高等数学第七章微分方程试题及复习资料
- 格式:doc
- 大小:1.26 MB
- 文档页数:11
第七章微分方程练习题一、选择题1.下列是微分方程的是 ( ) .A. dx x dy )14(-=;B.12+=x y ;C.0232=+-y y ;D.0sin =⎰xdx .2.微分方程0'3"22=+-xy yy xy 的阶数是 ( ) .A. 1;B.2;C.3;D.4.3.方程dt t dw w 2542=-是 ( )阶微分方程.A. 1;B.2;C.3;D.4.4.微分方程02=+'-''y y x y x 的通解中任意常数的个数是 ( ) .A. 1;B.2;C.3;D.4.5. 微分方程yx dx dy -=满足初值条件过点(0,1)的解是( ) . A. 122=+y x B. 12=+y x C. 12=+y x D. 1=+y x6. 下列微分方程是可分离变量方程的是( ).A. 0)1()3(=+++-dy y x dx y xB. 023=+xdy ydxC. 0213=++--dy y x dx y x )()(D. 0)2()34(=++-dy y x dx y x7.微分方程xy y ='的一个解是( ) . A.3221+=x e y ; B.2221+=x e y ; C.1221+=x e y ; D.221x e y =.8.下列是齐次的线性微分方程的是( ). A.2x y dx dy +=; B.x y dxdy sin =; C.1cos '=+x y y ; D.1cos '=-y y .9.下列是齐次方程的是( ). A.y x dx dy +=10; B.x e y dxdy -=+; C.x y y x dx dy +=; D.x x x y dx dy sin =+.10.微分方程23x y ='的通解是( );A.33x y =B. C x y +=33C. 3x y =D. C x y +=3 二、填空题1.微分方程0222=+x k dtx d 通解中任意常数的个数是 ; 2.表示未知函数、未知函数的_______与自变量之间的关系的方程,叫做微分方程;3.满足初值条件50==x y的函数C y x =-22中的C 等于 ;4. 微分方程02'12=++xy y x )(满足初值条件10==x y 的特解是_______; 5.微分方程12+='x y 的通解是 ;三、判断题1.04=-''-'''y y y 是三阶微分方程.( )2.)(])()(2[022x xy dt t y t t y x =++⎰是齐次方程.( ) 3.0522=++x y y 不是微分方程.( )4.微分方程0)2()(22=---dy xy x dx y xy 可分离变量.( )5一阶微分方程1cos '=+x y y 是齐次的.( ) 四、计算题1.求微分方程0tan sec tan sec 22=+xdy y ydx x 的通解.2.求微分方程dx dy xy dx dy xy =+22的通解. 3.求微分方程23=+y dxdy 的通解. 五、证明题1.函数kt kt x sin C cos C 21+=是微分方程0222=+x k dxy d 的解.六、综合题1.一个半球体形状的雪堆,其体积融化率与半球面面积A 成正比,比例系数k>0.假设在融化过程中雪堆始终保持半球体形状,已知半径为0r 的雪堆在开始融化的3小时内,融化了其体积的87,问雪堆全部融化需要多少时间? 2.设有联结点O (0,0)和A (1,1)的一段向上凸的曲线弧OA ︵,对于OA ︵上任一点P (x,y ),曲线弧OP ︵与直线段OP 所围图形的面积为2x ,求曲线弧OA ︵的方程。
微分方程习题§1 基本概念1. 验证下列各题所给出的隐函数是微分方程的解.(1)y x y y x C y xy x -='-=+-2)2(,22(2)⎰'=''=+y 0 222t -)(,1e y y y x dt2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数)(一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.)(1)1)(22=++y C x ;(2)x C x C y 2cos 2sin 21+=.3.写出下列条件确定的曲线所满足的微分方程。
(1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。
(2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。
(3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。
