1.1.2等腰三角形PPT课件
- 格式:ppt
- 大小:253.00 KB
- 文档页数:12
等腰三角形【要点梳理】要点一:等腰三角形★等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.等腰三角形“三线合一”的三个结论语言描述书写格式图示等腰三角形顶角的平分线平分底边且垂直于底边∵ACAB=,AD平分∠BAC∴CDBD=,BCAD⊥等腰三角形底边上的中线垂直于底边且平分顶角∵ACAB=,CDBD=∴BCAD⊥,AD平分∠BAC等腰三角形底边上的高平分底边且平分顶角∵ACAB=,BCAD⊥∴CDBD=,AD平分∠BAC要点二:等腰三角形的判定(等角对等边)★定义法:有两条边相等的三角形是等腰三角形.★判定定理:有两个角相等的三角形是等腰三角形.要点诠释:(1)在等腰三角形中顶角可为锐角或直角或钝角,但底角只能是锐角.(2)若等腰三角形的顶角为α,则底角为)180(21α-︒.【例1】如图,在△ABC中,D在BC上,且AB=AC=BD,△1=30°,求△2的度数.【变式1.1】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求△B的度数.【变式1.2】在等腰三角形中,有一个角为40°,求其余各角.【变式1.3】已知一个等腰三角形的两边长a、b满足方程组⎩⎨⎧=+=-1321134baba.(1)求a 、b 的值.(2)求这个等腰三角形的周长.【变式1.4】若x ,y 满足0)6(32=-+-y x ,则以x ,y 的值为两边长的等腰三角形的周长为( )A . 12B . 14C . 15D .12或15【变式】如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当△A =40 °时,求△DEF 的度数.【练2.1】如图,DB =DC ,△ABD =△ACD ,试说明:AB =AC .【练2.1】Rt△ABC 中,△ACB =90 °,CD △AB ,垂足为D .AF 平分△CAB ,交CD 于点E ,CB 于点F ,求证:CE =CF .【练2.1】如图,△ ABC 中,AB =AC ,D 为BC 边的中点,F 为CA 的延长线上一点,过点F 作FG △BC 于G 点,并交AB 于E 点,试说明下列结论成立的理由:(1)AD △FG ;(2)△AEF是等腰三角形.要点三:等腰直角三角形及其性质★定义:顶角是直角的等腰三角形叫做等腰直角三角形.★性质:等腰直角三角形是特殊的等腰三角形.等腰直角三角形的每一个底角都是45°.要点四:等边三角形的定义及其性质★定义:三条边都相等的三角形,叫做等边三角形,也叫做正三角形.★性质:等边三角形的三个角相等,并且每个角都等于60°.要点五:等边三角形的判定★定义:三条边都相等的三角形是等边三角形.★判定定理:①三个角都相等的三角形是等边三角形;②有一个角为 60°的等腰三角形是等边三角形.★含30°的直角三角形的性质定理在直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半.要点诠释:这个定理的前提条件是“在直角三角形中”,是证明直角三角形中一边等于另一边(斜边)的一半的重要方法之一,通常用于证明边的倍数关系.【例2】如图,已知△ABC为等边三角形,D为BC延长线上的一点,CE平分△ACD,CE=BD,求证:△ADE为等边三角形.【变式2.1】已知:如图,△ABC中,AB=AC,△ABC=60°,AD=CE,求△BPD的度数.【变式2.2】△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,BN与AM相交于Q点,△AQN等于多少度?【变式2.3】如图,已知△ABC和△CDE都是等边三角形,AD、BE交于点F,求△AFB的度数.典型例题题型一:等腰三角形的性质【练习1.1】如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°【练习1.2】如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°【练习1.3】如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A .35°B .40°C .45°D .50°【练习1.4】已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )A .50°B .80°C .50°或80°D .40°或65°【练习1.5】如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n ﹣1为顶点的底角度数是( )A .(12)n •75°B .(12)n ﹣1•65°C .(12)n ﹣1•75°D .(12)n •85° 【练习1.6】如图,在△ABC 中,AB =AC ,D 为BC 中点,△BAD =35°,则△C 的度数为( )A .35°B .45°C .55°D .60°【练习1.7】如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB =AC ,△CAD =20°,则△ACE 的度数是( )A.20°B.35°C.40°D.70°【练习1.8】如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36°B.60°C.72°D.108°【练习1.9】如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B 的度数为()A.30°B.36°C.40°D.45°【练习1.10】已知实数x,y满足|x−4|+√y−8=0,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【练习1.11】一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或17【练习1.12】如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【练习1.13】如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).【练习1.14】等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.【练习1.15】等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.【练习1.16】如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.【练习1.17】一个等腰三角形的两边长分别是2cm、5cm,则它的周长为cm.【练习1.18】等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为.【练习1.19】已知实数x,y满足|x−4|+√y−8=0,则以x,y的值为两边长的等腰三角形的周长是.【练习1.20】如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF=cm.【练习1.21】如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为.【练习1.22】等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的一个底角的度数为.【练习1.13】如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC 的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.【练习1.24】已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.【练习1.25】等腰△ABC纸片(AB=AC)可按图中所示方法折成一个四边形,点A与点B 重合,点C与点D重合,请问原等腰△ABC中的∠B=度.【练习1.26】如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE =16°,则∠B为度.【练习1.27】在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD 为直角三角形,则∠ADC的度数为.