2011年学而思杯数学试题答案
- 格式:docx
- 大小:114.86 KB
- 文档页数:7
考试科目:数学考试时间: 80分钟总分: 120分填空题(共20题,每题6分直接写出答案)1.11111111 1357911131517 612203042567290 ++++++++=2.小镜是个小学生,最近参加一次数学竞赛,并获得了好成绩,小司问她:“姐姐,你考了多少分?得了第几名?”小镜说:“我的年龄、得分和名次相乘的积是776。
”小镜的年龄、得分、名次的和是。
3.布袋中有许多4种不同颜色的小球,每次摸两个,要保证有10次所摸的结果是一样的,那么至少要摸次。
4.牧场上有一片匀速生长的草地,如果有30头牛吃,可以吃6天;如果有25头牛吃,可以吃8天。
那么20头牛吃,可以吃天。
5.用8个棱长是1厘米的小正方体拼成1个大的长方体,这个长方体的表面积最大与最小的差是平方厘米。
6.用绳子测井深,把绳对折一次来测量,井外余6米,将绳对折两次来测量,还差2米,那么井深米。
7.如图所示,正方形ABCD的面积是16平方厘米,5BE=厘米,三角形DOE的面积是平方厘米。
O AB DE8.在如图所示○内填入不同的数,使得三条边上的三个数的和都是12,若A、B、C的和为18,则三个顶点的三个数的和是_______。
2011第六届学而思综合素质测评五年级C BA9.将一张纸剪成6块,从所得纸片中取出若干块,每块各剪成6块,再从所得纸片中取出若干块,每块各剪成6块……如此进行下去,到剪完某一次后停止,所得纸块总数可能是2005、2006、2007、2008、2009、2010、2011、2012这几个数中的_________。
(写出所有可能的答案)10.一个四位数,减去它各个数位上的数字之和,差是四位数658 , 中应填________。
11.如图所示,P为长方形ABCD内的一点,PAB∆的面积等于5,PBC∆的面积等于13,PBD∆的面积是。
AB CP12.将自然数N接在任一自然数的右面(例如将2接在35的右面得352),如果所得的新数都能被N整除,那么称N为神奇数,那么在小于100的自然数中,神奇数有1、。
绝密★启用前2011年首届全国学而思综合能力测评(学而思杯)数学试卷(五年级A 卷) 时间:13:30~14:50 满分:150分考生须知: 1. 请在答题纸上认真填写考生信息;2. 所有答案请填写在答题纸上,否则成绩无效一.填空题(每题8分,共40分)1. (视听题)杯子中有浓度为5%的盐水150克,那么其中含有______克盐. 【分析】浓度问题求溶质。
浓度=溶质÷溶液×100 %。
因此溶质=浓度×溶液。
1505%7.5⨯=克。
2. (视听题)杯子中有浓度为5%的盐水150克,向杯子中加入100克水,盐水的浓度变为______%. 【分析】浓度=溶质÷溶液×100 %。
()7.5150100100%3%÷+⨯=3. (视听题)杯子中有浓度为10%的盐水100克,向杯子中加入浓度为20%的盐水150克,混合均匀.新的盐水的浓度是______%.【分析】溶质总重量为10010%15020%40⨯+⨯=克;溶液总重量为100150250+=克。
因此溶液浓度为:40250100%16%÷⨯=4. 计算:10.253464155⨯+⨯+÷=______.【分析】=0.2(534641)28⨯++=原式5. 2011年3月11日,日本发生里氏9级大地震。
在3月15日,日本本州岛东海岸附近海域再次发生5级地震。
已知里氏地震级数每升2级,地震释放能量扩大到原来的1000倍,那么3月11日的大地震释放能量是3月15日东海岸地震的______倍. 【分析】差了4级,差了1000×1000=1,000,000倍. 二.填空题(每题10分,共50分)1. 横式“+=学理科到学而思学而思杯”中,相同的汉字代表相同的数字,不同的汉字代表不同的汉字,那么四位数“学而思杯”的最大值为______.【分析】确定“学”最大为8,那么到为7,而最大为6,此时有算式:825+7869=8694,那么四位数的最大值为86942.今天是2011年4月9日,20110409这个九位数是9的倍数,则方框里应填入的数字是______.【分析】容易得13.用若干个1×1×1的小立方体堆积成一个立体图形(小立方体不能悬空),它的正视图、左视图、俯视图都是下图的样子,那么堆积成满足条件的小立方体最少需要______个小立方体.【分析】如图,最小的体积为9立方厘米。
1、(1)可以,如(2011,211,11) →(2000,200,0)→(1000,200,1000)→(800,0,800)→(400,400,800)→(0,0,400).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有2011+211+11=2233,不是3的倍数,所以不能将3堆中所有石子都取走.2、将这四个人用4个点表示,如果两个人之间送过礼,就在两点之间连一条线.由于每人送出2件礼物,图中共有4×2=8条线,由于每人礼品都分赠给2个人,所以每两点之间至多有1+1=2条线.四点间,每两点连一条线,一共6条线,现在有8条线,说明必有两点之间连了2条线,还有另外两点(有一点可以与前面的点相同)之间也连了2条线.即为所证结论。
3、从A 点考虑起,从A 点出发的直线段有5条,那么至少有3条颜色相同,不妨设AB 、AC 、AD 为红色,那么BC 、BD 、CD 中只要有一条是红色就和前面的构成了同色三角形;如果BC ,BD ,CD 中没有红色,那只能都是蓝色,这样BCD 构成了蓝色三角形,证明完毕.4、不可能.因为每次加上的数之和都是123410+++=,所以黑板上的四个数之和永远是10的整数倍.而99943996⨯=,不是10的倍数,所以黑板上的四个数不可都是999.5、不能。
要使一个灯泡由亮变暗,需要拉动奇数次开关。
那么要让5个亮着的灯泡都变暗,共需拉动奇数次开关(5个奇数相加,和一定是奇数)。
而我们每次操作都是拉偶数个开关,因此不能经过若干次操作使得5个灯泡都变暗。
6、1,1,1,1,1,2,7或者3,4,1,1,1,1,17、设3个顶点填入的3个自然数数分别为,,a b c ,假设,,a b a c b c +++都为奇数,于是a b a c b c +++++也为奇数。
但是()2a b a c b c a b c +++++=++是一个偶数,矛盾。