§2可分离变量与齐次方程1.求下列微分方程的通解(1)2211y y x -='-;(2)0tan sec tan sec 22=⋅+⋅xdy y ydx x ;(3)23xy xy dxdy =-;(4)0)22()22(=++-++dy dx y y x x y x .2.求下列微分方程的特解(1)0 ,02=='=-x y x y e y ;(2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解(1))1(ln +='xy y y x ; (2)03)(233=-+dy xy dx y x .4. 求下列微分方程的特解(1)1 ,022=-==x y yx xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y .5. 用适当的变换替换化简方程,并求解下列方程(1)2)(y x y +=';(2))ln (ln y x y y y x +=+'(3)11+-='yx y (4)0)1()1(22=++++dy y x xy x dx xy y6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a .7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系.8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常?9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?§3 一阶线性方程与贝努利方程1.求下列微分方程的通解(1)2x xy y =-'; (2)0cos 2)1(2=-+'-x xy y x ;(3)0)ln (ln =-+dy y x ydx y ;(4))(ln 2x y y y -='; (5)1sin 4-=-x e dxdy y 2.求下列微分方程的特解(1)0 ,sec tan 0==-'=x yx x y y ;(2)1|,sin 0==+'=x y xx x y y 3.一 曲线过原点,在) ,(y x 处切线斜率为y x +2,求该曲线方程.4.设可导函数)(x ϕ满足方程⎰+=+ x0 1sin )(2cos )(x tdt t x x ϕϕ,求)(x ϕ. 5.设有一个由电阻Ω=10R ,电感H L 2=,电流电压tV E 5sin 20=串联组成之电路,合上开关,求电路中电流i 和时间t 之关系.6.求下列贝努利方程的通解(1) 62y x xy y =+' (2)x y x y y tan cos 4+='(3)0ln 2=-+y x x dydx y (4)2121xy x xyy +-='§4 可降阶的高阶方程1.求下列方程通解。
第七章 练习题一、填空: 第一节1、微分方程()1y x 2='+'y 的阶 一 __.2、0)()67(=++-dy y x dx y x 是 一 阶常微分方程. 3、01"=+xy 是 二 阶常微分方程. 4、微分方程2'=y x 的通解为 c x y +=2 。
5、 153'+=+x y xy 是 1 阶常微分方程 6、与积分方程()dx y x f y x x ⎰=0,等价的微分方程初值问题是0|),,(0'===x x y y x f y7、223421xy x y x y x ''''++=+是 3 阶微分方程。
8、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为 29、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是 310、方程()01///=+--y xy y x 的通解中含有 2 个任意常数 11、 微分方程03322=+dx x dy y 的阶是 1 第二节 1、微分方程x dye dx=满足初始条件(0)2y =的解为1x y e =+. 2、微分方程y x e y -=2/的通解是 C e e xy +=221 3、微分方程2dyxy dx=的通解是 2x y Ce = 4、一阶线性微分方程23=+y dx dy的通解为 323x Ce -+5、微分方程0=+'y y 的通解为 x ce y -=6、 微分方程323y y ='的一个特解是 ()32+=x y第三节1、tan dy y ydx x x=+通解为arcsin()y x Cx =.第五节1、微分方程x x y cos "+=的通解为213cos 6C x C x x y ++-= 2、微分方程01=+''y 的通解是( 21221C x C x y ++-= )3、 微分方程044=+'+''y y y 的通解是( x e C x C y 221)(-+= )4、微分方程032=-'+''y y y 的通解是( x x e C e C y 231+=- )5、 方程x x y sin +=''的通解是=y 213sin 61C x C x x ++-第六节1、 一阶线性微分方程x e y dxdy-=+的通解为 ()C x e y x +=- 2、已知1=y 、x y =、2x y =是某二阶非齐次线性微分方程的三个解,则该方程的通解为)1(21221c c x c x c y --++=或1)1()1(221+-+-=x c x c y第七节1、 微分方程230y y y '''--=的通解为x x e C e C