【练习1.28】如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【练习1.29】如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.【练习1.30】如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O (1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【练习1.31】如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【练习1.32】如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.【练习1.33】操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB 于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.题型二:等腰三角形的判定【练习2.1】在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°【练习2.2】已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③【练习2.3】如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.【练习2.4】在等边△ABC所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形.这样的点一共有()A.1个B.4个C.7个D.10个【练习2.5】如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有()A.8个B.7个C.6个D.5个【练习2.6】已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.6【练习2.7】如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2B.3C.4D.5【练习2.8】如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.5条B.4条C.3条D.2条【练习2.9】已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④【练习2.10】已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条D.8条【练习2.11】在等边△ABC所在的平面内求一点P,使△P AB、△PBC、△P AC都是等腰三角形,具有这样性质的点P有()A.1个B.4个C.7个D.10个【练习2.12】如图,A,B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC为等腰三角形,满足条件的点C有()A.6个B.7个C.8个D.9个【练习2.13】在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A.5个B.4个C.3个D.2个【练习2.14】如图,在6×6的正方形网格中,点A,B均在正方形格点上,若在网格中的格点上找一点C,使△ABC为等腰三角形,这样的点C一共有()A.7个B.8个C.10个D.12个【练习2.15】如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.【练习2.16】如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为.【练习2.17】如图,在直角坐标系中,O是原点,已知A(4,3),P是坐标轴上的一点,若以O,A,P三点组成的三角形为等腰三角形,则满足条件的点P共有个,写出其中一个点P的坐标是.【练习2.18】已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画条.【练习2.19】如图,在△ABC中,AB=AC,BD,CE分别是∠ABC,∠ACB的平分线,且DE∥BC,∠A=36°,则图中等腰三角形共有个.【练习2.20】在△ABC中,∠B=50°,当∠A为时,△ABC是等腰三角形.【练习2.21】如图,∠AOB=60°,C是BO延长线上一点,OC=12cm,动点P从点C出发沿CB以2cm/s的速度移动,动点Q从点O出发沿OA以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=s时,△POQ是等腰三角形.【练习2.22】在△ABC中,∠A=40°,当∠B=时,△ABC是等腰三角形.【练习2.23】用一条长为20cm的细绳围成一个等腰三角形,如果腰长是底边长的2倍,则底边长为cm.【练习2.24】在△ABC中,∠A=50°,当∠B的度数=时,△ABC是等腰三角形.【练习2.25】如图,已知点P是射线BM上一动点(P不与B重合),∠AOB=30°,∠ABM =60°,当∠OAP=时,以A、O、B中的任意两点和P点为顶点的三角形是等腰三角形.【练习2.26】如图,在△ABC中,边AB的垂直平分线分别交AB、AC于点D,E,若AD 为4cm,△ABC的周长为26cm,则△BCE的周长为cm.【练习2.27】如图,已知平面直角坐标系中有点A(3,0)和点B(0,﹣4),在x轴上存在一点C,使得△ABC为等腰三角形,则C坐标为.【练习2.28】如图所示,在4×4的方格中每个小正方形的边长是单位1,小正方形的顶点称为格点.现有格点A、B,在方格中任意找一点C(必须是格点),使△ABC成为等腰三角形.这样的格点有个.【练习2.29】Rt△ABC中,∠ACB=90°,∠A=60°,在直线BC上取一点P使得△P AB 是等腰三角形,则符合条件的点P有个.【练习2.30】在直角坐标系中,O为坐标原点,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则满足条件的点P坐标是.【练习2.31】在平面直角坐标系xOy中,已知A(1,2),在y轴确定点P,使△AOP为等腰三角形,则符合条件的点P有个.【练习2.32】如图,平面直角坐标系内有一点A(2,﹣2),O是原点,P是x轴上一动点,如果以P、O、A为顶点的三角形是等腰三角形,那么点P的坐标为.【练习2.33】如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G)【练习2.34】已知:点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF=CE.求证:△ABC是等腰三角形.【练习2.35】已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA 的延长线于点F.求证:△ADF是等腰三角形.【练习2.36】如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.【练习2.37】如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB 于点E.(1)求证:∠AEC=∠ACE;(2)若∠AEC=2∠B,AD=1,求BD的长.【练习2.38】如图,在△ABC中,∠ABC=90°,过点B作BD⊥AC于点D,BE平分∠ABD 交AC于点E.(1)求证:CB=CE;(2)若∠CEB=80°,求∠DBC的大小.【练习2.39】如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形.(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.【练习2.40】如图,点D是△ABC内部的一点,BD=CD,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.求证:△ABC为等腰三角形.【练习2.41】如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线,求证:△BCD是等腰三角形.