第七章 微分方程作业题简答
- 格式:doc
- 大小:221.00 KB
- 文档页数:9
第七章 微分方程例7 有高为1米的半球形容器,水从它的底部小孔流出,小孔横截面积为1平方厘米. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面的高度h (水面与孔口中心间的距离)随时间t 的变化规律.解 由力学知识得,水从孔口流出的流量为62.0dtdVQ ⋅==孔口截面面积 重力加速度,12cm S = .262.0dt gh dV =∴ ①设在微小的时间间隔],,[t t t ∆+水面的高度由h 降至,h h ∆+则,2dh r dV π-=,200)100(100222h h h r -=--= .)200(2dh h h dV --=∴π ②比较①和②得:,262.0)200(2dt gh dh h h =--π 即为未知函数得微分方程. ,)200(262.03dh h h gdt ---=π,1000==t h ,101514262.05⨯⨯=∴gC π所求规律为 ).310107(265.45335h h gt +-⨯=π例10 求解微分方程.2222xyy dyy xy x dx -=+-解 原方程变形为=+--=2222y xy x xy y dx dy ,1222⎪⎭⎫⎝⎛+--⎪⎭⎫⎝⎛x y x y x y x y 令,xy u =则,dx dux u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得⎥⎦⎤⎢⎣⎡-+--⎪⎭⎫ ⎝⎛--112212121u u u u ,x dxdu = 两边积分得,ln ln ln 21)2ln(23)1ln(C x u u u +=----整理得.)2(12/3Cx u u u =--所求微分方程的解为 .)2()(32x y Cy x y -=-例13 抛物线的光学性质. 实例:车灯的反射镜面 ——旋转抛物面. 解 设旋转轴Ox 轴,光源在),0,0( ),(:x y y L =设),(y x M 为L 上任一点,MT 为切线,斜率为,y 'MN 为法线,斜率为,1y '-,NMR OMN ∠=∠ ,t a n t a n N M R O M N ∠=∠∴由夹角正切公式得,11tan y x y x yy OMN '--'-=∠ ,1t a n y N M R '=∠ 得微分方程 ,02=-'+'y y x y y ,12+⎪⎪⎭⎫ ⎝⎛±-='y x yxy 令 ,x y u =方程化为 ,112uu dx du x u +±-=+ 分离变量得,1)1(22xdxu u udu -=+±+ 令 ,122t u =+得,)1(xdxt t tdt -=±积分得 ,ln |1|ln xCt =± 即.112±=+x C u平方化简得,2222x CxC u += 代回,xyu =得 .222⎪⎭⎫ ⎝⎛+=C x C y所求旋转轴为Ox 轴得旋转抛物面的方程为 .2222⎪⎭⎫ ⎝⎛+=+C x C z y 例14(E07)设河边点O 的正对岸为点A , 河宽h OA =, 两岸为平行直线, 水流速度为a, 有一鸭子从点A 游向点O , 设鸭子(在静水中)的游速为)(a b b >, 且鸭子游动方向始终朝着点O , 求鸭子游过的迹线的方程.解 设水流速度为),|(|a a a =鸭子游速为),|(|b b b = 则鸭子实际运动速度为.b a v += 取坐标系如图,设在时刻t 鸭子位于点),,(y x P 则鸭子运动速度},,{},{t t y x y x v v v == 故有.yxt t v v y x dy dx ==现在),0,(a a = 而,be b = 其中e 为与PO 同方向的单位向量. 由},,{y x PO -=故,},{22y x y x e +-=于是},,{22y x yx b b +-==+=b a v .,2222⎪⎪⎭⎫ ⎝⎛+-+-y x byy x bxa 由此得微分方程,22yx by y x a v v dy dx y x++-== 即 ,12y xy x bady dx ++⎪⎪⎭⎫ ⎝⎛-= 初始条件为.0|==h y x 令,u yx =则,yu x =,u dy du y dy dx +=代入上面的方程,得,12+-=u ba dy du y分离变量得,12dy byau du -=+ 积分得),ln (ln C y b a arshu +-=即b a Cy sh u /)ln(-=],)()[(21//b a b a Cy Cy -=-故].)()[(21])()[(2/1/1//b a b a b a b a Cy Cy CCy Cy y x +---=-=将初始条件代入上式得,/1h C =故所求迹线方程为 2h x =,/1/1⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-b a b a h y h y .0y h ≤≤一、一阶线性微分方程 形如)()(x Q y x P dxdy=+ (3.1) 的方程称为一阶线性微分方程. 其中函数)(x P 、)(x Q 是某一区间I 上的连续函数. 当,0)(≡x Q 方程(3.1)成为0)(=+y x P dxdy(3.2) 这个方程称为一阶齐次线性方程. 相应地,方程(3.1)称为一阶非齐次线性方程.方程(3.2)的通解.)(⎰-=dx x P Ce y (3.3)其中C 为任意常数.求解一阶非齐次线性微分方程的常数变易法:即在求出对应齐次方程的通解(3.3)后,将通解中的常数C 变易为待定函数)(x u ,并设一阶非齐次方程通解为 ,)()(⎰-=dxx P ex u y一阶非齐次线性方程(3.1)的通解为[]⎰-⎰+=⎰dx x P dx x P e C dx e x Q y )()()( (3.5)二、伯努利方程:形如n y x Q y x P dxdy)()(=+ (3.7) 的方程称为伯努利方程,其中n 为常数,且1,0≠n .伯努利方程是一类非线性方程,但是通过适当的变换,就可以把它化为线性的. 事实上,在方程(3.7)两端除以ny ,得),()(1x Q y x P dxdyy n n=+-- 或 ),()()(1111x Q y x P y nn n =+'⋅--- 于是,令nyz -=1,就得到关于变量z 的一阶线性方程)()1()()1(x Q n z x P n dxdz-=-+. 利用线性方程的求解方法求出通解后,再回代原变量,便可得到伯努利方程(3.7)的通解.)1)(()()1()()1(1⎪⎭⎫⎝⎛+-=⎰⎰⎰----C dx e n x Q e y dx x P n dx x P n n 例5(E03)求方程0)12(23=-+dy xy dx y 的通解.解 当将y 看作x 的函数时,方程变为2321xy y dx dy -=这个方程不是一阶线性微分方程,不便求解.如果将x 看作y 的函数,方程改写为1223=+x y dydxy 则为一阶线性微分方程,于是对应齐次方程为0223=+x y dy dx y 分离变量,并积分得,2⎰⎰-=y dy x dx 即211yC x = 其中1C 为任意常数,利用常数变易法,设题设方程的通解为,1)(2y y u x =代入原方程,得yy u 1)(=' 积分得 C y y u +=||ln )(故原方程的通解为)||(ln 12C y yx +=,其中C 为任意常数.例6(E04)在一个石油精炼厂,一个存储罐装8000L 的汽油,其中包含100g 的添加剂. 为冬季准备,每升含2g 添加剂的石油以40L/min 的速度注入存储罐. 充分混合的溶液以45L/min 的速度泵出. 在混合过程开始后20分钟罐中的添加剂有多少?解 令y 是在时刻t 罐中的添加剂的总量. 易知100)0(=y . 在时刻t 罐中的溶液的总量 ()()t t t V 5800045408000-=-+= 因此,添加剂流出的速率为()()()()tt y t t y t V t y 58000454558000-=⋅-=⋅溶液流出的速率 添加剂流入的速率80402=⨯,得到微分方程 t ydt dy 580004580--= 即805800045=⋅-+y tdt dy 于是,所求通解为()()9580004558000451600101600080-+-=⎪⎪⎭⎫ ⎝⎛+⎰⋅⎰=---⎰t C t C dt e e y dt t dt t由100)0(=y 确定C ,得()()016000010160009=-+⨯-C ,8160010=C ,故初值问题的解是()()9816001600101016000-+-=t t y , 所以注入开始后20分钟时的添加剂总量是()()58.1512160020160010201016000)20(98≈-+⨯-=y g. 注:液体溶液中(或散布在气体中)的一种化学品流入装有液体(或气体)的容器中,容器中可能还装有一定量的溶解了的该化学品. 把混合物搅拌均匀并以一个已知的速率流出容器. 在这个过程中,知道在任何时刻容器中的该化学品的浓度往往是重要的. 描述这个过程的微分方程用下列公式表示:容器中总量的变化率=化学品进入的速率—化学品离开的速率.例10(E06) 求方程1)()(23=-+-+x y x x y x dxdy的通解. 解 令,u x y =-则,1+=dx du dx dy 于是得到伯努利方程.23u x xu dxdu -=+ 令,121u u z ==-上式即变为一阶线性方程.3x xz dxdz=- 其通解为 22x e z =⎪⎪⎭⎫ ⎝⎛+⎰-C dx e x x 232.2222--=x Ce x 回代原变量,即得到题设方程的通解.211222--+=+=x Ce x zx y x例11(E07)求解微分方程.)