1.简单小数计算2011-201.1+20.11-2.011+0.001【解析】18282.分小四则混合运算541??1)12.3?(3.85??1854541【解析】??1)??12.3?(3.8518544?(3.85?3.6?12.3?1.8)?94????1.8?12.37.7?94?36?9?16 3 已知N*等于N的因数个数,比如4*=3,则(2011*+10*+6*)*=_______【解析】(2011*+10*+6*)*=(2+4+4)*=44用字母表示数一个非等腰三角形,一边长为6,一边长为7,还有一边长为6k,已知k是自然数,则三角形的周长为______.【解析】k=2,周长为6+7+12=25.5基础类型应用题1红光大队用拖拉机耕地,2台3小时耕75亩,照这样计算,4台5小时耕____亩.【解析】2台1小时可耕75 ÷3=25亩,4台5小时可耕地25×2×5=250亩6基础类型应用题2一个骗子到商店买了5元的东西,他付给店员50元钱,然后店员把剩下的钱找给了他;这时他又说自己有零钱,于是给店员5元的零钱,并且要回了开始给出的50元。
则这个骗子一共骗了______钱?【解析】由于一开始骗子并没有骗钱,产生骗钱的是后用零钱换50元,所以共骗得50-5=45元。
7约数倍数已知A、B两数的最小公倍数是120,B、C两数的最小公倍数是180,A、C两数的最小公倍数是72,则A、B、C三数的最小公倍数是______.3×3×5【解析】120=222180=2×3×53272=2×332×3×所以最小公倍数是25=3608简单的逻辑推理2011年8月14日,伦敦羽毛球世锦赛进入最后一个比赛日。
在女单决赛中,中国选手王仪涵2比0完胜中华台北选手郑韶婕,首次夺得世锦赛冠军,中国队也实现了女单项目的八连冠。
2011年京城六年级学员综合能力测评(学而思杯)数学试题(样卷答案)1. 简单小数计算0.365×1.2+31-0.438【解析】312. 分小四则混合运算 计算:(...)(..)⨯⨯-+÷-÷--1352433366712313500925183=_______ 【解析】原式=13(4.3 3.6 3.6 6.7 3.6)(1.2350.09)241⨯⨯-+⨯-⨯-- 1365218523=⨯+=+=3. 简单分数裂项11111122446182040+++++⨯⨯⨯ 【解析】原式1111111111()222446182040=+-+-++-+ 111111()2222040=+-+191124040=++1=4. 换元(10.20.340.567+++)⨯(0.20.340.56789+++)-(10.20.340.56789++++)⨯(0.20.340.567++)【解析】设0.20.340.567++=A ,0.20.340.56789+++=B ,则原式变为(1+A )×B -(1+B )×A =B -A =89 。
5. 定义新运算定义如下运算:a △b =kab ,a ☆b =ka -b ,已知1△x =2☆x ,x △1=x ☆2,x 是非零数,则x =_____【解析】已知kx =2k -x =2x -k ,则k =x ,则x 2=x ,x ≠0,所以x =1.6. 用字母表示数一个三角形,三个角度数分别为a 、2a 、3a ,则最小的角为_______度。
【解析】180÷(a +2a +3a )×a =30,7. 整系数方程()()x x x --=-+6412022【解析】x x x x x -+=--==644202441238. 分数或比例方程x x x x +-++=+231764612【解析】()()1232321772x x x x +++-=+12692277213655x x x x x x +++-=+==9. 简单方程组11118131122x y x y +⎧=⎪+⎪⎨-⎪=⎪-⎩则x y -=______.【解析】3223x y =⎧⎨=⎩9x y -=10. 简单的概率问题分别先后掷2次骰子,点数之和为5的概率为三十六分之______.【解析】先后掷2次,共可以掷出6×6=36种可能情况,其中和为5的情况共有1+4=2+3=3+2=4+1这四种情况,概率为436,答案为411. 基础类型应用题1一个农业专业户去年收小麦是玉米的4倍,小麦比玉米多13.5吨,去年收小麦___吨.【解析】差倍问题 13.5÷(4-1)×4= 18吨12. 基础类型应用题2商店运来83千克苹果,每5千克装成一个礼盒,已经卖出了9盒。
2011年“学而思杯”中学生理科能力大赛初 一 数 学 试 卷学校______________ 姓名_________ 准考证号________ 成绩_________一、填空题(本题共60分,每小题5分)1. 计算:()3179111315231220304256⎛⎫-+-+-⨯-= ⎪⎝⎭ _________.2. 如图,MN PQ ∥,A B 、分别在MN PQ 、上,70ABP ∠=︒,BC 平分ABP ∠,且20CAM ∠=︒,则C ∠的度数为______________.3. 当2x =时,代数式31ax bx -+的值等于17-,那么当1x =-时,代数式31235ax bx --的值等于__________.4. 已知关于x 的方程3243a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和3151128x a x +--=有相同的解,那么这个解是x =_______.5. 已知ABC △中,90BAC ∠≠︒,AD BC ⊥,BE AC ⊥,且AD BE 、交于点H ,连接CH , 则ACH BAE ∠+∠=_______.6. a b c 、、三个有理数满足0a b c <<<,且1a b c ++=,b c M a +=,a c N b +=,a bP c+=, 则M N P 、、之间的大小关系是________________.7. 如图,ABC △中,D 在AC 上,E 在AB 上,且BD CE 、相交于O ,OB OD =,2OC OE =,若2BOC S =△,则ABC S =△__________.CBAQP N M OEDCBA8. 平面直角坐标系xOy 中有两个点()44A -,,()62B --,,则AOB △的面积为___________.9. 若关于x 的方程()42a x b bx a -+=-+-有无穷多个解,则323a b +的值为__________.10. 如图,ABC △中,90C ∠=︒,ABC ∠和EAC ∠的平分线交于点D ,ABD ∠和BAD ∠的平分线交于点F ,则AFB ∠的度数为_________.11. 若21234m m --+=,则m 的取值范围是_____________12. 已知ABC △中,AB AC =,D 为BC 边上一点,若ACD △和ABD △都是等腰三角形,则C ∠的度数为_______________.二、解答题(本题共40分,每小题10分)13. 如图,M N 、为四边形ABCD 的边AD BC 、的中点,AN BM 、交于P 点,CM DN 、交于Q 点. 若四边形ABCD 的面积为150,四边形MPNQ 的面积为50,求阴影部分的面积之和.FEDC BA14. 数形结合思想是中学数学解题中常用的数学思想,利用这种思想,可以将代数问题转化为几何问题,也可以将几何问题转化为代数问题。