y 321+=-.2、 分方程2220d xx dtω+=的通解是 12cos sin C t C t ωω+3、微分方程02=+'-''y y y 的通解为 12()x y c c x e =+第八节1、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是3,2,1αβγ=-==-2、微分方程2563x y y y xe -'''++=的特解可设为=*y *201()x y x b x b e -=+二、选择 第一节1、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为( A )(A ) 2 (B ) 4 (C ) 3 (D ) 02、方程422421x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( B )(A ) 2 (B ) 4 (C ) 3 (D ) 03、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是( C )A 、1B 、2C 、3D 、54、微分方程1243/2///+=++x y x y x xy 的通解中含有任意常数的个数是( C ) A 、1 B 、2 C 、3 D 、55、微分方程34()0'''-=x y yy 的阶数为(B ) (A) 1 (B) 2 (C) 3 (D) 46、下列说法中错误的是( B )(A) 方程022=+''+'''y x y y x 是三阶微分方程; (B) 方程220()x y yy x ''-+=是二阶微分方程;(C) 方程0)3()2(22232=+++dy y x y dx xy x 是全微分方程; (D) 方程()()dyf xg y dx=是可分离变量的微分方程. 7、方程()01///=+--y xy y x 的通解中含有( B )个任意常数A 、1B 、2C 、3D 、4 8、 微分方程3447()5()0y y y x '''+-+=的阶数为( B ) A .1 B . 2 C .3 D .49、微分方程()043='-'+''y y y x y xy 的阶数是( A ).A. 2B. 4C. 5D. 310、 微分方程03322=+dx x dy y 的阶是( A ). A. 1 B. 2 C. 3 D. 0 11、 微分方程323y y ='的一个特解是( B )A. 13+=x yB. ()32+=x y C. ()3C x y += D. ()31+=x C y12、 方程322321x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( C )(A ) 2 (B ) 4 (C ) 3 (D ) 0第二节1、微分方程20y y '-=的通解为(B )A .sin 2y c x =B .2x y ce =C .24x y e =D .x y e =2、微分方程0ydx xdy -=不是 ( B )A. 线性方程B. 非齐次线性方程C. 可分离变量方程D. 齐次方程 3、微分方程0=+'y y 的通解为( D )A .x y e =B . x ce y -=C . x e y -=D . x ce y -=4、一阶常微分方程e yx dxdy -=2满足初始条件00==x y 的特解为( D ) A x ce y = B x ce y 2= C 1212+=x y e e D ()1212+=x y e e5、微分方程02=+'y y 的通解为( D )A .x e y 2-=B .x y 2sin =C .x ce y 2=D .x ce y 2-= 6、 微分方程 ydy x xdx y ln ln =满足11==x y 的特解是( C )A. 0ln ln 22=+y xB. 1ln ln 22=+y xC. y x 22ln ln =D. 1ln ln 22+=y x第五节1、 微分方程2(1)0y dx x dy --=是( C )微分方程.A .一阶线性齐次B .一阶线性非齐次C .可分离变量D .二阶线性齐次第六节1、已知x y cos =,xe y =,x y sin =是方程()()()xf y x Q dx dyx P dxy d =++22的三个解,则通解为 ( C )A x c e c x c y x sin cos 321++=B ()()x x e x c e x c y -+-=sin cos 21C ()x c x c e c c y x sin cos 12121--++=D ()x c x c e c c y x sin cos 12121++++=第七节1、微分方程02=+'-''y y y 的通解为( D )A .12x x y c e c e -=+;B .12()x y c c x e -=+;C .12cos sin y c x c x =+;D .12()x y c c x e =+ 2、下面哪个不是微分方程''5'60y y y +-=的解( D ) (A )65x x e e -+ (B )x e (C )6x