(sin 12xy xy x dx dy -= 解 令,xy z =则,dxdy x y dx dz += ∴x y dxdz+=⎪⎪⎭⎫ ⎝⎛-x y xy x )(sin 12,sin 12z = 利用分离变量法解得 ,42s i n2C x z z +=- 将xy z =代回,得所求通解为 .4)(2s i n2C x xy xy +=- 二、),(y x f y '=''型这种方程的特点是不显含未知函数y ,求解的方法是:令),(x p y =' 则)(x p y '='',原方程化为以)(x p 为未知函数的一阶微分方程,).,(p x f p ='设其通解为),,(1C x p ϕ=然后再根据关系式,p y =' 又得到一个一阶微分方程).,(1C x dxdyϕ= 对它进行积分,即可得到原方程的通解.),(21⎰+=C dx C x y ϕ三、),(y y f y '=''型这种方程的特点是不显含自变量x . 解决的方法是:把y 暂时看作自变量,并作变换),(y p y =' 于是,由复合函数的求导法则有.dydp p dx dy dy dp dx dp y =⋅=='' 这样就将原方程就化为).,(p y f dydpp= 这是一个关于变量y 、p 的一阶微分方程. 设它的通解为),,(1C y p y ϕ=='这是可分离变量的方程,对其积分即得到原方程的通解.),(21C x C y dy+=⎰ϕ例7设有一均匀、柔软的而无伸缩性的绳索,两端固定,绳索仅受重力的作用而下垂. 求绳索曲线在平衡状态时的方程.解 设绳索的最低点为.A 取y 轴通过点A 铅直向上,并取x 轴水平向右,且||OA 等于某个定值(这个定值将在以后说明).设绳索曲线的方程为).(x y y =考察绳索上点A 到另一点),(y x M 间的一段弧,AM 设其长为.s 假定绳索的线密度为,ρ则弧AM 的重量为.gs ρ由于绳索是柔软的,因而在点A 处的张力沿水平的切线方向,其大小设为;H 在点M处的张力沿该点处的切线方向,设其倾角为,θ其大小为T (如图).因作用于弧段AM 的外力相互平衡,把作用于弧段AM 上的力沿铅直及水平两方向解得.cos ,sin H T gs T ==θρθ两式相除得 .1t a n ⎪⎪⎭⎫ ⎝⎛==g H a s aρθ由于⎰'+='=xdx y s y 02,1,tan θ代入上式即得 .1102⎰'+='x dx y ay 将上式两端对x 求导,便得)(x y y =满足得微分方程 .112y ay '+='' (1) 取原点O 到点A 的距离为定值,a 即,||a OA =则初始条件为.0,00='===x x y a y对方程(1),设,p y ='则,dxdpy ='''代入并分离变量得: adxp dp =+21.1C a x p arsh +=由00='=x y 得01=C .a x p arsh =即a x sh y =' .2C axa c h y += 将条件a y x ==0代入上式,得 .02=C于是该绳索的曲线方程为 .2⎪⎪⎭⎫ ⎝⎛+==-a xa x e e a a x a c h y 这曲线叫做悬链线.),(y y f y '=''型二、二阶变系数线性微分方程的一些解法对于变系数线性方程,要求其解一般是很困难的. 这里我们介绍处理这类方程的两种方法. 一种是利用变量替换使方程降阶——降阶法;另一种是在求出对应齐次方程的通解后,通过常数变易的方法来求得非齐次线性方程的通解——常数变易法.对于二阶齐次线性方程, 如果已知其一个非零特解, 作变量替换,1⎰=zdx y y , 就可将其降为一阶齐次线性方程, 从而求得通解. 并有下列刘维尔公式.1)(21211⎥⎥⎦⎤⎢⎢⎣⎡+=⎰-⎰dx e y C C y y dx x P三、常数变易法在求一阶非齐次线性方程的通解时, 我们曾对其对应的齐次方程的通解, 利用常数变易法求得非齐次方程的通解. 这种方法也可用于二阶非齐次线性方程的求解.设有二阶非齐次线性方程),()()(22x f y x Q dx dyx P dx y d =++ (5.10) 其中)(),(),(x f x Q x P 在某区间上连续, 如果其对应的齐次方程0)()(22=++y x Q dx dyx P dxy d的通解2211y C y C y +=已经求得, 那么也可通过如下的常数变易法求得非齐次方程的通解.设非齐次方程(5.10)具有形如2211*y u y u y += (5.11)的特解, 其中)(),(2211x u u x u u ==是两个待定函数, 将上式代入原方程从而确定出这两个待定函数. 降阶法例2(E01)已知x xy sin 1=是方程0222=++y dx dy x dxy d 的一个解, 试求方程的通解. 解 作变换⎰=,1zdx y y 则有dxdy⎰+=,11zdx dx dy z y 22dx y d ⎰++=.221211zdx dx y d z dx dy dx dz y 代入题设方程,并注意到1y 是题设方程的解,有,022111=⎪⎭⎫+ ⎝⎛+z x y dx dy dx dz y 将1y 代入,并整理,得x z dx dzcot 2-=⇒.sin 21xC z = 故所求通解为y ⎰=zdx y 1⎢⎣⎡⎥⎦⎤+=.sin sin 221C dx x C x x )cot (sin 21C x C x x+-=).cos sin (112x C x C x -= 常数变易法例3(E02)求方程x dx dyx dxy d =-122的通解. 解 先求对应的齐次方程的通解.由0122=-dx dy x dx y d dx dy x dx y d 122= dx x dx dy d dxdy 11=⎪⎭⎫ ⎝⎛⋅ ,||ln ||ln lnC xdxdy+= 即 .Cx dx dy = 从而得到对应齐次方程的通解.221C x C y +=为求非齐次方程的一个解,*y 将21,C C 换成待定函数,,21u u 设,221u x u y +=*则根据常数变易法,21,u u 满足下列方程组⎩⎨⎧='⋅+'='⋅+'x u u x u u x 212121201.21,21221x u u -='=' 积分并取其一个原函数得 .6,21321x u x u -== 于是,题设原方程得一个特解为.3621333221x x x u x u y =-=⋅+⋅=*从而题设方程的通解为 .33221x C x C y ++= 例4(E03)求方程1111-=--'-+''x y xy x x y 的通解. 解 因为,01111=---+xx x 易见题设方程对应的齐次方程的一特解为,1x e y =由刘维尔公式求出该方程的另一特解2y dx e eedx x xx x⎰--⎰=121,x = 从而对应齐次方程的通解为,21x e C x C y +=可设题设方程的一个特解为,11*x e u x u y += 由常数变易法, 21,u u 满足下列方程组⎪⎩⎪⎨⎧-='+'='+'102121x u e u u e u x x x ⇒,11-='u x xe u -='2 积分并取其一个原函数得,1x u -=',2x x e xe u ----=' 于是,题设方程的通解为 .1221---+=x x e C x C y x内容要点一、二阶常系数齐次线性微分方程及其解法0=+'+''qy y p y (6.1) 特征方程 ,02=++q pr r (6.2) 称特征方程的两个根,1r 2r 为特征根.)sin cos ()(,002121212121212121x C x C e y i r i r e x C C y r r e C e C y r r qy y p y q pr r x xr xr x r βββαβαα+=-=+=+==+==+'+''=++有一对共轭复根有二重根有二个不相等的实根的通解微分方程的根特征方程 这种根据二阶常系数齐次线性方程的特征方程的根直接确定其通解的方法称为特征方程法.二、 n 阶常系数齐次线性微分方程的解法 n 阶常系数齐次线性微分方程的一般形式为01)1(1)(=+'+++--y p y p y p y n n n n (6.6)其特征方程为0111=++++--n n n n p r p r p r (6.7)根据特征方程的根,可按下表方式直接写出其对应的微分方程的解:xk k k k rxk k e x x D x D D x x C x C C i k e x C x C C r k αβββα]sin )(cos )[()(111011101110------+++++++±+++ 复根重共轭是重根是通解中的对应项特征方程的根注: n 次代数方程有n 个根, 而特征方程的每一个根都对应着通解中的一项, 且每一项各含一个任意常数. 这样就得到n 阶常系数齐次线性微分方程的通解为 .2211n n y C y C y C y +++=例8(E05)求方程x x y y 2cos =+''的通解.解 对应齐次方程的特征方程的特征根为,2,1i r ±=故对应齐次方程的通解x C x C Y sin cos 21+=作辅助方程.2ix xe y y =+''i 2=λ 不是特征方程的根,故设,)(2*ix e B Ax y +=代入辅助方程得,034=-B Ai 13=-A ⇒,31-=A i B 94-=∴*y =⎪⎭⎫ ⎝⎛--i x 9431ix e 2=⎪⎭⎫ ⎝⎛--i x 9431)2sin 2(cos x i x +i x x x -+-=2sin 942cos 31⎪⎭⎫⎝⎛+x x x 2sin 312cos 94取实部得到所求非齐次方程的一个特解:.2sin 942cos 31x x x y +-=所求非齐次方程的通解为.2sin 942cos 31sin cos 21x x x x C x C y +-+=例11 已知函数x x e x e y )1(2++=是二阶常系数非齐次线性微分方程x ce by y a y =+'+''的一个特解, 试确定常数b a ,与c 及该方程的通解. 解 将已知方程的特解改写为,2x x x xe e e y ++=因对应齐次方程的解应是rx e 型的,如x e 2是对应齐次方程的解, x e 也可能是,因原方程的自由项是,x Ce 而x xe 或x e x )1(+是原非齐次方程的解,故x e 也是对应齐次方程的解(即1=r 也是特征方程的根).