绝密★启用前2011 年首届全国学而思综合能力测评(学而思杯)数学试卷(二年级A 卷)时间:13:30~14:50 满分:150 分考生须知:1. 请在答题纸上认真填写考生信息;2. 所有答案请填写在答题纸上,否则成绩无效一.填空题(每题8 分,共40 分)1. (视听题)82 - 47 +18 - 53 =2. (视听题)1+ 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 =3. (视听题)5 个小朋友围成一圈。
球从A开始,按照A→B→C →D→E → A 的顺序传球,那么,传20 次后,球在哪个小朋友手里?4. (视听题)把小动物放在篮子里,篮子上面栓气球,让它们飞起来。
1 只猫1 只狗->5 个气球2 只狗1 只兔子->7 只气球2 只猫->4 个气球2 只兔子->几个气球5. (视听题)下面两个图形,可以分割成4 个大小相等,形状相同的图形。
下面A、B、C、D 四个选项中的哪个图形?二.填空题(每题10 分,共50 分)1. 106÷□,余数是7,□表示的数最小是.2. 一箱桔子,小玲第一次拿3 个,第二次拿6 个,以后每次比前一次多拿3 个,10 次拿完,这箱桔子有个.3. 下面的图中共有12 个小图形,每一个不同的小图形表示1 到9 这九个数字中的一个,每行三个小(A)(B)(C)(D)图形都表示一个三位数,这四行表示四个三位数:521,146,658 和692.那么第三行图形表示的三位数是.4. 图中总共包含有各种大小的正方形共个.5. 下图中,从整体上看第一幅图是五边形,第二幅图是五角星,第三幅图是五边形,第四幅图是五角星,……每幅图下方的数字是该图中基本线段的数量.请问,第40 幅图是图形,这个图中共有条基本线段.……5 15 20 30 35 45 50 ……三.填空题(每题12 分,共60 分)1. 康康在喝一杯饮料时做了实验,他将一根吸管垂直插入杯底,他量了一下被水浸湿部分,正好是8 厘米;他又把吸管调个头,将另一端垂直插入杯底,这时他发现现在吸管干的部分正好是整个浸湿部分的一半.这根吸管长有厘米.2. 小华、小俊都有一些玻璃球.如果小华给小俊4 个,小华的玻璃球的个数就和小俊一样多;原来小华的玻璃球的个数就是小俊的5 倍.小华原来有个玻璃球,小俊原来有个玻璃球.3. 农场里所有大鸭子的重量均相同,所有小鸭子的重量均相同.已知3 只大鸭子和2 只小鸭子共重32 千克,4 只大鸭子和3 只小鸭子共重44 千__________克,请问1 只大鸭子共重千克.4. 下面竖式中,“学理科到学而思”的每一个汉字表示0 到9 这10 个数字中的一个,相同的汉字表示相同的数字,不同的汉字表示不同的数字,四位数“学而思到”的最大值是_____.2 0 1 1学理科到学而思5. 甲、乙、丙、丁四个盒子中依次放:8 个、5 个、3 个、2 个玻璃小球,第一个小朋友找到放球最多的盒子,从中拿出3 个小球放到其它盒子中各1 个球;第二个小朋友找到放球最多的盒子,从中拿出3 个小球放到其它盒子中各1个球……当第83 个小朋友放完后,甲、乙、丙、丁四个盒子中各有玻璃小球个,个,个,个.2011年北京“学而思杯”二年级数学答案二年级答案第一题第1题第2题第3题第4题第5题答案0 80 A 2 D第二题第1题第2题第3题第4题第5题答案9 165 146 27 五角星、300第三题第1题第2题第3题第4题第5题答案24 10、2 8 1792 3、4、6、5。
第十一届学而思数学竞赛联考一试试题时间:80分钟一、填空题(本大题共8小题,每小题8分,共64分)1.方程2log2(x−2)+log2(x+1)=1的所有实数解为x=.2.已知实数k∈R,平面上的向量|−→b|=1,若满足−→a,−→b的夹角为150◦,且(−→a+−→b)⊥(−→a+k−→b)的非零向量−→a恰好有两个,则实数k的取值范围为.3.已知正实数a,b,c依次构成等比数列,并恰好是△ABC的三边长,则a+cb的取值范围是.4.已知F为椭圆C:x225+y216=1的右焦点,P为C上一点,Q(7,8),则|P F|+|P Q|的取值范围是.5.如下图,对于正实数r(1<r<√2),以点A为球心,半径为r的球面与单位立方体ABCD−A1B1C1D1的棱产生6个交点,不难发现这六个点在同一个平面上.则这六个点构成的凸六边形的面积与周长的比值的取值范围是.6.设集合A={x|ax2+3x−2a=0}(其中a为实常数);集合B={x|2x2−5x−42≤0},如果A∩B=A,则参数a的取值范围是.7.多项式(1+x+x2+···+x203)3的展开式在合并同类项以后,x300这一项的系数为8.从4×4的方格表中随机选5个不同的方格,则选出的5个方格构成连通区域的概率是.注:连通区域是指,对于区域内部(不含边界)任意两点,均存在一条完全落在区域内部(不含边界)的折线连接这两个点.二、解答题(本大题共3小题,第9题16分,第10,11题各20分,共56分)9.已知x,y∈R,且满足(4x3−3x)2+(4y3−3y)2=1.求x+y的最大值.10.设复数x,y,z满足:|x|=|y|=|z|=1,并且ty =1x+1z,其中t∈C为给定的复数;求|2xy+2yz+3xzx+y+z|的值.(用含t的代数式表示)11.设p 为给定的正整数,点F 是抛物线Γ:y 2=2px 的焦点,点S 在x 轴上,且满足−→OS =m −−→OF ,其中m 是给定的正奇数;设经过点S 且不与坐标轴垂直的动直线l 与抛物线Γ交于A,B 两点,线段AB 的中垂线与AB 以及x 轴分别交于M,T 两点,记N 为线段MT 的中点,点N 的轨迹记为ω.(1)确定ω的形状以及方程,并证明:在ω上存在无穷多个整点(整点就是横纵坐标都是整数的点).(2)如果正整数p 满足:p 的任意大于1的因数都不是完全平方数,求证:ω上的任意一个整点到原点O 的距离都不是整数.第十一届学而思数学竞赛联考一试试题时间:80分钟一、填空题(本大题共8小题,每小题8分,共64分)1.方程2log 2(x −2)+log 2(x +1)=1的所有实数解为x =.解答(刘涵祚陈乐恒供题)1+√3原方程可以转化为(x −2)2(x +1)=2,化简得(x −1)(x 2−2x −2)=0,得出x =1或x =1±√3,又由于x ≥2,得出原方程的解为x =1+√3.2.