新课讲授
由此得到另一条等边三角形的判定定理:
有一个角是60°的等腰三角形是等边三角形.
几何语言: ∵∠A=60°,AB=AC, ∴ AB=BC=AC (或△ABC是等边三角形).
例题讲解
例1 已知:如图,在△ABC中,AB=AC,点D,E 分别是AB,AC上的点,且DE∥BC.
求证:△ADE为等腰三角形.
新知探究 你能说出“等腰三角形的两个底角相等”这个定理条 件和结论吗?请写出它的逆命题。
逆命题:有两个角相等 的三角形是等腰三角形
这个命题是真命题么?你能证明么?
新知探究
活动探究:画△ABC,使∠B=∠C, 量一量,线段AB与AC的长度.
我测量后发现AB与AC相等.
3cm
3cm
新课讲授
事实上,如图,在△ABC中,∠B=∠C. 沿过点A的直线把∠BAC对折,
证明 : ∵ AB=AC,
性质定理
∴ ∠B=∠C(等边对等角).
又∵ DE∥BC,
∴ ∠ADE=∠B,∠AED=∠C, ∴ ∠ADE=∠AED,
∴△ADE为等腰三角形(等角对等边).
判定定理
例题讲解
例2 已知:如图,△ABC是等边三角形,点D,E 分别在BA,CA的延长线上,且AD=AE.
求证:△ADE是等边三角形.
类比探究
等腰三角形的判定方法:
方法一: 从边看 有两条边相等的三角形是
等腰三角形(定义). 方法二: 从角看
有两个角相等的三角形是 等腰三角形.
等边三角形的判定方法:
方法一: 从边看 有三条边相等的三角形是
等边三角形(定义). 方法二: 从角看
有三个角相等的三角形是 等边三角形.
新课讲授,