故原方程所对应的齐次方程的特征方程为,0)1)(2(=--r r 即,0232=+-r r于是得.2,3=-=b a 将x xe y =*代入方程x Ce y y y =+'-''23得,2)1(3)2(x x x x Ce xe e x e x =++-+原方程的通解为 .221x x x xe e C e C y ++=内容要点形如)(1)1(11)(x f y p y x p y x p y x n n n n n n =+'+++--- 的方程称为欧拉方程, 其中n p p p ,,,21 为常数.欧拉方程的特点是: 方程中各项未知函数导数的阶数与其乘积因子自变量的幂次相同. 作变量替换 t e x = 或 ,ln x t =将上述变换代入欧拉方程, 则将方程(8.1)化为以t 为自变量的常系数线性微分方程, 求出该方程的解后, 把t 换为ln x , 即得到原方程的解. 如果采用记号D 表示对自变量t 求导的运算,dtd则上述结果可以写为 ,Dy y x =' y D D y x )1(2-='',y D D D y D D D y x )2)(1()23(233--=+-=''',一般地,有y k D D D y x k k )1()1()(+--= .例3 设有方程 ,0)0(),0(),1ln(])1(2[)1(02='≥+-''++=+⎰y x x dx y x y y x x求由此方程所确定的函数).(x y 解 将方程两边对x 求导,整理后得y y x y x +'+-''+)1()1(2,11x+=且有,0)0(=y ,0)0(='y 这是欧拉方程,令t e x =+1或),1ln(x t +=将它化为常系数非齐次线性微分方程,222t e y dt dydty d -=+- 其通解为,41)(21t t e e t C C y -++=故原方程的通解为,)1(41)1)](1ln([21x x x C C y +++++=由初始条件,0)0(=y ,0)0(='y 可求得,411-=C ,212=C故由题设方程确定的函数为.)1(41)1()1ln(2141x x x y +++⎥⎦⎤⎢⎣⎡++-=例1(E01)求解微分方程组 ⎪⎩⎪⎨⎧=++=+++)2(035)1(02y x dty x dtdydt dx 解 由(2)得,5351y dt dy x --=,535122dt dy dt y d dt dx --= (3) 把(3)代入(1),得.022=+y dtyd 这是一个二阶常系数线性微分方程,易求出它的通解为.sin cos 21t C t C y += (4)将上式代入(3),得.cos )3(51sin )3(512121t C C t C C x +--= (5)联立(4),(5)即得所求方程组的通解.例3(E03)解微分方程组 ⎪⎪⎩⎪⎪⎨⎧=++=-+.0,2222y dt dx dt y d e x dt dydtx d t解 记,dtdD =则方程组可写成 ⎪⎩⎪⎨⎧=++=+-0)1()1(22y D Dx e Dy x D t )2()1( 设法消去变量,x 为此作如下运算:D ⨯-)2()1(得t e y D x =--3 (3)D ⨯+)2()1(得t De y D D =++-)1(24,即t e y D D =++-)1(24 (4)方程(4)对应的齐次方程的特征方程为0124=++-r r 特征根为,2512,1+±=±=αr 2514,3-±=±=βi r 又易求得方程(4)一个特解为,*t e y =故方程(1)的通解为t t t e t C t C e C e C y ++++=-ββααsin cos 4321 (5)将其代入方程(3),可得t t e C e C x αααα2313-=-t e t C t C 2sin cos 4333-+-ββββ (6)联立(5),(6)即得所求方程组的通解.追迹问题例3(E03)设开始时甲、乙水平距离为1单位, 乙从A 点沿垂直于OA 的直线以等速0v 向正北行走;甲从乙的左侧O 点出发, 始终对准乙以)1(0>n nv 的速度追赶. 求追迹曲线方程, 并问乙行多远时, 被甲追到.解 设所求追迹曲线方程为).(x y y =经过时刻,t 甲在追迹曲线上的点为),,(y x P 乙在点).,1(0t v B 于是 .1tan 0xyt v y --='=θ (1) 由题设,曲线的弧长OP 为 ⎰='+xt nv dx y 002,1解出,0t v 代入(1),得⎰'+=+'-xdx y n y y x 02.11)1( 整理得.11)1(2y ny x '+=''- 追迹问题的数学模型 设,),(p y x p y '=''='则方程化为 211)1(p np x +='- 或 ,)1(12x n dxp dp -=+两边积分,得|,|ln |1|ln 1)1ln(12C x n p p +--=++ 即 .1112n xC p p -=++将初始条件000=='==x x p y 代入上式,得.11=C 于是 ,1112nxy y -='++' (2)两边同乘,12y y '+-'并化简得,112n x y y --='+-' (3)(2)式与(3)式相加得 ,11121⎪⎪⎭⎫ ⎝⎛---='nnx x y 两边积分得 .)1(1)1(121211C x n n x n ny nn nn +⎥⎦⎤⎢⎣⎡-++---=+- 代入初始条件00==x y 得,122-=n nC 故所求追迹曲线为 ),1(1)1(1)1(121211>-+⎥⎦⎤⎢⎣⎡-++---=+-n n n x n n x n n y nn nn 甲追到乙时,即点P 的横坐标,1=x 此时.)1(2-=n n y 即乙行走至离A 点)1(2-n n 个单位距离时被甲追到.例4(E04)一个离地面很高的物体, 受地球引力的作用由静止开始落向地面. 求它落到地面时的速度和所需的时间(不计空气阻力).解 取连结地球中心与该物体的直线为y 轴,其方向铅直向上,取地球的中心为原点O (如图).设地球的半径为,R 物体的质量为,m 物体开始下落时与地球中心的距离为),(R l l >在时刻t 物体所在位置为),(t y y =于是速度为.)(dtdyt v =由万有引力定律得微分方程 ,222y kmM dt y d m -= 即 ,222ykMdt y d -=其中M 为地球的质量,k 为引力常数. 因为当R y =时,g dtyd -=22 (取负号是因此时加速度的方向与y 轴的方向相反).,,22gR kM RkM g ==代入得到,2222ygR dt y d -=初始条件为 ,0l y t ==.00='=t y先求物体到达地面时的速度. 由,v dtdy=得 ,22dy dvv dt dy dy dv dt dv dty d =⋅== 代入并分离变量得dy y gR vdv 22-=.2122C y gR v +=把初始条件代入上式,得 ,221gR C -=于是⎪⎪⎭⎫⎝⎛-=l y gR v 11222 .112⎪⎪⎭⎫ ⎝⎛--=l y g R v 式中令,R y =就得到物体到达地面时得速度为.)(2lR l gR v --= 再求物体落到地面所需的时间.,112⎪⎪⎭⎫ ⎝⎛--==l y g R v dt dy,0l y t == 分离变量得 .21dy yl yg l R dt --=由条件,0l y t ==得.02=C.a r c c o s 212⎪⎪⎭⎫ ⎝⎛+-=l y l y ly g l R t 在上式中令,R y =便得到物体到达地面所需得时间为.arccos 212⎪⎪⎭⎫ ⎝⎛+-=l R l R lR g l R t例6(E06)在图7-10-8的电路中, 设,1,40H L R =Ω= ,10164F C -⨯= t t E 10cos 100)(=且初始电量和电流均为0, 求电量)(t Q 和电流).(t I解 由已知条件知,可得到方程,10cos 1006254022t Q dt dQdt Q d =++其特征方程为 ,0625402=++r r 特征根,15202,1i r ±-= 故对应齐次方程的通解为).15sin 15cos ()(2120t C t C e t Q t c +=- 而非齐次方程的特解可设为.10sin 10cos )(t B t A t Q p += 代入方程,并比较系数可得 .69764,69784==B A 所以 .10sin 6410cos 84(6971)()t t t Q p += 从而所求方程的通解为 .10sin 1610cos 21(6974)15sin 15cos ()(2120)t t t C t C et Q t+++=- 利用初始条件,0)0(=Q 得到 ,069784)0(1=+=C Q .697841-=C 又 t C C t C C e dtdQt I t 15sin )2015(15cos )1520[()(212120--++-==- )],10cos 1610sin 21(69740t t +-+ 由,06976401520)0(21=++-=C C I 得.20914642-=C 于是 ⎥⎦⎤⎢⎣⎡++--=-)10sin 1610cos 21()15sin 11615cos 63(36974)(20t t t t e t Q t[].)10cos 1610sin 21(120)15sin 1306015cos 1920(20911)(20t t t t e t I t +-++-=- 解)(t Q 中含有两部分,其中第一部分[])(0.)15sin 11615cos 63(20911)(20∞→→--=-t t t e t Q t c 即当t 充分大时,有).10sin 1610cos 21(6974)()(t t t Q t Q p +=≈ 因此,)(t Q p 称为稳态解。
2016~2017学年第二学期科目: 高等数学(二) 第七章微分方程 单元测试题答案命题教师:吴淦洲 使用班级:全校16级理工本科一. 单项选择题(每小题2分,共16分)1. 选B 。
由二阶常系数微分方程可以知道其特征方程为2123201,2r r r r -+=⇒== 故B 是正确的。
2.选择B 由特征方程2210++=r r 解得特征根121==-r r ,所以对应齐次方程的通解为12()x Y c c x e -=+3.选C 。