已知实数k ∈R ,平面上的向量|−→b |=1,若满足−→a ,−→b 的夹角为150◦,且(−→a +−→b )⊥(−→a +k −→b )的非零向量−→a 恰好有两个,则实数k 的取值范围为.解答(刘涵祚陈乐恒供题)(−∞,0]∪{13}∪{3}由于(−→a +−→b )⊥(−→a +k −→b ),则(−→a +−→b )·(−→a +k −→b )=0;即:|−→a |2−√3(k +1)2|−→a ||−→b |+k |−→b |2=0所以,|−→a |2−√3(k +1)2|−→a |+k =0.不难发现,上述方程在(0,+∞)上恰好有一个实根.当k ≤0时,显然该方程有一正根和一非正根,满足条件;当k >0时,该方程的判别式∆=34(k +1)2−4k =0,化简得:3k 2−10k +3=0解得:k =3或k =13.综上所述,k 的取值范围是(−∞,0]∪{13}∪{3}.3.已知正实数a,b,c 依次构成等比数列,并恰好是△ABC 的三边长,则a +cb的取值范围是.解答(李纪琛供题)[2,√5)不妨设a =1,b =x,c =x 2(x ≥1),则c 为该三角形的最长边,于是1+x >x 2,得出:1≤x <1+√52.而a +c b=1+x 2x=x +1x .设上述关于x 的对勾函数为f (x ),则不难发现在[1,1+√52)上,2≤f (x )<√5.第5页,共12页4.已知F 为椭圆C :x 225+y 216=1的右焦点,P 为C 上一点,Q (7,8),则|P F |+|P Q |的取值范围是.解答(刘涵祚陈乐恒供题)[4√5,10+2√41]不难发现,F (3,0),一方面,|P F |+|P Q |≥|F Q |=4√5,并且在点P 位于线段F Q 与椭圆C 的交点时,可以取等;另一方面,考虑左焦点E (−3,0),则|P F |+|P Q |=|P Q |+10−|P E |≤10+|EQ |=10+2√41在点P 位于QE 的延长线与椭圆C 的交点时可以取等;综上即得答案.5.如下图,对于正实数r (1<r <√2),以点A 为球心,半径为r 的球面与单位立方体ABCD −A 1B 1C 1D 1的棱产生6个交点,不难发现这六个点在同一个平面上.则这六个点构成的凸六边形的面积与周长的比值的取值范围是.解答(李纪琛供题)(√612,√68]如左图,不难发现这个六边形对边互相平行,并且每个内角均为120◦,并且其六条边长依次为x,√2−x,x,√2−x,x,√2−x ,其中x ∈R 且0<x <√2.于是,其周长C =3(x +(√2−x ))=3√2.如右图,我们将这个六边形补成一个正三角形,即可得出其面积S =√34(√2+x )2−3√34x 2=−√32(x 2−√2x −1)=−√32(x −√22)2+3√34于是我们有√32<S ≤3√34.再结合C =3√2,则√612<S C ≤√68第6页,共12页6.设集合A ={x |ax 2+3x −2a =0}(其中a 为实常数);集合B ={x |2x 2−5x −42≤0},如果A ∩B =A ,则参数a 的取值范围是.解答(李纪琛供题)(−∞,−917]∪{0}∪[4241,+∞)不难得出,B =[−72,6],我们需要A ⊆B ;当a =0时,A ={0},满足条件;当a =0时,此时方程ax 2+3x −2a =0为二次方程,其判别式∆=9+8a 2>0并且根据韦达定理,其两个根x 1,x 2满足:x 1x 2=−2aa=−2<0则这两根必然是一正一负,再结合A ⊆B ,我们需要满足以下条件即可:f (0)=0;f (0)f (−72)≤0;f (0)f (6)≤0解得:a ≤−917或者a ≥4241综上所述,参数a 的取值范围是:(−∞,−917]∪{0}∪[4241,+∞).7.多项式(1+x +x 2+···+x 203)3的展开式在合并同类项以后,x 300这一项的系数为解答(李纪琛供题)31192根据乘法分配律,这个问题等价于求方程x +y +z =300满足0≤x,y,z ≤203的整数解的组数;首先,该方程的非负整数解的组数为(3022)=45451;下面来考虑该方程有超出203的解的组数,不难发现x,y,z 中恰有一个数超过203,不妨设为z ,我们设w =z −204,即转化为求方程x +y +w =96的非负整数解的组数,为(982),再结合x,y,z,的对称性,则原方程有超出203的非负整数解的组数为3(982)=14259;那么满足条件的解的组数为:45451−14259=31192.8.从4×4的方格表中随机选5个不同的方格,则选出的5个方格构成连通区域的概率是.注:连通区域是指,对于区域内部(不含边界)任意两点,均存在一条完全落在区域内部(不含边界)的折线连接这两个点.解答(王正供题)611092.我们按照这5格的形状来分类计算个数(旋转后重合也视为不同的形状).(1)若包含一个1×4矩形,此时1×4矩形有横竖两种,剩下的一格有8种不同的位置可以选,因此共16种形状.而每种形状在4×4方格表中的位置有3种,因此共16×3=48种选法.(下面假设不含1×4矩形)(2)若包含两个1×3矩形,则其必为一横一竖且有一个交点,此时共9种形状,每种形状在4×4矩形中的位置有4种,因此共9×4=36种选法.(3)若只包含一个1×3矩形,且剩下两格在该1×3矩形的异侧,此时1×3矩形有横竖两种,剩下两格有6种选法,因此共12种形状.每种形状在4×4矩形中的位置有4种,因此共12×4=48种选法.第7页,共12页(4)若只包含一个1×3矩形,且剩下两格在该1×3矩形的同侧且均和1×3矩形相邻,此时1×3矩形有横竖两种,剩下两格有6种选法,因此共12种形状.每种形状在4×4矩形中的位置有6种,因此共12×6=72种选法.(5)若只包含一个1×3矩形,且剩下两格在该1×3矩形的同侧且有一格不和1×3矩形相邻,此时1×3矩形有横竖两种,剩下两格有4种选法,因此共8种形状.每种形状在4×4矩形中的位置有3种,因此共8×3=24种选法.(6)若不含1×3矩形,则必为如图所示的形状旋转或对称得到,共4种形状.每种形状在4×4矩形中的位置有4种,因此共4×4=16种选法.综上,共244种选法构成连通区域,而总的选法有(165)种,因此构成连通区域的概率为244(165)=61 1092.二、解答题(本大题共3小题,第9题16分,第10,11题各20分,共56分)9.已知x,y ∈R ,且满足(4x 3−3x )2+(4y 3−3y )2=1.求x +y 的最大值.解答((刘涵祚陈乐恒供题))√6+√22令4x 3−3x =cos 3θ,3y −4y 3=sin 3θ,θ∈R .再设x =cos α,不难发现cos 3α=cos 3θ,类似的,设y =sin β,则sin 3β=sin 3θ.