e - (D )6x x e e -+3、 已知2,sin ,1x y x y y ===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D ) A .221sin 1x C x C y ++=B .2321sin xC x C C y ++=C .21221sin C C x C x C y --+=D .212211sin C C x C x C y --++= 4、已知x y x y y cos ,sin ,1===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D )A .x C x C C y cos sin 321++=B .xC x C C y cos sin 321++= C .2121sin cos C C x C C y --+=D .21211cos sin C C x C x C y --++= 5、微分方程0y y ''+=的通解为( C )(A) 12x x y c e c e -=+; (B) 12()x y c c x e -=+; (C) 12cos sin y c x c x =+; (D) 12()x y c c x e =+6、已知1=y ,x y =,2x y =是某二阶非齐次线性微分方程的三个解,则方程的通解为( C ) A 2321x C x C C ++ B 21221C C x C x C --+ C )1(21221C C x C x C --++ D ()()2122111C C x C x C ++-+-7、已知x y y x 4='+''的一个特解为2x ,对应齐次方程0='+''y y x 有一个特解为x ln ,则原方程的通解为 ( A )A 、221ln x c x c ++ B 、221ln x x c x c ++ C 、221ln x e c x c x ++ D 、221ln x e c x c x ++- 8、微分方程04=+''y y 的通解为( A )A .x c x c y 2sin 2cos 21-= ;B .x e x c c y 221)(-+=C x x e c e c y 2221-+=;D .x e x c c y 221)(+=9、 分方程2220d xx dtω+=的通解是( A );A .12cos sin C t C t ωω+B .cos t ωC .sin t ωD .cos sin t t ωω+第八节1、微分方程x e y dxyd =-22的一个特解应具有的形式为 DA ()x e b ax +B ()x e bx ax +2C x aeD x axe2、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是( C )(A )3,2,1αβγ===- (B )3,2,1αβγ==-=- (C )3,2,1αβγ=-==- (D )3,2,1αβγ=-=-= 三、计算第二节1、求微分方程0ln '=-y y xy 的通解 解:分离变量xdxy y dy =ln ...........2分 两边积分可得 1ln ln ln C x y += ..........4分 整理可得Cx e y = .........6分 5、计算一阶微分方程ln 0x x y y '⋅-=的通解。
第七章 常微分方程一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式:()()()()0≠=y Q y Q x P dxdy通解()()⎰⎰+=C dx x P y Q dy(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加)(2)方程形式:()()()()02211=+dy y N x M dx y N x M通解()()()()C dy y N y N dx x M x M =+⎰⎰1221()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程⎪⎭⎫⎝⎛=x y f dx dy 令u x y =, 则()u f dxdux u dx dy =+= ()c x c xdxu u f du +=+=-⎰⎰||ln二.一阶线性方程及其推广1.一阶线性齐次方程()0=+y x P dxdy 它也是变量可分离方程,通解()⎰-=dxx P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程()()x Q y x P dxdy=+ 用常数变易法可求出通解公式 令()()⎰-=dxx P ex C y 代入方程求出()x C 则得()()()[]⎰+=⎰⎰-C dx e x Q e y dx x P dx x P3.伯努利方程()()()1,0≠=+ααy x Q y x P dxdy令α-=1y z 把原方程化为()()()()x Q z x P dxdz αα-=-+11 再按照一阶线性非齐次方程求解。