该特征方程为:220rω+= ,故r i ω=±,所以xc x c y ωωsin cos 21+=正确。
4.选A 。
该方程是齐次方程,令y u x=,该方程可化为:du u x u dx +=,分离变量可以知道,故结论2y=(ln x +C)x y=0和正确。
5.选D 。
根据三阶微分方程的通解的定义,必含有三个独立的任意常数,用排除法即可知D 选项成立。
6.选B 。
该方程属于齐次方程,因为'ln y y y x x=。
7.选D 。
应该特征方程为:210r -=,所以1r =± ,右端中1λ=是特征方程的一个单根,且有个常数1,所以可设特解为x axe b +8.选B 。
由方程阶的定义可以知道B 正确。
9. 选C 该特征方程为:220r r --= 122,1r r ==-,故-1是特征方程的一个单根,所以x e B Ax x y -*+=)(是正确的 10. 选A 。
方程是可分离变量类型,分离变量后dy dx y=-⎰,积分可知A 正确。
11.选D. 特征方程是220rr +=,122,0r r =-=,0是该方程的一个单根,故特解可以设为y ax *= 二. 填空题(每小题2分,共14分,请把答案填在横线上)1.()()(())P x dx P x dx e Q x e dx c -⎰⎰+⎰由一阶线性微分方程的公式法可以写出答案,注意公式中的符号。
第七章 练习题一、填空: 第一节1、微分方程()1y x 2='+'y 的阶 一 __.2、0)()67(=++-dy y x dx y x 是 一 阶常微分方程. 3、01"=+xy 是 二 阶常微分方程. 4、微分方程2'=y x 的通解为 c x y +=2 。
5、 153'+=+x y xy 是 1 阶常微分方程 6、与积分方程()dx y x f y x x ⎰=0,等价的微分方程初值问题是0|),,(0'===x x y y x f y7、223421xy x y x y x ''''++=+是 3 阶微分方程。
8、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为 29、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是 310、方程()01///=+--y xy y x 的通解中含有 2 个任意常数 11、 微分方程03322=+dx x dy y 的阶是 1 第二节 1、微分方程x dye dx=满足初始条件(0)2y =的解为1x y e =+. 2、微分方程y x e y -=2/的通解是 C e e xy +=221 3、微分方程2dyxy dx=的通解是 2x y Ce = 4、一阶线性微分方程23=+y dx dy的通解为 323x Ce -+5、微分方程0=+'y y 的通解为 x ce y -=6、 微分方程323y y ='的一个特解是 ()32+=x y第三节1、tan dy y ydx x x=+通解为arcsin()y x Cx =.第五节1、微分方程x x y cos "+=的通解为213cos 6C x C x x y ++-= 2、微分方程01=+''y 的通解是( 21221C x C x y ++-= )3、 微分方程044=+'+''y y y 的通解是( x e C x C y 221)(-+= )4、微分方程032=-'+''y y y 的通解是( x x e C e C y 231+=- )5、 方程x x y sin +=''的通解是=y 213sin 61C x C x x ++-第六节1、 一阶线性微分方程x e y dxdy-=+的通解为 ()C x e y x +=- 2、已知1=y 、x y =、2x y =是某二阶非齐次线性微分方程的三个解,则该方程的通解为)1(21221c c x c x c y --++=或1)1()1(221+-+-=x c x c y第七节1、 微分方程230y y y '''--=的通解为x x e C e C y 321+=-.2、 分方程2220d xx dtω+=的通解是 12cos sin C t C t ωω+3、微分方程02=+'-''y y y 的通解为 12()x y c c x e =+第八节1、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是3,2,1αβγ=-==-2、微分方程2563x y y y xe -'''++=的特解可设为=*y *201()x y x b x b e -=+二、选择 第一节1、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为( A )(A ) 2 (B ) 4 (C ) 3 (D ) 02、方程422421x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( B )(A ) 2 (B ) 4 (C ) 3 (D ) 03、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是( C )A 、1B 、2C 、3D 、54、微分方程1243/2///+=++x y x y x xy 的通解中含有任意常数的个数是( C ) A 、1 B 、2 C 、3 D 、55、微分方程34()0'''-=x y yy 的阶数为(B ) (A) 1 (B) 2 (C) 3 (D) 46、下列说法中错误的是( B )(A) 方程022=+''+'''y x y y x 是三阶微分方程; (B) 方程220()x y yy x ''-+=是二阶微分方程;(C) 方程0)3()2(22232=+++dy y x y dx xy x 是全微分方程; (D) 方程()()dyf xg y dx=是可分离变量的微分方程. 7、方程()01///=+--y xy y x 的通解中含有( B )个任意常数A 、1B 、2C 、3D 、4 8、 微分方程3447()5()0y y y x '''+-+=的阶数为( B ) A .1 B . 2 C .3 D .49、微分方程()043='-'+''y y y x y xy 的阶数是( A ).A. 2B. 4C. 5D. 310、 微分方程03322=+dx x dy y 的阶是( A ). A. 1 B. 2 C. 3 D. 0 11、 微分方程323y y ='的一个特解是( B )A. 13+=x yB. ()32+=x y C. ()3C x y += D. ()31+=x C y12、 方程322321x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( C )(A ) 2 (B ) 4 (C ) 3 (D ) 0第二节1、微分方程20y y '-=的通解为(B )A .sin 2y c x =B .2x y ce =C .24x y e =D .x y e =2、微分方程0ydx xdy -=不是 ( B )A. 线性方程B. 非齐次线性方程C. 可分离变量方程D. 齐次方程 3、微分方程0=+'y y 的通解为( D )A .x y e =B . x ce y -=C . x e y -=D . x ce y -=4、一阶常微分方程e yx dxdy -=2满足初始条件00==x y 的特解为( D ) A x ce y = B x ce y 2= C 1212+=x y e e D ()1212+=x y e e5、微分方程02=+'y y 的通解为( D )A .x e y 2-=B .x y 2sin =C .x ce y 2=D .x ce y 2-= 6、 微分方程 ydy x xdx y ln ln =满足11==x y 的特解是( C )A. 0ln ln 22=+y xB. 1ln ln 22=+y xC. y x 22ln ln =D. 1ln ln 22+=y x第五节1、 微分方程2(1)0y dx x dy --=是( C )微分方程.A .一阶线性齐次B .一阶线性非齐次C .可分离变量D .二阶线性齐次第六节1、已知x y cos =,xe y =,x y sin =是方程()()()xf y x Q dx dyx P dxy d =++22的三个解,则通解为 ( C )A x c e c x c y x sin cos 321++=B ()()x x e x c e x c y -+-=sin cos 21C ()x c x c e c c y x sin cos 12121--++=D ()x c x c e c c y x sin cos 12121++++=第七节1、微分方程02=+'-''y y y 的通解为( D )A .12x x y c e c e -=+;B .12()x y c c x e -=+;C .12cos sin y c x c x =+;D .12()x y c c x e =+ 2、下面哪个不是微分方程''5'60y y y +-=的解( D ) (A )65x x e e -+ (B )x e (C )6x e - (D )6x x e e -+3、 已知2,sin ,1x y x y y ===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D ) A .221sin 1x C x C y ++=B .2321sin xC x C C y ++=C .21221sin C C x C x C y --+=D .212211sin C C x C x C y --++= 4、已知x y x y y cos ,sin ,1===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D )A .x C x C C y cos sin 321++=B .xC x C C y cos sin 321++= C .2121sin cos C C x C C y --+=D .21211cos sin C C x C x C y --++= 5、微分方程0y