注意到用π−β来代替β不会影响y 的取值,则可以不妨设α−β=2tπ3(t∈Z ),此时会产生如下三种情况:情形一:α=β此时x +y =√2sin(α+π4)≤√2.情形二:α=β−2π3此时x +y =sin(α+2π3)+cos α=2cosπ12cos(α+π12)≤√6+√22.情形三:α=β−4π3此时x +y =cos α+sin(α+4π3)=2cos(α+π12)cos 5π12≤√6−√22.综上所述,x +y 的最大值为√6+√22.10.设复数x,y,z满足:|x|=|y|=|z|=1,并且ty =1x+1z,其中t∈C为给定的复数;求|2xy+2yz+3xzx+y+z|的值.(用含t的代数式表示)解答(刘涵祚陈乐恒供题)|2t+3t+1|先证明一个结论:|x+y+z|=|xy+yz+xz|结合|x|=|y|=|z|=1,我们有,|x+y+z|2=(x+y+z)(¯x+¯y+¯z)=3+∑cyc x¯y+∑cyc¯x y|xy+yz+zx|2=(xy+yz+zx)(¯x¯y+¯y¯z+¯z¯x)=3+∑cyc x¯y+∑cyc¯x y所以,|x+y+z|=|xy+yz+xz|.回到原题,则有|2xy+2yz+3xzx+y+z |=|2xy+2yz+3xzxy+yz+zx|=|2+zxxy+yz+zx|=|2+1yz+yx+1|又由于yz +yx=y(1x+1z)=y·ty=t;那么|2xy+2yz+3xzx+y+z|=|2+1yz+yx+1|=|2+1t+1|=|2t+3t+1|.11.设p 为给定的正整数,点F 是抛物线Γ:y 2=2px 的焦点,点S 在x 轴上,且满足−→OS =m −−→OF ,其中m 是给定的正奇数;设经过点S 且不与坐标轴垂直的动直线l 与抛物线Γ交于A,B 两点,线段AB 的中垂线与AB 以及x 轴分别交于M,T 两点,记N 为线段MT 的中点,点N 的轨迹记为ω.(1)确定ω的形状以及方程,并证明:在ω上存在无穷多个整点(整点就是横纵坐标都是整数的点).(2)如果正整数p 满足:p 的任意大于1的因数都不是完全平方数,求证:ω上的任意一个整点到原点O 的距离都不是整数.解答(李纪琛供题)(1)不难得出F (p2,0),则S (mp 2,0),我们设直线l 的方程为:l :x =ky +mp 2(k =0)与抛物线Γ联立得:y 2−2pky −mp 2=0.由韦达定理,y 1+y 2=2pk ,则x 1+x 2=k (y 1+y 2)+mp =2pk 2+mp.点M 为线段AB 的中点,其坐标为(pk 2+mp 2,pk ).再结合AB 的中垂线与l 垂直,则中垂线的方程为:y =−kx +pk 3+(m +2)pk 2得出点T (pk 2+(m +2)p 2,0),则T M 中点N (pk 2+(m +1)p 2,pk 2).不难发现点N 的轨迹方程为:4y 2=p (x −(m +1)p 2)(y =0)其形状为一条去掉顶点的抛物线.并且由于m 为正奇数,则m +12为正整数,记它等于n ,则ω的方程可转化为:ω:4y 2=p (x −np )对于正整数t ,不难得知,点(p (4t 2+n ),pt )是ω上的整点,显然这样的点有无穷多个.(2)由(1)中的分析,我们得知ω的方程为:ω:4y 2=p (x −np ).反证法,若ω上存在整点到原点的距离为正整数;当p =1时,必然存在正整数x,y,a 满足:x 2+y 2=a 24y 2=x −n不难发现a ≥x +1,则x >x −n 4=y 2=a 2−x 2=(a −x )(a +x )≥a +x >x 产生矛盾.当p为大于1的奇数时,必然存在正整数x,y,a满足:x2+y2=a24y2=p(x−np)不难发现p|y2,又由于p没有平方因子,则p|y,进而得出p|x,则p|a.我们记x=px1,y=py1,a=pa1,其中x1,y1,a1∈Z+,那么x21+y21=a21 4y21=x1−n这转化为p=1的情况,产生矛盾.当p为偶数时,由于p无平方因子,设p=2q,其中q为不含平方因子的奇数,此时必然存在正整数x,y,a满足:x2+y2=a22y2=q(x−2nq)容易得出,x为偶数,记x=2x1,则4x21+y2=a2 y2=q(x1−nq)易证q|y,q|x1,则q|a,我们令y=qy2,x1=qx2,a=qa2,其中x2,y2,a2∈Z+,那么(2x2)2+y22=a22 y22=x2−n显然a2≥2x2+1,则2x2>x2−n=y22=a22−(2x2)2=(a2−2x2)(a2+2x2)≥a+2x2>2x2产生矛盾.综上所述,ω上不存在整点到原点的距离为整数.。
绝密★启用前2011年首届全国学而思综合能力测评(学而思杯)数学试卷(六年级B 卷) 时间:13:30~14:50 满分:150分考生须知: 1. 请在答题纸上认真填写考生信息;2. 所有答案请填写在答题纸上,否则成绩无效一.填空题(每题8分,共40分)1. 计算:123136___.1234⎛⎫÷+⨯= ⎪⎝⎭【分析】原式= 1121368.1217⨯⨯=2. 如图,一个边长为10厘米的正方形木板斜靠在墙角上(木板厚度不计),AO 距离为8厘米,那么点C 距离地面的高度是 厘米。
【分析】6+8=14厘米3. 3月11日,日本发生里氏9级大地震。
在3月15日,日本本州岛东海岸附近海域再次发生5级地震。
已知里氏的震级数每升2级,地震释放能量扩大到原来的1000倍,那么3月11日的大地震BCODA810释放能量是15日东海岸地震的倍.【分析】差了4级,差了1000×1000=1,000,000倍.4. 今天是2011年4月9日,20110409这个九位数是9的倍数,则方框里应填入的数字是。
【分析】容易知道为15. 一列数,我们可以用:1x 、2x …表示,已知:12x =,112n nx x +=-()1,2,3n = ,如213222x =-=,则2011____x =。
【分析】由于213222x =-=;324233x =-=;435244x =-=;找规律,可知:1n n x n +=,所以201120122011x =。
二.填空题(每题10分,共50分)1. 在梯形ABCD 中,对角线AC 与BD 相交于O 点,而三角形ABO 的面积为9,三角形BOC 的面积为27,DO 上有一点E ,而三角形ADE 的面积为1.2,则阴影部分三角形AEC 的面积为【分析】根据题意,由于三角形ADO 的面积为3,则阴影三角形AEO 的面积为1.2,所以有三角形EOC 的面积为3.6,则阴影部分的面积为4.8.2. 有四个人说话,分别如下:A :我们中至少有一个人说的是正确的B :我们中至少有两个人说的是正确的C :我们中至少有一个人说的是错误的D :我们中至少有两个人说的是错误的 请问:说错话的有人.【分析】方法一:若没人说对,则CD 说对,矛盾;若1人说对,则ACD 说对,矛盾;若2人说对,则ABCD 说对,矛盾;若3人说对,则ABC 说对,D 错,成立;若4人说对,则AB 说对,CD 说错,矛盾,因此只能是ABC 说对,D 说错.方法二:因为四个人,所以至少有两人说错或两人说对,因此AB 一定是正确的,剩下的就容易知道D 是错的.3. n 是一个三位数,且组成它的各位数码是从左到右是从大到小的连续数字。