4.方程:()()x y P y Q dx dy -=1可化为()()y Q x y P dydx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。
四.线性微分方程解的性质与结构我们讨论二阶线性微分方程解的性质与结构,其结论很容易地推广到更高阶的线性微分方程。
二阶齐次线性方程 ()()0=+'+''y x q y x p y (1) 二阶非齐次线性方程 ()()()x f y x q y x p y =+'+'' (2) 1.若()x y 1,()x y 2为二阶齐次线性方程的两个特解,则它们的线性组合()()x y C x y C 2211+(1C ,2C 为任意常数)仍为同方程的解,特别地,当()()x y x y 21λ≠(λ为常数),也即()x y 1与()x y 2线性无关时,则方程的通解为()()x y C x y C y 2211+=2.若()x y 1,()x y 2为二阶非齐次线性方程的两个特解,则()()x y x y 21-为对应的二阶齐次线性方程的一个特解。
第七章微分方程一、填空题1、曲线上点(,)x y 处的切线斜率为该点纵坐标的平方,则此曲线的方程是_____y x C=-+1。
2、曲线上任一点处的切线斜率恒为该点的横坐标与纵坐标之比,则此曲线的方程是______ x y C 22-=。
3、一质点沿直线运动,已知在时间t 时加速度为t 21-,开始时()t =0速度为13,则速度与时间t 的函数关系式是________ V t t =-+13133。
4、曲线上任一点(,)x y 处的切线斜率为该点横坐标的平方,则此曲线的方程是 y x C =+133。
5、一曲线过原点,其上任一点(,)x y 处的切线斜率为2x y +,则曲线方程是______ y e x x=--21()。
6、微分方程e y ax "=1(a 是非零常数)的通解是 ______y ae C x C a x =++-1212。
7、若某个二阶常系数线性齐次微分方程的通解为y C C x =+12,其中C C 12,为独立的任意常数,则该方程为⎽⎽⎽⎽ ''=y 0。
8、若某个二阶常系数线性齐次微分方程的通解为y C e C x =+12,其中C C 12,为独立的任意常数,则该方程为⎽⎽⎽⎽ ''-'=y y 0。
9、若某个二阶常系数线性齐次微分方程的通解为12cos sin =+y C kx C kx ,其中C C 12,为独立的任意常数,k 为常数,则该方程为⎽⎽⎽⎽ ''+=y k y 20。
10、若某个二阶常系数线性齐次微分方程的通解为y C e C e x x =+-12,其中C C 12,为独立的任意常数,则该方程为⎽⎽⎽⎽ ''-=y y 0。
11、若某个二阶常系数线性齐次微分方程的通解为y C C x e x=+()12,其中C C 12,为独立的任意常数,则该方程为⎽⎽⎽⎽ ''-'+=y y y 20。
第7章 常微分方程一、单项选择题1.微分方程3245(''')3('')(')0y y y x -++=阶数是( b )A.4阶 B .3阶 C .2阶 D .1阶2.微分方程222y x dxdy x +=是( b ) A.一阶可分离变量方程 B.一阶齐次方程 C.一阶非齐次线性方程 D.一阶齐次线性方程3.下列方程中,是一阶线性微分方程的是( c )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.方程x y xy =-'满足初始条件11==x y 的特解是( a )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分方程y y x 2='的通解为( c )A .2x y =B . c x y +=2C . 2cx y =D .0=y6.微分方程y y x ='满足1)1(=y 的特解为 ( a )A.x y =B. c x y +=C.cx y =D.0=y8.微分方程05))(sin(2''=+-+x y y xy y 是( a )A 一阶微分方程B 二阶微分方程C 可分离变量的微分方程D 一阶线性微分方程9.微分方程2y xy '=的通解为( c )A .2x y e C =+B . x y Ce =C . 2x y Ce =D .22x y Ce =二、填空题1.微分方程34()"30y y y y '++=的阶数为__2____;2.微分方程0=+y dxdy 的通解是x y ce -=; 3.微分方程02=+'xy y 的通解是2x y ce -=;4.微分方程x y y e +'=的通解是()10,0x ye C e C ++=<; 5. 一阶线性微分方程()()y P x y Q x '+=的通解为()()()()P x dx P x dx P x dx y Ce e Q x e dx --⎰⎰⎰=+⎰; 6. n 阶微分方程的通解含有__n __个独立的任意常数。