y ''+=的通解为( C )(A) 12x x y c e c e -=+; (B) 12()x y c c x e -=+; (C) 12cos sin y c x c x =+; (D) 12()x y c c x e =+6、已知1=y ,x y =,2x y =是某二阶非齐次线性微分方程的三个解,则方程的通解为( C ) A 2321x C x C C ++ B 21221C C x C x C --+ C )1(21221C C x C x C --++ D ()()2122111C C x C x C ++-+-7、已知x y y x 4='+''的一个特解为2x ,对应齐次方程0='+''y y x 有一个特解为x ln ,则原方程的通解为 ( A )A 、221ln x c x c ++ B 、221ln x x c x c ++ C 、221ln x e c x c x ++ D 、221ln x e c x c x ++- 8、微分方程04=+''y y 的通解为( A )A .x c x c y 2sin 2cos 21-= ;B .x e x c c y 221)(-+=C x x e c e c y 2221-+=;D .x e x c c y 221)(+=9、 分方程2220d xx dtω+=的通解是( A );A .12cos sin C t C t ωω+B .cos t ωC .sin t ωD .cos sin t t ωω+第八节1、微分方程x e y dxyd =-22的一个特解应具有的形式为 DA ()x e b ax +B ()x e bx ax +2C x aeD x axe2、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是( C )(A )3,2,1αβγ===- (B )3,2,1αβγ==-=- (C )3,2,1αβγ=-==- (D )3,2,1αβγ=-=-= 三、计算第二节1、求微分方程0ln '=-y y xy 的通解 解:分离变量xdxy y dy =ln ...........2分 两边积分可得 1ln ln ln C x y += ..........4分 整理可得Cx e y = .........6分 5、计算一阶微分方程ln 0x x y y '⋅-=的通解。
第七章 常微分方程一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式:()()()()0≠=y Q y Q x P dxdy通解()()⎰⎰+=C dx x P y Q dy(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加)(2)方程形式:()()()()02211=+dy y N x M dx y N x M通解()()()()C dy y N y N dx x M x M =+⎰⎰1221()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程⎪⎭⎫⎝⎛=x y f dx dy 令u x y =, 则()u f dxdux u dx dy =+= ()c x c xdxu u f du +=+=-⎰⎰||ln二.一阶线性方程及其推广1.一阶线性齐次方程()0=+y x P dxdy 它也是变量可分离方程,通解()⎰-=dxx P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程()()x Q y x P dxdy=+ 用常数变易法可求出通解公式 令()()⎰-=dxx P ex C y 代入方程求出()x C 则得()()()[]⎰+=⎰⎰-C dx e x Q e y dx x P dx x P3.伯努利方程()()()1,0≠=+ααy x Q y x P dxdy令α-=1y z 把原方程化为()()()()x Q z x P dxdz αα-=-+11 再按照一阶线性非齐次方程求解。
4.方程:()()x y P y Q dx dy -=1可化为()()y Q x y P dydx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。
四.线性微分方程解的性质与结构我们讨论二阶线性微分方程解的性质与结构,其结论很容易地推广到更高阶的线性微分方程。
二阶齐次线性方程 ()()0=+'+''y x q y x p y (1) 二阶非齐次线性方程 ()()()x f y x q y x p y =+'+'' (2) 1.若()x y 1,()x y 2为二阶齐次线性方程的两个特解,则它们的线性组合()()x y C x y C 2211+(1C ,2C 为任意常数)仍为同方程的解,特别地,当()()x y x y 21λ≠(λ为常数),也即()x y 1与()x y 2线性无关时,则方程的通解为()()x y C x y C y 2211+=2.若()x y 1,()x y 2为二阶非齐次线性方程的两个特解,则()()x y x y 21-为对应的二阶齐次线性方程的一个特解。
第七章 微分方程—练习题参考答案一、填空题1. 三阶;2. 023=+'-''y y y ;3. 1-='xy y ; 4. x e 22ln ⋅ ; 5. x x e c e c 221-+;6. 错误 、错误、错误、正确.二、选择题1-5:ACDCB; 6-8: CCB;三、计算与应用题1、(1)解:变量分离得,1122-=+x xdx y ydy , 两边积分得,c x y ln 21)1ln(21)1ln(2122+-=+, 从而方程通解为 )1(122-=+x c y .(2)解:整理得,xy x y dx dy ln =,可见该方程是齐次方程, 令u x y =,即xu y =,则dx du x u dx dy +=,代入方程得,u u dxdu x u ln =+, 变量分离得,xdx u u du =-)1(ln ,积分得,c x u ln ln )1ln(ln +=-, 所以原方程的通解为cx x y =-1ln,或写为1+=cx xe y . (3)解:整理得,x e y x y =+'1,可见该方程是一阶线性方程,利用公式得通解为 )(1)(1)(11c e xe x c dx xe x c dx e e e y x x x dx x x dx x +-=+=+⎰⎰=⎰⎰-. (4)解:整理得,x y x x dx dy 1ln 1=+,这是一阶线性方程,利用公式得通解为 )2ln (ln 1)ln (ln 1)1(2ln 1ln 1c x x c dx x x x c dx e x e y dx x x dx x x +=+=+⎰⎰=⎰⎰-, 代入初始条件1==e x y 得21=c ,从而所求特解为)ln 1(ln 21x x y +=. (5)解:将方程两边逐次积分得,12arctan 11c x dx xy +=+='⎰, 2121)1ln(21arctan )(arctan c x c x x x dx c x y +++-=+=⎰,即原方程通解为212)1ln(21arctan c x c x x x y +++-=. (6)解:方程中不显含未知函数y ,所以可令)(x p y =',则)(x p y '='',代入方程得, x p p =-',这是一阶线性方程,其通解为x x x x x x dx dx e c x c e xe e c dx e x e c dx e x e p 111111)()()(+--=+--=+=+⎰⎰=----⎰⎰, 从而x e c x y 11+--=',两边积分得原方程通解为 21221c e c x x y x ++--=.2、解:将⎰+=x du u f x x f 0)()(两边对x 求导并整理得,1)()(=-'x f x f ,这是一阶线性微分方程,所以 )()()()(1c e e c dx e e c dx e e x f x x x x dx dx +-=+=+⎰⎰=---⎰⎰,又由⎰+=xdu u f x x f 0)()(可知0)0(=f ,从而1=c ,所以所求1)(-=x e x f .3、证明:因为)(),(),(321x y x y x y 都是方程)()()(x f y x Q y x P y =+'+''的特解,所以21y y -和32y y -都是方程)()()(x f y x Q y x P y =+'+''对应齐次方程的解, 又因3221y y y y --不恒等于常数,所以21y y -和32y y -线性无关, 从而对应齐次方程的通解为)()(322211y y c y y c Y -+-=,所以原方程的通解为1y Y y +=1322211)()(y y y c y y c +-+-=,即3221211)()1(y c y c c y c y --++=.。
微分方程习题和答案(总42页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--微分方程习题§1 基本概念1. 验证下列各题所给出的隐函数是微分方程的解.(1)y x y y x C y xy x -='-=+-2)2(,22(2)⎰'=''=+y 0 222t -)(,1e y y y x dt2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数)(一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.)(1)1)(22=++y C x ;(2)x C x C y 2cos 2sin 21+=.3.写出下列条件确定的曲线所满足的微分方程。
(1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。
(2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。
(3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。