2011年“学而思杯”中学生理科能力大赛初 二 数 学 试 卷一、填空题(本题共60分,每小题5分)1. 点()1x x --,不可能在第________象限.2. 函数y =x 的取值范围是______________.3. 已知()2x y -+的算术平方根和()21x y +-互为相反数,则3yx-的平方根为___________.4. 如图,在矩形ABCD 中,E 是BC 的中点,30BAE ∠=︒,2AE =, 则矩形ABCD 的面积为___________.5. 已知,函数y kx m =+和y ax b =+的图象交于点P ,则根据图象 可得不等式组0kx m ax b kx m +>⎧⎨+>+⎩的解集为___________.6. 如图,直线1y x =--交两坐标轴于A 、B 两点,平移线段AB 到CD ,使两点都落在反比例函数()0ky x x=>的图象上,DM y ⊥轴于点M ,DN x ⊥轴于点N ,则DM DN -= .EDCBA7. 如果实数a b ,满足2840a a --=,2840b b --=,则b aa b+的值为 .8. 已知x y a 、、都是实数,且1x a =-,()()2211y a a a =---,则31x y a +++的值为________.9. 设实数a b c ,,满足2142a b c +++=,那么ba c-的值为_______.10. 如图,Rt ABC △中,E D F 、、分别在AB BC AC 、、上,且四边形AEDF 是正方形.已知8CD =,12BD =,则阴影部分的面积为_____________.11. 若实数,x y 满足333333331343615456x y x y ⎧+=⎪⎪++⎨⎪+=⎪++⎩,则x y +的值是 _____ .12. 已知正方形ABCD 所在平面内的直线满足:⑴ 正方形四个顶点到这条直线的距离只有两种; ⑵ 两种距离中,较大的是较小的三倍. 那么符合上述条件的直线一共有 条二、解答题(本题共40分,每小题10分)13. 如图,直角梯形ABCD 中,AB CD ∥,90DAB ∠=︒,12CD AB =,2245BC AD =, ⑴ 求证:AD AB =.⑵ AC BD 、交于点E ,AO BD ⊥交BD 于O ,交BC 于F ,求证:CE CF =. ⑶ 作点F 关于点O 的对称点H ,试判断BH 与AE 的关系,并证明你的结论.HFEO DC BA14. 如图1,已知直线12y x m=-+与反比例函数kyx=的图象在第一象限内交于A B、两点(点A在点B的左侧),分别与x y、轴交于点C D、,AE x⊥轴于E.⑴若12OE CE⋅=,求k的值.⑵如图2,作BF y⊥轴于F,求证:EF CD∥.⑶在⑴⑵的条件下,EFAB=P是x轴正半轴上一点,且PAB△是以P为直角顶点的等腰直角三角形,求P点的坐标.15. 如图,D 为ABC △中线AM 的中点,过M 作AB 、AC 边的垂线,垂足分别为P 、Q .过P 、Q分别作DP 、DQ 的垂线交于点N .⑴ 求证:PN QN =; ⑵ 求证:MN BC ⊥.16. 若x y z ,,满足1x y z ++=,2222x y z ++=,3333x y z ++=,求444x y z ++的值.2011年“学而思杯”中学生理科能力大赛初二数学答案一、填空题(每小题5分,答对得5分,答错、不答或答不全均不得分)QP N M DCB A二、解答题(每小题10分,按解题过程分步给分,若只有答案且正确,给2分) 13. ⑴ 过C 点作CM AB ⊥于M ,∵AB CD ∥,90DAB ∠=︒,∴四边形AMCD 是矩形,∴AM CD =………………………………………………………………1分∵12CD AB =,∴AM BM = ∴AC BC =………………………………………………………………2分 ∵在Rt ACD △中,90ADC ∠=︒,∴2222AD CD AC BC +==, ∵2245BC AD =,∴2214CD AD =,即12CD AD =, ∴AD AB =.……………………………………………………………4分 ⑵ 由⑴知:45ADB ABD ∠=∠=︒,又AC BC =,∴CAB CBA ∠=∠,∴CAF CBE ∠=∠,……………………………………………………5分 ∴在ACF △和DCE △中, ACF BCE AC BCCAF CBE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ACF BCE △≌△, ∴CE CF =.……………………………………………………………7分 ⑶ 解法一:延长BH 交AE 于N .由⑵可得:AE BF =,∵F H 、关于点O 对称,∴BH BF =,OBF OBH ∠=∠,∴BH AE =………………………………………………………………8分 ∵CAF CBE ∠=∠,∴OBH CAF ∠=∠,∴90ANH BOH ∠=∠=︒,即BH AE ⊥.……………………………10分 解法二:延长BH 交AE 于N ,∵F H 、关于点O 对称,∴BH BF =,OBF OBH ∠=∠, ∵CAF CBE ∠=∠,∴OBH CAF ∠=∠,∴90ANH BOH ∠=∠=︒,即BH AE ⊥.…………………………9分 ∵AO BD ⊥,∴AO BO =,90AOE BOH ∠=∠=︒, ∴AOE BOH △≌△,∴AE BH =.………………………………………………………10分 14. ⑴ 设OE a =,∴12A a a m ⎛⎫-+ ⎪⎝⎭,,∵点A 在反比例函数图象上,∴12a a m k ⎛⎫-+= ⎪⎝⎭,即212k a am =-+,……2分由一次函数解析式可得()20C m ,,∴2CE m a =-, ∴()22212OE CE a m a a am ⋅=-=-+=,……………………3分∴()211212622k a am =-+=⨯=.……………………………4分 ⑵ 连接AF BE 、,过E F 、分别作FM AB ⊥,EN AB ⊥, ∴FM EN∥.