∵ ∠AFE 的平分线交 CA 延长线于点 G.
∴ AFG GFE 1 AFE 1 150 = 75,
2
2
∴ ∠G=180°-∠GAF-∠AFG
=180°-60°-75°=45°.
二、等边三角形的证明 4. 如图,在△ABC中,∠B=60°,过点 C 作 CD∥AB,若 ∠ACD=60°,求证:△ABC 是等边三角形. 解:∵ CD∥AB, ∴ ∠A=∠ACD=60°, ∵ ∠B=60°, 在 △ABC 中, ∠ACB=180°-∠A-∠B=60°, ∴ ∠A=∠B=∠ACB. ∴ △ABC 是等边三角形.
OC,OA 的中点.
求证:BE=DF.
证明:∵四边形 ABCD 是平行四边形,
∴ OA=OC,OB=OD,
∵ E,F 分别是 OC,OA 的中点,
∴ OE 1 OC,OF 1 OA,
2
2
∴ OE=OF,
OB OD, 在 △OBE 和 △ODF 中,BOE DOF,
OE OF,
∴ △OBE ≌△ODF (SAS),
5. 在等边△ABC 中,点 P 在△ABC 内,点 Q 在△ABC 外, 且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形? 试说明你的结论.
解:△APQ 为等边三角形.
证明如下:∵ △ABC 为等边三角形,
∴ AB=AC.
AB AC,
在 △ABP 与 △ACQ 中,ABP ACQ,
解:(1)在平行四边形 ABCD 中, ∵ AB∥CD,∴ ∠AFD=∠CDF, ∵ ∠ADC 的平分线 DF 交 AB 于点 F. ∴ ∠ADF=∠CDF,∴ ∠ADF=∠AFD, ∴ AF=AD=4, ∵ AB=6,∴ BF=2.