第七章 微分方程一、选择题1. 表示未知函数、未知函数的( )与自变量之间的关系的方程,叫做微分方程.A. 极限B. 连续C. 导数或微分D. 积分2. 微分方程02)(2=+'-'x y y y x 的阶数是 ( ) .A. 1B. 2C. 3D. 43. 方程0)()67(=++-dy y x dx y x 是 ( )阶微分方程.A. 1B. 2C. 3D. 4. 4. 微分方程0222=+-y dx dy x dx y d x 的通解中任意常数的个数是 ( ) . A. 1 B. 2 C. 3 D. 4.5. 微分方程y xy ='的一个解是( ) . A. x y 5=; B. 15+=x y C. 25x y = D. 152+=x y 6. 微分方程yx dx dy -=满足初值条件过点(0,1)的解是( ) . A. 122=+y x B. 12=+y x C. 12=+y x D. 1=+y x7. 下列微分方程是可分离变量方程的是( ).A. 0)1()3(=+++-dy y x dx y xB. 023=+xdy ydxC. 0213=++--dy y x dx y x )()(D. 0)2()34(=++-dy y x dx y x8. 下列微分方程是齐次方程的是( ).A. 012=+dx xydy B. x e y dx dy -=+ C. xy y x dx dy += D. y x e dx dy += 9. 微分方程23x y ='的通解是( ),其中C 是任意常数.A. C x y +-=3B. C x y +=3C. C x y +-=33D. C x y +=3310. 下列微分方程可以转化成一阶非齐次线性方程的是( ).A. x e xy yy +=2'B. y x e xy y e +=2'C. x y e xy y e +=2'D. xe xy xy +='''2 二、填空题1.微分方程02=+''-'''xy y x y x 的阶数是 .2.微分方程02=+'-''y y x y x 通解中任意常数的个数是 . 3.满足初值条件50==x y 的函数C y x =-22中的=C .4.一阶微分方程x e y 2='的通解是 .5.微分方程02=+ydx xdy 满足初值条件12==x y 的特解是 .三、判断题1.方程022233=-+-xy y x y x 不是微分方程.( )2.04=-''-'''y y y 是三阶微分方程.( )3.微分方程0=+-dy y x ydx )(有解0=y .( )4.方程0)1-22()(=+++dy y x dx y x 是可分离变量的微分方程.( )5.0=x 不是微分方程0=-xdy ydx 的解.( )6.微分方程的通解中一定含有任意常数C .( )7.方程)(xy g dx dy =是一阶齐次微分方程.( ) 8.方程)()(x Q y x P dxdy +=是一阶非齐次线性微分方程.( ) 9.方程),(y x f dxdy =不是一阶微分方程.( ) 10.拉格朗日微分中值定理的结论a b a f b f f --=)()()('ξ不是一阶微分方程.( ) 四、计算题1.验证函数x C x C y ωωsin cos 21+=(ω,,21C C >0都是常数)是微分方程02=+y y ω''的通解,2.求微分方程y x e dxdy -=2满足初值条件00==x y |的特解, 3.求微分方程23=+y dx dy 的通解. 4.方程xdx x y dx dy =++(x y x -≠≠,0)的通解. 5.求微分方程242y x x y +-='与微分方程2422y y x x x y --++='的公共解.五、综合题1.求曲线方程,已知这条曲线通过原点,并且它在点)(y x ,处的切线斜率等于y x +2.2.放射性元素由于不断地有原子放射出微粒子而变成其他元素,铀的含量就不断减少,这种现象叫做衰变,由原子物理学知道,铀的衰变速度与当时未衰变的铀原子的含量M成正M随时间t变化的规律.比。
第七章 常微分方程一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式:()()()()0≠=y Q y Q x P dxdy通解()()⎰⎰+=C dx x P y Q dy(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加)(2)方程形式:()()()()02211=+dy y N x M dx y N x M通解()()()()C dy y N y N dx x M x M =+⎰⎰1221()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程⎪⎭⎫⎝⎛=x y f dx dy 令u x y =, 则()u f dxdux u dx dy =+= ()c x c xdxu u f du +=+=-⎰⎰||ln二.一阶线性方程及其推广1.一阶线性齐次方程()0=+y x P dxdy 它也是变量可分离方程,通解()⎰-=dxx P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程()()x Q y x P dxdy=+ 用常数变易法可求出通解公式 令()()⎰-=dxx P ex C y 代入方程求出()x C 则得()()()[]⎰+=⎰⎰-C dx e x Q e y dx x P dx x P3.伯努利方程()()()1,0≠=+ααy x Q y x P dxdy令α-=1y z 把原方程化为()()()()x Q z x P dxdz αα-=-+11 再按照一阶线性非齐次方程求解。