∵AE x ⊥轴,BF y ⊥轴,∴AE BF ⊥N MA BCD OE F H122AEF k S AE OE =⋅=△,122BEF k S BF OF =⋅=△, ∴AEF BEF S S =△△, …………………………………………5分 ∴FM EN =,∴四边形EFMN 是矩形,∴EF CD ∥.………………………………………………7分 ⑶由⑵可知,EF AD BC ==,∴CD =.由直线解析式可得OD m =,2OC m =, ∴4OD =,又EF CD ∥,∴2OE OF =,∴1OF =,2OE =,………………………………………8分 ∴3DF =,∴3AE DF ==,∵AB =AP =∴1EP =,…………………………………………………9分∴()30P ,.………………………………………………10分 15. ⑴ 连接DN ,由已知得APM △和AQM △都是直角三角形,AM 是公共斜边,∵D 是AM 的中点,∴12PD AM QD ==,……………………………………2分 ∵PN PD ⊥,QN QD ⊥,∴DPN DQN ∠=∠,∴Rt Rt DPN DQN △≌△()HL ,∴NP NQ =.……………………………………………………………………4分 ⑵ 取BM 、MC 的中点S 、T ,连结SP 、SN 、TQ 、TN . 1122SP BM MC TQ ===,…………………………………………………………5分9090SPN BPS NPM B DPA ∠=︒-∠-∠=︒-∠-∠ 9090B BAM AMC =︒-∠-∠=︒-∠9090DMQ QMT DQM MQT =︒-∠-∠=︒-∠-∠TQN =∠.………………………………………………7分∴SPN TQN △≌△()SAS .∴SN TN =,……………………………………………8分 ∵SM TM =,∴MN BC ⊥.…………………………10分16. ∵()2222222x y z x y z xy yz zx ++=+++++, ∴()111222xy yz zx ++=-=-,…………………………………2分 ∵()()3332223x y z xyz x y z x y z xy yz zx ++-=++++---, ∴16xyz =.………………………………………………………4分 ()()24442222222222x y z x y z x y y z z x ++=++-++,…………6分又()()22222222111222612x y y z z x xy yz zx xyz x y z ⎛⎫++=++-++=--⨯=- ⎪⎝⎭,……………8分∴444212522126x y z ⎛⎫++=-⨯-= ⎪⎝⎭.…………………………………………………………10分NQ。
1. 简单小数计算2011-201.1+20.11-2.011+0.001【解析】18282. 分小四则混合运算(..)÷+⨯÷254138512311854【解析】541(3.8512.31)1854÷+⨯÷2 ()4(3.85 3.612.3 1.8)941.87.712.39436916⨯+⨯⨯=⨯+⨯=⨯== 3 已知N *等于N 的因数个数,比如4*=3,则(2011*+10*+6*)*=_______【解析】(2011*+10*+6*)*=(2+4+4)*=44 用字母表示数一个非等腰三角形,一边长为6,一边长为7,还有一边长为6k ,已知k 是自然数,则三角形的周长为______.【解析】k =2,周长为6+7+12=25.5 基础类型应用题1红光大队用拖拉机耕地,2台3小时耕75亩,照这样计算,4台5小时耕____亩.【解析】2台1小时可耕75 ÷3=25亩,4台5小时 可耕地25×2×5=250亩6 基础类型应用题2一个骗子到商店买了5元的东西,他付给店员50元钱,然后店员把剩下的钱找给了他;这时他又说自己有零钱,于是给店员5元的零钱,并且要回了开始给出的50元。
则这个骗子一共骗了______钱?【解析】由于一开始骗子并没有骗钱,产生骗钱的是后用零钱换50元,所以共骗得50-5=45元。
7 约数倍数已知A 、B 两数的最小公倍数是120,B 、C 两数的最小公倍数是180,A 、C 两数的最小公倍数是72,则A 、B 、C 三数的最小公倍数是______.【解析】120=23×3×5180=22×32×5 72=23×32所以最小公倍数是23×32×5=3608 简单的逻辑推理2011年8月14日,伦敦羽毛球世锦赛进入最后一个比赛日。
在女单决赛中,中国选手王仪涵2比0完胜中华台北选手郑韶婕,首次夺得世锦赛冠军,中国队也实现了女单项目的八连冠。
已知二人共得到67分,其中第二局,王仪涵竟然赢了整整11分,请问,第一局郑韶婕得了______分。
(羽毛球为21分制)【解析】第二局相差11分,因此比分为21:10,第一局总分为:67-21-10=36,比分为21:15,所以第一局郑韶婕得了15分9 简单的一半模型下图为面积100的平行四边形,则阴影部分的面积和是_____.【解析】阴影部分的面积为总面积的一半。
100÷2=5010 平均速度AB 间的路被平均分成三段,王先生驾车从A 地开往B 地,已知他这三段路上的平均速度分别为30 km /h ,40 km /h 和60km /h ,则王先生在AB 间的平均速度为______km /h .【解析】设每段路都为120km ,则王先生在这三段路的时间分别为4h ,3h ,2h 。
因此总时间为9h ,而总路程是120×3=360km ,最终的平均速度为360÷9=40km /h11 简单分数裂项15191113()142612203042+--+-⨯ 【解析】原式11111111111(1)1422334455667=-++-+--++--⨯ 6147=⨯ 12= 12 换元111113572011113572011++⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯ 【解析】设13572011⨯⨯⨯⨯⨯=A ,则原式变为11111111111A A A A A AA++=+==+++++ 13 整系数方程[(8)88]88x +⨯-÷=【解析】(856)88x +÷=78x +=1x =14 分数或比例方程()x x ⎡⎤⨯⨯++-=⎢⎥⎣⎦321321223423【解析】13213423x x ++-=x x ==65512215 简单方程组292232202a b c a c b b c a +⎧+=⎪⎪+⎪+=⎨⎪+⎪+=⎪⎩ 则b =_______【解析】三式相加()27236a b c a b c +++=⇒++=每个式子都乘2减去上式,得41022a b c =⎧⎪=⎨⎪=⎩b =10 16 简单的概率问题分别先后掷2次骰子,点数之积为8的概率为三十六分之______.【解析】先后掷2次,共可以掷出6×6=36种可能情况,其中积为8的情况共有2×4=4×2这2种,概率为三十六分之2,答案为2.17 分百应用题小明看一本书,计划每天看全书的九分之一。