§2可分离变量与齐次方程1.求下列微分方程的通解(1)2211y y x -='-;(2)0tan sec tan sec 22=⋅+⋅xdy y ydx x ;(3)23xy xy dxdy =-; (4)0)22()22(=++-++dy dx y y x x y x .2.求下列微分方程的特解(1)0 ,02=='=-x y x y e y ;(2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解(1))1(ln +='xy y y x ; (2)03)(233=-+dy xy dx y x .4. 求下列微分方程的特解(1)1 ,022=-==x y y x xy dx dy ;(2)1 ,02)3(022==+-=x y xydx dy x y .5. 用适当的变换替换化简方程,并求解下列方程(1)2)(y x y +=';(2))ln (ln y x y y y x +=+'(3)11+-='yx y (4)0)1()1(22=++++dy y x xy x dx xy y6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a .7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系.8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了染色,30分钟后剩下,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐§3 一阶线性方程与贝努利方程1.求下列微分方程的通解(1)2x xy y =-'; (2)0cos 2)1(2=-+'-x xy y x ;(3)0)ln (ln =-+dy y x ydx y ;(4))(ln 2x y y y -='; (5)1sin 4-=-x e dxdy y 2.求下列微分方程的特解 (1)0 ,sec tan 0==-'=x yx x y y ; (2)1|,sin 0==+'=x y xx x y y 3.一 曲线过原点,在) ,(y x 处切线斜率为y x +2,求该曲线方程.4.设可导函数)(x ϕ满足方程⎰+=+ x0 1sin )(2cos )(x tdt t x x ϕϕ,求)(x ϕ. 5.设有一个由电阻Ω=10R ,电感H L 2=,电流电压tV E 5sin 20=串联组成之电路,合上开关,求电路中电流i 和时间t 之关系.6.求下列贝努利方程的通解(1) 62y x xy y =+' (2)x y x y y tan cos 4+='(3)0ln 2=-+y x x dydx y (4)2121xy x xy y +-='§4 可降阶的高阶方程1.求下列方程通解。
第7章 常微分方程一、单项选择题1.微分方程3245(''')3('')(')0y y y x -++=阶数是( b )A.4阶 B .3阶 C .2阶 D .1阶2.微分方程222y x dxdy x +=是( b ) A.一阶可分离变量方程 B.一阶齐次方程 C.一阶非齐次线性方程 D.一阶齐次线性方程3.下列方程中,是一阶线性微分方程的是( c )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.方程x y xy =-'满足初始条件11==x y 的特解是( a )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分方程y y x 2='的通解为( c )A .2x y =B . c x y +=2C . 2cx y =D .0=y6.微分方程y y x ='满足1)1(=y 的特解为 ( a )A.x y =B. c x y +=C.cx y =D.0=y8.微分方程05))(sin(2''=+-+x y y xy y 是( a )A 一阶微分方程B 二阶微分方程C 可分离变量的微分方程D 一阶线性微分方程9.微分方程2y xy '=的通解为( c )A .2x y e C =+B . x y Ce =C . 2x y Ce =D .22x y Ce =二、填空题1.微分方程34()"30y y y y '++=的阶数为__2____;2.微分方程0=+y dxdy 的通解是x y ce -=; 3.微分方程02=+'xy y 的通解是2x y ce -=;4.微分方程x y y e +'=的通解是()10,0x ye C e C ++=<; 5. 一阶线性微分方程()()y P x y Q x '+=的通解为()()()()P x dx P x dx P x dx y Ce e Q x e dx --⎰⎰⎰=+⎰; 6. n 阶微分方程的通解含有__n __个独立的任意常数。
习题7.1—7.3一、判断1.×;2.×;3. √;4.×;5.√;6.×;7.×。
二、选择二、选择题1.D ; 2.A ; 3.A ;4.B ;;5.A ; 6.B ;7.C ; 8.D 。
三、填空1.在横线上填上方程的名称①可分离变量微分方程;②可分离变量微分方程;③齐次方程;④一阶线性微分方程;⑤二阶常系数齐次线性微分方程。
2.3; 3.3; 4.2;5.2Cx y =; 6.C y x =+22;7.22x Cxe y =;四、解答题1.验证函数x x e e C y 23--+⋅=(C 为任意常数)是方程y e dx dy x 32-=-的通解,并求出满足初始条件0|=x y 的特解。
解:略2.求微分方程()()⎩⎨⎧==-++=1|011022x y dy x y dx y x 的通解和特解。
解:C x y =-+2211,1222=+y x 。
3.求微分方程x y x y dx dy tan +=的通解。
解:Cx xy =sin 。
4.求微分方程⎪⎩⎪⎨⎧=+='=2|1x y x y y x y 的特解。
解:()2ln 222+=x x y 。
5.求微分方程x x y dx dy sin =+的通解。
解:()C x x x x y +-=cos sin 1。
习题7.41.求微分方程()()⎪⎩⎪⎨⎧==+--'+=1|0121027x y x y y x 的特解。
解:()()223131132+⎥⎦⎤⎢⎣⎡++=x x y 。
2. 求下列微分方程的通解.解:(1)直接用常数变量法.对应的齐次线性方程为 21dy y dx x =+,通解 2(1)y C x =+ 令非齐次线性方程522(1)1dy y x dx x -=++时,通解为 2()(1)y C x x =+ 代入方程得12()(1)C x x '=+,322()(1)3C x x C =++故所述方程的通解为 3222(1)(1)3y x C x ⎡⎤=+++⎢⎥⎣⎦=7222(1)(1)3x C x +++ (2)此题不是一阶线性方程,但把x 看作未知函数,y 看作自变量,所得微分方程4dx x y dy y+=即31dx x y dy y -= 是一阶线性方程 1()P y y=-,3()Q y y = 113413dy dy y y x e y e dy C y Cy -⎡⎤⎰⎰⎢⎥=+=+⎢⎥⎣⎦⎰ (3)这是一阶线性微分方程,原方程变形为2ln dy y x dx x+=,两边同乘22dx x e x ⎰=得 22()ln d x y x x dx= 积分得223311ln ln 39x y C x xdx C x x x =+=+-⎰ 由1(1)9y =-得0C =⇒11ln 39y x x x =- 3. 求下列微分方程的通解(1)()2ln dy y x y dx x+= (2)22x y xy y '+= 解 (1)用2y 除方程的两边,得211ln dy y y x dx x --+= ()111ln d y y x dx x ---+=令1z y -=,则得一阶线性方程1ln dz z x dx x-=- ()11ln dx dx z e x e dx C -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰ ()21ln 2x x C ⎡⎤=-+⎢⎥⎣⎦用1z y -=代入,得()21ln 12yx x C ⎡⎤-+=⎢⎥⎣⎦ (2)所给方程既属于齐次方程又属于伯努利方程故两种方法以便对照解一 222d y y x y y y d x x x x -⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭ 令y u x =,则得2du u x u u dx +=-22du x u u dx =- 112ln 2du dx C x C u u x ==+-⎰⎰()11ln 2ln ln 2u u x C --=+⎡⎤⎣⎦22u Cx u -=,故22y x Cx y -=()22212 =1x y Cx x y Cx-=-, 解二 221x d y x y d xy +=,令1z y =,得21dz x xz dx -+= 211dz z dx x x -=-,通解 112z C x x=+ 22122121x x y C x Cx ==+- 习题 7.5略习题 7.6略习题 7.7略习题 7.8略自测题答案一、判断1.×;2.√;二、填空1.()x C x C e y x sin cos 212+=; 2.()()111221+-+-=x C x C y ;3.()1sin cos 21++=x C x C e y x三、选择1.B ;2.C ;3.A ;4.A ;5.D ;6.D .四、解答1.设x e y =是微分方程()x y x p y x =+'的一个解,求此微分方程满足条件0|2ln ==x y 的特解。