4.方程:()()x y P y Q dx dy -=1可化为()()y Q x y P dydx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。
四.线性微分方程解的性质与结构我们讨论二阶线性微分方程解的性质与结构,其结论很容易地推广到更高阶的线性微分方程。
二阶齐次线性方程 ()()0=+'+''y x q y x p y (1) 二阶非齐次线性方程 ()()()x f y x q y x p y =+'+'' (2) 1.若()x y 1,()x y 2为二阶齐次线性方程的两个特解,则它们的线性组合()()x y C x y C 2211+(1C ,2C 为任意常数)仍为同方程的解,特别地,当()()x y x y 21λ≠(λ为常数),也即()x y 1与()x y 2线性无关时,则方程的通解为()()x y C x y C y 2211+=2.若()x y 1,()x y 2为二阶非齐次线性方程的两个特解,则()()x y x y 21-为对应的二阶齐次线性方程的一个特解。
3.若()x y 为二阶非齐次线性方程的一个特解,而()x y 为对应的二阶齐次线性方程的任意特解,则()()x y x y +为此二阶非齐次线性方程的一个特解。
4.若y 为二阶非齐次线性方程的一个特解,而()()x y C x y C 2211+为对应的二阶齐次线性方程的通解(1C ,2C 为独立的任意常数)则()()()x y C x y C x y y 2211++=是此二阶非齐次线性方程的通解。
5.设()x y 1与()x y 2分别是()()()x f y x q y x p y 1=+'+''与 ()()()x f y x q y x p y 2=+'+''的特解,则()()x y x y 21+是 ()()()()x f x f y x q y x p y 21+=+'+''的特解。
五.二阶和某些高阶常系数齐次线性方程 1.二阶常系数齐次线性方程0=+'+''qy y p y 其中p ,q 为常数, 特征方程02=++q p λλ特征方程根的三种不同情形对应方程通解的三种形式(1)特征方程有两个不同的实根1λ,2λ则方程的通解为x xe C eC y 2121λλ+=(2)特征方程有二重根21λλ= 则方程的通解为()xex C C y 121λ+=(3)特征方程有共轭复根βαi ±, 则方程的通解为()x C x C e y x sin cos 21ββα+=2.n 阶常系数齐次线性方程()()()012211=+'++++---y p y p y p y p y n n n n n 其中()n i p i ,,2,1 =为常数。
相应的特征方程0 12211=+++++---n n n n n p p p p λλλλ特征根与方程通解的关系同二阶情形很类似。
(1)若特征方程有n 个不同的实根n λλλ,,, 21 则方程通解x n x x n e C e C e C y λλλ+++= 2121(2)若0λ为特征方程的k 重实根()n k ≤则方程通解中含有y=()xk k e xC x C C 0121λ-+++(3)若βαi ±为特征方程的k 重共轭复根()n k ≤2,则方程通解中含有()()[]x x D x D D x x C x C C e k k k k x sin cos 121121ββα--+++++++由此可见,常系数齐次线性方程的通解完全被其特征方程的根所决定,但是三次及三次以上代数方程的根不一定容易求得,因此只能讨论某些容易求特征方程的根所对应的高阶常系数齐次线性方程的通解。
六、二阶常系数非齐次线性方程方程:()x f qy y p y =+'+'' 其中q p ,为常数 通解:()()x y C x y C y y 2211++=其中()()x y C x y C 2211+为对应二阶常系数齐次线性方程的通解上面已经讨论。
所以关键要讨论二阶常系数非齐次线性方程的一个特解y 如何求?1.()()xn e x P x f α=其中()x P n 为n 次多项式,α为实常数,(1)若α不是特征根,则令()xn e x R y α= (2)若α是特征方程单根,则令()xn e x xR y α= (3)若α是特征方程的重根,则令()xn e x R x y α2=2.()()x e x P x f x n sin βα= 或 ()()x e x P x f xn cos βα=其中()x P n 为n 次多项式,βα,皆为实常数(1)若βαi ±不是特征根,则令()()[]x x T x x R e y n n xsin cos ββα+= (2)若βαi ±是特征根,则令()()[]x x T x x R xe y n n xsin cos ββα+=例题:一、齐次方程1.