不等于2b D .若0a >,且0<(1-b)a ,则b<1第3题10..已知点E ,F ,A ,B 在直线l 上,正方形EFGH 从如图所示的位置出发,沿直线l 向右匀速运动,直到EH 与BC 重合.运动过程中正方形EFGH 与正方形ABCD 重合部分的面积S 随时间t 变化的图像大致是( )A B C D 11.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k<0;②a>0; ③当x <3时,y 1<y 2中,正确的个数是( ) A .0 B .1 C .2 D .312. 如图,将一个等腰直角三角形ABC 按图示方式依次翻折,若DE =a , 第11题 则下列结论正确的有( )个。
①DC ′平分 ∠BDE ; ②BC 长为a )22(+;③△B C ′D BC 的长。
A .①②③; D .③④第12题二、填空题(本题共8小题,每小题3分,共24分)13.用不等式表示a 与3的和的5倍不小于6:_________ 。
14.一个长方形的周长为20,一边长为x ,则它的另一边长y 为关于x 的函数解析式为 。
15.若关于x 的不等式组0,122x a x x +⎧⎨->-⎩≥有解,则写出符合条件的一个a 的值______。
16.已知点(3,5)在直线y ax b =+(a ,b 为常数,且a 0≠)上,则a5b -的值为__________ 17.把点M (-10,1)沿y 轴正方向平移4个单位,则所得的像点M 1的坐标是 。
18.如图,在△ABC 中,AB=AC ,∠A=40°, AB 的垂直平分线DE 交AC 于D ,则∠DBC的度数是 度。
19.图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt △ABC 中,若直角边AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)SO是 。
第18题 第19题20.如图,等边△ABC 的边长为2 cm ,D 、E 分别是AB 、AC 上的点, 将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长为 cm .三,解答题(共60分)21、(本题8分)解不等式(组) (1)24x +≥312-x (2)43(2)21.3x x x x ->-⎧⎪⎨-≥⎪⎩,①-1 ②22、(本题8分)已知一次函数的图象过M (1, 3), N (-2, 12)两点.(1) 求函数的解析式;(2) 试判断点P (2a , -6a +8)是否在函数的图象上, 并说明理由. .23、(本题10分)如图,Rt △ADE ≌ Rt △BEC , ∠A =∠B =90°,使A 、E 、B 在 同一直线上,连结CD.(1)求证:∠1 =∠2 =45°(2)若AD =3,AB =7,请求出△ECD 的面积.(3)若P 为CD 的中点,连结PA 、PB 。
试判断△APB 的形状,并证明之。
24、(本题10分)某初中计划从荣威公司购买A 、B 两种型号的小黑板,经洽谈,购买一块A 型小黑板比买一块B 型小黑板多用20元.且购买5块A 型小黑板和4块B 型小黑板共需820元.(1)求购买一块A 型小黑板、一块B 型小黑板各需要多少元?(2)根据该初中实际情况,需从荣威公司购买A 、B 两种型号的小黑板共60块,要求购买A 、B 两种型号小黑板的总费用不超过5240元.并且购买A 型小黑板的数量应大于购买A 、B 种型号小黑板总数量的13.请你通过计算,求出该初中从荣威公司购买A 、B 两种型号的小黑板有哪几种方案?A CE D第20题25、(本题10分)定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心。
举例:如图1,若PA=PB ,则点P 为△ABC 的准外心。
(1)应用:如图2,CD 为等边三角形ABC 的高,准外心P 在高CD 上,且AB 21PD =,求∠APB 的度数。
(2)探究:已知△ABC 为直角三角形,斜边BC=5,AB=3,准外心P 在AC 边上,试探究PA 的长。
26.((本题14分)阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数111(0)y k x b k =+≠的图象为直线1l ,一次函数222(0)y k x b k =+≠的图象为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行.解答下面的问题:(1)已知一次函数x y 2-=的图象为直线1l ,求过点(1,4)P 且与已知直线1l 平行的直线2l 的函数表达式,并在坐标系中画出直线1l 和2l 的图象;(2)设直线2l 分别与y 轴、x 轴交于点A 、B ,过坐标原点O 作OC ⊥AB ,垂足为C ,求1l 和2l 两平行线之间的距离OC 的长。
(3)若Q 为OA 上一动点,求QP +QB 的最小值,并求取得最小值时Q 点的坐标。
(4)在x 轴上找一点M ,使△BMP 为等腰三角形,求M 的坐标。
(直接写出答案)x学校_____________ 班级____________ 姓名______________ 学号__________- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -八年级数 学 答 卷一、选择题(本题有10小题,每小题3分,共30分。
)二、填空题(本题有10小题,每小题3分,共30分)13. _5_(a+3)__≥6 14. y=10-x (0<x <10)15. 只要正数都行16. -3117. (-10,5) 18. 30° 19. 76 20.6三、解答题(共60分) 21.(8分).1)x ≤2 2)①得x <1②得x ≤-4 ∴x ≤-422.(8分)证明:【解】(1) 设一次函数的解析式为y=kx+b , 由题意,得{3122k b k b =+=-+,解得{36k b=-=. ∴y =-3x +6.(2) 当x =2a 时, -3×2a +6=-6a +6≠-6a +8, ∴ P (2a , -6a +8)不在函数图象上23.(10分)(1) (1)由全等可得DE=EC ,∠AED 与 ∠EBC 互余,所以∠DEC=90°,∴∠1 =∠2 =45°(2)△ECD 的面积=梯形ABCD 的面积-2△ADE=12.5(3) △APB 为等腰直角三角形,(取CD 的中点F ,连接AF,BF,可证△AD F ≌△ BEF)24. (1)设购买一块A 型小黑板需要x 元,则购买一块B 型小黑板需要(x-20)元根据题意5x+4(x-20) =820 -------------------2分解得x=100 -------------------1分答:购买一块A 型小黑板需要l00元,购买一块8型小黑板需要l20元-----1分(2)设购买A型小黑板m块,则购买B型小黑板(60-m)块.根据题意l00m80(60m)52401m603+≤⎧⎪⎨>⨯⎪⎩一--------------2分解得20<m≤22 --------------1分∵m为整数.∴m为21或22 --------------1分当m=21时60-m=39:当m=22时60-m=38.有两种购买方案方案一:购买A型小黑板21块,购买8型小黑板39块; -----------1分方案二:购买A型小黑板22块。
购买8型小黑板38块.--------1分(1)解:⑴∵△ABC是等边三角形,CD是AB边上的高线AC=,,则,∴(5分)26、(14分) (1)∵1l ∥2l , ∴ 设直线2l 的解析式为b x y +-=2,(1分)把点()4,1P 代入得,b +-=24,6=b ∴ 62+-=x y (1分), 画图如右图所示 (1分)(2)直线2l 与y 轴、x 轴的交点A 、B 的坐标,分别为()6,0,()0,3; 所以OA =6,OB =3,则AB =53,(1分), 因为OA ×OB =AB ×OC , 所以56=OC (或556)(3分) (3)∵B 关于y 轴的对称点()0,3-'B ,连结P B '交y 轴于Q ,∴QP +QB 的最小值为24,(2分),∵直线P B '的解析式为3+=x y ,∴Q (0,3)----(2分) (4)M (-1,0)或M (-2,0)或M(3+25,0)或M(3-25,0) (3分)。