第七章 微分方程第37次 微分方程的概念 分离变量法一、指出下列微分方程的阶数,并验证括号中的函数是否为微分方程的解,若是解,说明该解是通解还是特解:1.330()xy y y Cx -'+==解 一阶 43y Cx -'=-433(3)30xy y x Cx Cx --'+=⋅-+=, 所以3y Cx -=为微分方程的解又3y Cx -=中只含有一个任意常数,故其为通解.2.21d d 0()2kx x y y kx -==解 一阶 d d y kx x =d d d d 0kx x y kx x kx x -=-=, 所以212y kx =为微分方程的解 又212y kx =中不含有任意常数,故其为特解. 3.0(sin )y y y C x ''+==解 二阶cos y C x '=,sin y C x ''=-sin sin 0y y C x C x ''+=-+=, 所以sin y C x =为微分方程的解又sin y C x =中只含有一个任意常数,故其既不是通解,也不是特解.4.220()xy y y y x e '''-+==解 二阶 22x x y xe x e '=+,222(2)22224x x x x x x x x x y xe x e e xe xe x e e xe x e '''=+=+++=++ 2222242(2)20x x x x x x x y y y e xe x e xe x e x e e '''-+=++-++=≠,所以2xy x e =不是微分方程的解二、求下列微分方程的通解:1.22()d (1)d 0xy x x x y +++=解 22d d 11y x x y x -=++⎰⎰21arctan ln(1)2y x C =-++ 2.()d ()d 0x y x x y y e e x e e y ++-++=解 e e d d e 1e 1y xy x y x =--+⎰⎰ ln e 1ln e 1ln y x C -=-++即 (e 1)(e 1)y x C -+=3.d 2d y xy x x+= 解 d d 21y x x y =--⎰⎰211ln 2122y x C -=-+22e 121e 2x x C y C y --+⇒-=⇒= 4.sin ln y x y y '=解 d csc d ln y x x y y=⎰⎰ ln ln ln csc cot ln y x x C =-+ln (csc cot )y C x x =-三、求下列微分方程满足初始条件的特解:1.52,(0)0x y y ey -'== 解 25e d e d y x y x =⎰⎰2511e e 25y x C =+ 又(0)0y =,310C = 微分方程的特解:25113e e 2510y x =+2.2d (1)tan ,(0)2d y y x y x=-= 解2d tan d 1y x x y =-⎰⎰2111ln ln sec ln sec 211y y x C C x y y++=+⇒=-- 又(0)2y =,3C =- 微分方程的特解:213sec 1y x y+=-- 四、镭的衰变有如下的规律:镭的衰变速度与它的现存量R 成正比.由经验材料得知,经过1600年后,只剩原始量0R 的一半.试求镭的现存量R 与时间t 的关系.解d d R R tλ=- d d R t R λ=-⎰⎰ ln ln e t R t C R C λλ-=-+⇒=又0(0)R R =,0C R =;所以0e t R R λ-= 又0(1600)2R R =, 160000e 2R R λ-=,所以ln 21600λ=;故ln 216000e t R R -=第38次 变量代换法 一阶线性微分方程一、求下列微分方程的通解或特解:1.22()d d 0x y x xy y +-=解 d d y x y x y x=+ (1) 令,y u x=则,y u xu ''=+ 代入(1)得:1u xu u u'+=+ 分离变量 1d d u u x x= 两边积分 1d d u u x x =⎰⎰得 2ln ln ln 2u x C Cx =+= 22222y u x Cx eCx e =⇒= 2.,(1)0y x y y e y x '=+= 解 令,y u x= 则,y u xu ''=+ 代入原方程得:u u xu e u '+=+分离变量 1d d u e u x x-=两边积分 1d d u e u x x -=⎰⎰ 得 ln u e x C --=+ln yxe x C --=+ 又(1)0y =,得1C =- 原方程特解:ln 1y x ex --=- 3.d 11d y x x y=+- 解 令,u x y =-d d 111d d y u x x u=-=+ d 1d d d u u u x x u-=⇒=- d d u u x =-⎰⎰ 22()22u x y x C x C -=-+⇒=-+ 4.21tan (2)2y x y '=+ 解 令2,u x y =+ 2d 1d 11tan d 2d 22y u u x x =-= 22d 1tan sec d u u u x=+= 2cos d d u u x =⎰⎰ 积分得11sin 224u u x C +=+ 原方通特解:1111(2)sin 2(2)sin 2(2)2424x y x y x C y x x y C +++=+⇒-++=二、求下列微分方程的通解或特解:1.d d x y y e x-+= 解 ()1,()x P x Q x e -==对应齐次微分方程的通解为d x x y C e C e --⎰==令原方程的通解为()x y C x e -=,将,y y '代入原方程整理得 ()()1x x C x e e C x --''=⇒= ()C x x C =+故原方程的通解为()x y x C e -=+2.sin cos ,(0)2x y y x e y -'+==解 sin ()cos ,()x P x x Q x e -==对应齐次微分方程的通解为cos d sin x x x y C e C e --⎰==令原方程的通解为sin ()x y C x e-=,将,y y '代入原方程整理得 sin sin ()()1x x C x e e C x --''=⇒= ()C x x C =+故原方程的通解为sin ()x y x C e-=+ 又(0)2y =,得2C =故原方程的特解为sin (2)x y x e -=+3.23d d 1y x x y x x++=-+ 解 22d d d 1d 1y y y y x x x x x x=--⇒+=-++ 21(),()1P x Q x x x==-+ 对应齐次微分方程的通解为1d ln(1)11x x x C y C e C e x --++⎰===+ 令原方程的通解为1()1y C x x=⋅+,将,y y '代入原方程整理得 221()()(1)1C x x C x x x x ''=-⇒=-++ 3411()34C x x x C =--+故原方程的通解为34111341y x x C x⎛⎫=--+ ⎪+⎝⎭ 4.226y y x y '=- 解 d 3d 3d 2d 2x y x y x x y y y y ⎛⎫=-⇒+-=- ⎪⎝⎭ 3(),()2y P y Q y y =-=- 对应齐次微分方程的通解为33d ln 3y y y x C eC e Cy --⎰=== 令原方程的通解为3()x C y y =,将,x x '代入原方程整理得321()()22y C y y C y y ''=-⇒=- 1()2C y C y=+ 故原方程的通解为312y C y y ⎛⎫=+⎪⎝⎭三、已知连续函数()f x 满足条件320()()d 3x x t f x f t e =+⎰,求()f x . 解 2()3()2x f x f x e '=+且(0)1f = 2d (3)2d x y y e x+-= 2()3,()2x P x Q x e =-=对应齐次微分方程的通解为3d 3x x y C e C e --⎰==令原方程的通解为3()x y C x e =,将,y y '代入原方程整理得 32()2()2x x x C x e e C x e -''=⇒= ()2x C x e C -=-+故原方程的通解为3(2)x x y e C e -=-+又(0)1f =,得3C =,故3()(23)x x f x e e -=-+第39次 可降阶的高阶微分方程一、求下列微分方程的通解或特解:1.sin 1y x x '''=++解 ()211sin 1d cos 2y x x x x x x C ''=++=-++⎰ 321211sin 62y x x x C x C '=-+++ 432123111cos 2462y x x x C x C x C =+++++ 2.y y x '''=+解 设()y p x '=,则,y p '''= 代入方程得p p x '=+ 变形得(1)p p x '+-= (1)对应齐次方程的通解为d x x p Ce C e --⎰==令原方程的通解为()xp C x e =,将,p p '代入(1)整理得 ()()x x C x e x C x xe -''=⇒= 1()d d d x x x x x x C x xe x x e e x xe e xe C ------==-=-=--+⎰⎰⎰故(1)的通解为11()1x x x x p e xe C e x C e --=--+=--+即 11x y x C e '=--+ 故21212x y x x C e C =--++ 3.20yy y '''+=解 设()y p y '=,则d ,d p y p y''= 代入方程得 2d 0,d p y p p y += 即d d p y p y=-⎰⎰ 两端积分得1ln ln ln ,p y C =-+ 1py C =1y y C '= 即 1d d y y C x =⎰⎰ 故所求通解为2122y C x C =+ 4.21y y '''=+解 设()y p x '=,则21,p p '=+ 即21d d 1p x p =+⎰⎰ 两端积分得1arctan ,p x C =+ 1tan()p x C =+1tan()y x C '=+ 112tan()d ln cos()y x C x x C C =+=-++⎰ 故所求通解为12ln cos()y x C C =-++5.20020,0,1x x y y y y ==''''-===-解 设()y p x '=,则220,p p '-= 即21d 2d p x p =⎰⎰ 两端积分得112,x C p-=+ 112,x C y -=+'又 01x y ='=-,11C ∴= 121x y -=+',即1d d 21y x x =-+⎰⎰ 故所求通解为21ln 212y x C =-++ 又00x y ==,故20C = 故所求特通解为1ln 212y x =-+。