求dxdyxy dx dy xy =+22的通解 解:10)(22222-⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛=-==-+x y x y x xy y dx dy dxdy xy x y 令1,2-=+=u u dx du x u u x y 则 0)1(=-+du u x udx⎰⎰=+-11C x dx du u u ,1||ln C u xu =-,x yu u C ce y ce e xu =∴==+,1 2. 011=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+dy y x e dx e y x yx 解:yxyxey x e dy dx +⎪⎪⎭⎫ ⎝⎛-=11,令yu x u y x ==,.(将y 看成自变量) dy duy u dy dx +=, 所以 u u e u e dy du y u +-=+1)1( uuu u u e e u u e e ue dy du y ++-=-+-=11 y dy du e u e u u -=++1, y dy e u e u d u u -=++)(, y y c e u u 1ln ln ln =-=⎪⎪⎭⎫ ⎝⎛+ c e u y u +=1, y x u e yxc e u c y +=+=, c ye x y x=⎪⎪⎭⎫⎝⎛+. 二、一阶线形微分方程1..1)0(,0)(==-+y dy x y ydx解:可得⎪⎩⎪⎨⎧=-=-0)1(1x y xdy dx . 这是以y 为自变量的一阶线性方程解得 )ln (y c y x -=.0)1(=x , 0=c . 所以得解 y y x ln -=.2.求微分方程4y x y dx dy +=的通解 解:变形得:341y x ydy dx y y x dy dx =-+=即,是一阶线性方程3)(,1)(y y Q yy P =-= Cy y C dy e y ex dy ydy y+=⎥⎥⎦⎤⎢⎢⎣⎡+=⎰-⎰⎰413131三、伯努力方程63'y x y xy =+解:356'x y y xy =+--, 256x xy y dx dy =+--,令,5u y=- ''56u y y =--, 25x xu u =+'-,255'x u x u -=-.解得 )25(25-+=x c x u , 于是 35525x cx y +=-四、可降阶的高价微分方程1.求)1ln()1(+='+''+x y y x 的通解解:令p y p y '=''='则,,原方程化为)1ln()1(+=+'+x p p x1)1ln(11++=++'x x p x p 属于一阶线性方程 ⎥⎦⎤⎢⎣⎡+++=⎰+⎰+-⎰111111)1ln(C dx e x x ep dx x dx x[]11)1ln()1ln(1111++-+=+++=⎰x C x C dx x x ⎰+⎥⎦⎤⎢⎣⎡++-+=2111)1ln(C dx x C x y 212)1ln()(C x x C x +-++=2.1)0(',2)0()'(''22===+y y y y y , 解:令dy dp py p y ==''',则,得到 y p dydpp=+22 令u p =2, 得到y u dydu=+为关于y 的一阶线性方程. 1)]0('[)0(0|22====y p x u,解得 y ce y u -+-=1所以 2)0(121)0(0|1--+-=+-===ce ce y x uy , 0=c .于是 1-=y u , 1-±=y pdx y dy±=-1, 112c x y +±=-, 2211c x y +±=- 2)0(=y , 得到121=c , 得解 121+±=-x y 五、二阶常系数齐次线形微分方程 1.0'''2'''2)4()5(=+++++y y y y y y解:特征方程 01222345=+++++λλλλλ 0)1)(1(22=++λλ,i i -==-=5,43,21,,1λλλ于是得解 x x c c x x c c e c y xcos )(sin )(54321++++=-2.06'10''5)4(=-+-y y y y,14)0(''',6)0('',0)0(',1)0(-====y y y y解:特征方程 0610524=-+-λλλ, 0)22)(3)(1(2=+-+-λλλλ11=λ, 32-=λ, i ±=14,3λ得通解为 )sin cos (43321x c x c e ec e c y x xx +++=- 由 14)0(''',6)0('',0)0(',1)0(-====y y y y 得到 211-=c , 212=c , 13=c , 14=c 得特解 )sin (cos 21213x x e e e y x xx +++-=-六、二阶常系数非齐次线形微分方程 1.求xe y y y 232=-'+''的通解解:先求齐次方程的通解,特征方程为0322=-+λλ,特征根为1,321=-=λλ。