按计划看了3天后,由于急于知道结局,于是跳过了200页,并将看书速度提高了一倍,又看了1天,把书看完。
已知小明计划每天看书的页数相同,则这本书共______页。
【解析】速度提高了一倍 ,看了1天,相当于原计划的2天,因此小明看了原计划3+2=5天的书,还有9-5=4天没看,所以原计划一天看书200÷4=50页,这本书共有50×9=450页18 枚举法一次超难的数学考试,某班前五名同学共得20分(得分是任意正整数),并且分数各不相同,也没有得0分的,则有_______种得分的情况。
【解析】有序枚举:1、2、3、4、101、2、3、5、91、2、3、6、81、2、4、5、81、2、4、6、71、3、4、5、72、3、4、5、6共7种19 排列组合用1、2、3、4、5这几个数字组成一个5位数,要求每个数字均出现1次,且3必须在2前面(但它们不一定相邻),2必须在1前面,则共能组成____个不同的五位数。
【解析】插空法 先将321按顺序排好,然后把4和5插到空里去。
第一个数有4种插法,第二个数有5种插法,一共有4×5=20种插法20 弦图或勾股定理如图所示,直角三角形PQR 的短直角边长为5厘米.正方形EFRQ 的面积是89平方厘米,则正方形PQDC 的面积为______。
【解析】由勾股定理可知222289564PQ QR PR =-=-=,正方形的面积即为6421 简单的数论题 今天是2011年10月6日,已知六位数2011WW 能被106整除,则该六位数是______. 【解析】用试除法,易知被除数是20118822 浓度问题1000千克青菜早晨测得它的含水量为90%,这些菜到了下午测得含水量为80%,那么这些菜的重量减少了_____千克.【解析】上下午时菜的果肉含量是不变的。
早晨时有果肉1000×(1-90%)=100千克,因此下午菜的重量为100÷(1-80%)=500千克,共减少了1000-500=500千克23 工程问题一项工程,乙单独做要12.5天完成.如果第一天甲做,第二天乙做,第三天一起做,这样交替轮流做,那么恰好用整数天完成;如果第一天乙做,第二天一起做,第三天甲做,这样交替轮流做,那么比上次轮流的做法少用半天完工.已知甲乙工效不相等,则甲单独做需要______天.【解析】有两种可能,第一种,第一次最后一天甲完成的,那么甲一天做的相当于乙半天做的,乙做12.5天相当于甲做25天的;第二种:最后一天是乙完成的,那么甲一天和乙一天共做的相当于乙一天和合作半天做的,于是甲乙工效相同,与已知矛盾,所以只能是第一种情况,答案是25.24 加乘原理用0、1、2、3、4这5个数字(可以重复),共能组成______个比2011小,比1006大的偶数。
【解析】千位为1时,2,3位均有5个数字可以选,第四位有3个数字可以选,去掉1000,1002,1004这3数,共有5×5×3-3=72(个)。
千位为2时,共有2000、2002、2004、2010这4个数,总计72+4=76个。
25 余数问题有一个三位数,它们除以2、4、6、7所得到的余数互不相同(不能余0)。
这样的三位数中最大的是_____【解析】除以2只能余1,除以4就只能余3,除以6只能余5,除以7可以余2、4、6,三位数中除以2只能余1,除以4就只能余3,除以6只能余5的数最大的是995,每小12都成立,就看余7,995除以7余1,983除以7余3,959除以7余0,947除以7余2,成立了,所以最大的是947。
26 公式类行程小偷与警察相隔30秒先后逆向跑上一自动扶梯,小偷每秒可跨越3级阶梯,警察每秒可跨越4级阶梯。
已知该自动扶梯每秒运行1.5级阶梯,警察要想在自动扶梯上抓住小偷的话,自动扶梯至少要有_____级。
【解析】小偷逆行1秒上1.5级阶梯,30秒上45级阶梯,警察1秒多比小偷上1级台阶,45秒即可追上,则至少需要454 1.5=112.5⨯-(),台阶必然是整数,所以最少113个台阶。
27 立体几何有一座圆柱塔,在地面到塔顶要通过塔内部的螺旋形通道上去,如图,已知塔内底面圆周长为30米,塔高140米,通道共转了三圈半。
问:通道共长____米【解析】将圆柱展开成长方形(图1),可发现通道的长度就是展开图中斜线的长度,即QM 长度的7倍。
将三角形QMN 分离出来(图2),利用勾股定理可知:QM =25,所以通道全长为25×7=175米图(1) 图(2)28 曲线形面积如右图,以直角三角形ABC 的两条直角边为直径作两个半圆,已知这两段半圆弧的长度之和是75.36厘米,那么三角形ABC 的面积最大是______平方厘米(π取3.14).【解析】根据条件3.14()275.36AB AC ⨯+÷=,所以48AB AC +=,三角形ABC 的面积为:2AB AC ⨯÷,最大是24242288⨯÷=平方厘米.29 钟表问题学而思杯数学考试时间为8:00-9:30,请问在考试时间内分针与秒针共重合了____次。
(8点为第一次) 【解析】分针和秒针每6060(601)59÷-=分钟重合一次,609088.559÷=,算上8点的1次,0.5舍去,共重合了89次30 压轴行程题B 地在A ,C 两地之间.甲从B 地到A 地去送信,甲出发10分后,乙从B 地出发到C 地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B 地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B 地至少要用_____分钟。
(注:甲,乙出发后不停留也不转向)【解析】根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:因为丙的速度是甲、乙的3倍,分步讨论如下:(1) 若丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需要10分钟,所以丙用时间为:10÷(3-1)=5(分钟)此时拿上乙拿错的信当丙再回到B 点用5分钟,此时甲已经距B 地有10+10+5+5=30(分钟),同理丙追及时间为30÷(3-1)=15(分钟),此时给甲应该送的信,换回乙应该送的信,再给乙送信,此时乙已经距B 地:10+5+5+15+15=50(分钟),此时追及乙需要:50÷(3-1)=25(分钟),返回B 地需要25分钟所以共需要时间为5+5+15+15+25+25=90(分钟)同理先追及甲需要时间为120分钟因此至少需要90分钟C B A5分钟5分钟10分钟。