第七章 微分方程 。
§ 1 微分方程的基本概念 1、B .2、A .3 (改), 01x y ='=,则C 1,C 2的值为A 。
4.C 。
5. C 1=1,C 2=2k π+2π6 .解:设在时刻t ,物体B 位于(x,y)处,则x)vt 1(y dx dy +-=,整理可得:dx dtv dx y d x 22-=, ○1而dtdxdx dy 1dt ds v 22⎪⎭⎫ ⎝⎛+==,有⎪⎭⎫⎝⎛+=dx dy 1v 21dx dt ○2, 其中s 表示B 的运动轨迹的曲线的弧长。
将○2代入○1得:0dx dy 121dx y d x 222=⎪⎭⎫⎝⎛++, 初始条件:y(-1)=0, y '(-1)=1 §2 可分离变量的微分方程1.B .2.C .3.B .4、D .5、解:分离变量为tanydy=tanxdx,即-ln(cosy)=-ln(cosx)-lnC,cosy=ccosx ,代入初始条件:y|x=0=4π得:22C =;特解为:2cosy=cosx6、解:由02y x cos 2y x cos dx dy =+--+得:2x sin 2y sin2dy -=, 积分得:ln csc cot 2cos 222y y x C-=+,代入初始条件:y(0)=π,得C= -2710,022222222/=⇒=+=⇒-=⇒=++--+y x xy xy y x ec c e edx e dy yeeyy 8、解:设在时间t=0时,子弹打进墙壁v(t)表示子弹在t 时刻速度。
子弹在墙壁中的运动所受阻力kv 2(k为常数)由牛顿第二定律得:⇒-=2kv dt dv C kt 1v +=又v(0)=v 0=400.解得C=4001.1kt 400400v +=, 设子弹穿透墙壁所用时间为T ,且墙壁厚h=20cm,知2.0dt )t (v T=⎰,即[]2.0)1kT 400ln(k1)1kt 400ln(k 11kt 400dt 400dt )t (v T0TT 0=+=+=+=⎰⎰e 0.2k =400kT+1 (*)由题设知:子弹在时刻T 时,飞出墙壁,且速度为100m/s ,即1001kT 400400)T (v =+=,得400kT=3,代入(*)得:k=10ln2,即2ln 4003T =§3 齐次方程1A ,2B ,3C ,4、解:u xy,xy x y y 2=-⎪⎭⎫ ⎝⎛='令, 则x dx)2u (u du =-解得:2x 1x 2y +=5、解:xy u ,x xy 2y y xy 2x dx dy 2222=-+-+=令,可得1u 2u 1u u u dx du x 223------=,解得:lnx+lnC=ln(u+1)-ln(1+u 2),即x(1+u 2)=C(1+u),代入初始条件y|x=1=1得特解x 2+y 2=x+y6、求初值问题()⎪⎩⎪⎨⎧=>=-++=0|)0(0122x y x xdy dx y x y 的解 (改初始条件y|x=1=0)解:原方程化为2x y 1x y dx dy ⎪⎭⎫⎝⎛++=,令y=xu 这里可得:x dx u1du2=+ ()222222,1,1,ln ln 1ln Cx y x y Cx x y x y Cx u u C x u u =++=⎪⎭⎫ ⎝⎛++=+++=++将y|x=1=0代入的特解为222x y x y =++或21x 21y 2-=§4、 一阶线性微分方程 1、B 。
2、B 。
3、B 。
4、解:23231x y 23dx dy xy =+-, 令32yz =得 2x z 23dx dz 23x=+ ,123dz z xdx x +=1123dx dx x xz e C x e-⎛⎫⎰⎰=+ ⎪⎝⎭⎰,,23312133y x C x ⎛⎫=⋅+ ⎪⎝⎭,,即229C x x=+5.xdy-ydx=y 2e ydy 。
解:整理得yye x y 1dy dx -=-,,C ye dy e ye C ex y dy y 1y dyy1+-=⎪⎪⎭⎫ ⎝⎛⎰-+⎰=⎰--- 6、⎰-=xat axdt e )t (f e)x (y7、解:设z=siny ,则方程化为z '-z=z 2 cosx ,是伯努利方程。
令u=z -1得 u '+u=-cosx,,()11(cos )cos sin 2dxdx x u e C x e dx x x C e --⎛⎫⎰⎰=+-=-++ ⎪⎝⎭⎰从而得2cos sin sin x x x Ce y-++=8、已知连续函数f(x)满足方程x 2x30e dt 3t f )x (f +⎪⎭⎫⎝⎛=⎰, 求f(x)解:原方程两边对x 求导数f '(x)=3f(x)+2e 2x ,,f '(x)-3f(x)=2e 2x解得:f(x)=Ce 3x -2e 2x又f(0)=1,所以C=3,,f(x)=3e 3x -2e 2x§5、 可降阶的高阶微分方程 1、B 。
2、A 。
3、 (1) 求y "=y '+x 的通解。
解:令y '=p 得p '-p=xp=-x-1+C 1e x 22x1C x 2xe C y +--=。
(2) 求xy "+y '=0的通解。
解:令y '=p ,则xp '+p=0,,x dxp dp -= 得 x C p 1= y=C 1lnx+C 24、(1) 0)(2='+''y y y ,令y '=p ,dydp py ='', 方程化为02=+p dy dp yp ,得y dy p dp -=212121C x C y y C p +=⇒= , (2) y 3y "+y '=0解:令y '=p ,dydpp y ='',方程化为⇒=+=⇒-=⇒=+dx dy c yp dy y dp p dy dp p y 12332110 5、求y 2y "+1=0的积分曲线方程,使其通过点⎪⎭⎫ ⎝⎛21,0且在该点处切线的斜率为2解:y 2y "+1=0 ,y|x=0=21 , y '|x=0=2,令y '=p ,dydp p y ='',方程化为01dy dp p y 2=+解得:12C y 12p +=,由y|x=0=21 , y '|x=0=2得C 1=0,y2dx dy =解得223232C x y += ,2321321⎪⎭⎫ ⎝⎛+=x y6、设在x>-1时所定义的可微函数y(x)满足0dt )t (y x 11)x (y )x (y x=+-+'⎰, 及 y(0)=1,求y '(x)解:原方程化为(x+1)(y '(x)+y(x))=⎰x0dt )t (y令y '(x)=p 则有0p )2x (dx dp)1x (=+++解得:ln|p|=-(x+ln|x+1|)+C由y '(0)=-y(0)=-1,p|x=0=-1得C=0。
xe 1x 1)x (y -+='§6 高阶线性微分方程 1、 略。
2、已知二阶线性非齐次方程y "+p(x)y '+q(x)y=f(x)的特解为y 1=x,y 2=e x,y 3=e 2x,试求方程满足初始条件y(0)=1,y '(0)=3的特解。
解:由线性微分方程解的理论,非齐次微分方程y "+p(x)y '+q(x)y=f(x)任两解之差是对应齐次方程y "+p(x)y '+q(x)y=0的解。
得齐次方程的两个解:e x -x,e 2x-x ,且线性无关。
于是齐次方程的通解Y=C 1(e x -x)+C 2(e 2x -x). 非齐次方程的通解是y=x+C 1(e x -x)+C 2(e 2x -x). 由y(0)=1,y '(0)=3代入得:C 1= -1, C 2=2,所以特解为y=2e 2x-e x§7 常系数齐次线性微分方程1、 B 。
2、B 。
3、A 。
4、 (1) y "-4y '+13y=0。
解:r 2-4r+13=0 ⇒ r 1,2=2±3iy=e 2x (C 1cos3x+C 2sin3x)。
(2) y "+25y=0 解:r 2+25=0 ⇒ r=±5i y=C 1cos5x+C 2sin5x 。
(3) 0s dtds2dt s d 22=++。
解:r 2+2r+1=0 ⇒ r 1,2=-1S=(C 1+C 2t)e -t 。
(4) y (4)-2y '"+5y "=0。
解:r 4-2r 3+5r 2=0 ⇒ r 1,2=0,r 3,4=1±2iy=C 1+C 2x+e x (C 3cos2x+C 4sin2x)5、解:r 2+(λ1+λ2)r+λ1λ2=0 ⇒ r 1=-λ1 r 2=-λ2,。
通解为x2x 121e C e C y λλ-+= 由y(0)=0,y '(0)=1得:x 21x 212`1e 1e 1y λ-λ-λ-λ+λ-λ=6、 dtdxx dt xd 3422-= t te C e C x 421-+=)4(514t te e x -+=§ 8,常系数非齐次线性微分方程1.B 。
2.D 。
3、C 。
4.解:y*=21-xe -x cosx ,原方程通解为y=Y+y*=e-x(C 1cosx+C 2sinx)21-xe -x cosx5. 由初始条件得特解x cos 81x 3cos 241y +=6. 代入初始条件得:C 1=1,C 2=-1,所求特解为:y=e x(x 2-x+1)-e -x,7. (xxx xe e C e C y 412221++=-) 8、证明:有λ2+1=0 ⇒ λ=±1 .故齐次方程通解为Y=C 1cosx+C 2sinx 记⎰⎰⎰-=-=xxxtdtsin )t (f x cos tdt cos )t (f x sin dt )t x sin()t (f *y则⎰⎰-='x0x0tdt sin )t (f x sin tdt cos )t (f x cos *y)x (f tdt sin )t (f x cos tdt cos )t (f x sin *y xx 0++-=''⎰⎰所以y*"+y*=f(x),即y*是其一个特解。