题型三:等腰三角形的性质与判定【练习3.1】如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【练习3.2】如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7【练习3.3】已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为()A.5B.6C.7D.8【练习3.4】如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED 的周长为()A.2B.3C.4D.5【练习3.5】如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC 的面积是()A .10B .8C .6D .4【练习3.6】如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM +CN =9,则线段MN 的长为( )A .6B .7C .8D .9【练习3.7】如图,△ABC 中,AB +BC =10,AC 的垂直平分线分别交AB 、AC 于点D 和E ,则△BCD 的周长是( )A .6B .8C .10D .无法确定【练习3.8】如图,AD ⊥BC ,D 为BC 的中点,以下结论正确的有几个?( ) ①△ABD ≌△ACD ;②AB =AC ;③∠B =∠C ;④AD 是△ABC 的角平分线.A .1B .2C .3D .4【练习3.9】如图,在△ABC 中,AB =6,AC =4,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 分别交AB 、AC 于M 、N ,则△AMN 的周长为( )A .12B .10C .8D .不确定【练习3.10】如图,AE 垂直于∠ABC 的平分线交于点D ,交BC 于点E ,BC CE 31 ,若△ABC 的面积为2,则△CDE 的面积为( )A .31B .61C .81D .101 【练习3.11】如图,D 为△ABC 内一点,CD 平分∠ACB ,BE ⊥CD ,垂足为D ,交AC 于点E ,∠A =∠ABE ,AC =5,BC =3,则BD 的长为( )A .1B .1.5C .2D .2.5【练习3.12】如图,BP 是∠ABC 的平分线,AP ⊥BP 于P ,连接PC ,若△ABC 的面积为1cm 2,则△PBC 的面积为( )A .0.4cm 2B .0.5cm 2C .0.6cm 2D .不能确定 【练习3.13】如图,△ABC 的面积为8cm 2,AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .2cm 2B .3cm 2C .4cm 2D .5cm 2【练习3.14】如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为( )A.40海里B.60海里C.70海里D.80海里【练习3.15】已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的是()A.①②③B.①②④C.①③④D.①②③④【练习3.16】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3B.4C.3.5D.2【练习3.17】如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正确的结论有()个A.1B.2C.3D.4【练习3.18】如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB 于点F,若AF=2,BF=3,则CE的长度为.【练习3.19】如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC=m2.【练习3.20】如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.【练习3.21】如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.【练习3.22】如图,矩形ABCD中,AB=4,AD=3,点Q在对角线AC上,且AQ=AD,连接DQ并延长,与边BC交于点P,则线段AP=.【练习3.23】如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.若△ABC的周长为15,BC=6,则△AMN的周长为.【练习3.24】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+12∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是.(填序号)【练习3.25】如图所示,三角形ABC的面积为1cm2.AP垂直∠B的平分线BP于点P.则三角形PBC的面积是.【练习3.26】如图,CE平分∠ACB.且CE⊥DB,∠DAB=∠DBA,AC=9,△CBD的周长为14,则DB的长为.【练习3.27】如图,点P是∠AOB的角平分线上一点,过点P作PC∥OA交OB于点C,过点P作PD⊥OA于点D,若∠AOB=60°,OC=4,则PD=.【练习3.28】如图,CD是△ABC的角平分线,AE⊥CD于E,BC=6,AC=4,△ABC的面积是9,则△AEC的面积是.【练习3.29】如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是(填序号).【练习3.30】已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC=°.【练习3.31】如图,在△ABC中,AB=6,AC=9,BO、CO分别是∠ABC、∠ACB的平分线,MN经过点O,且MN∥BC,MN分别交AB、AC于点M、N,则△AMN的周长是.【练习3.32】如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【练习3.33】如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.【练习3.34】如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分线BD交边AC于点D.(1)求证:△BCD为等腰三角形;(2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE;(3)若∠BAC外角的平分线AE交CB延长线于点E,请你探究(2)中的结论是否仍然成立?直接写出正确的结论.【练习3.35】如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.【练习3.36】如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,题型四:等边三角形的性质【练习4.1】如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC =45°,则∠ACE等于()A.15°B.30°C.45°D.60°【练习4.2】如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6B.12C.32D.64【练习4.3】如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【练习 4.4】如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【练习4.5】如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为()A.8B.16C.24D.32【练习4.6】如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF =2,则PE 的长为( )A .2B .2√3C .√3D .3【练习4.7】如图,P 为边长为2的等边三角形ABC 内任意一点,连接P A 、PB 、PC ,过P 点分别作BC 、AC 、AB 边的垂线,垂足分别为D 、E 、F ,则PD +PE +PF 等于( )A .√32B .√3C .2D .2√3【练习4.8】等边三角形的边长为2,则该三角形的面积为( )A .4√3B .2√3C .√3D .3【练习4.9】如图,在△ABC 中,AB =AC =2,∠B =60°,AD 平分∠BAC ,则AD 等于( )A .1B .√2C .√3D .1.5【练习4.10】如图,AE ∥BD ,△ABC 为等边三角形,若∠CBD =15°,则∠EAC 的度数是( )A .60°B .45°C .55°D .75°【练习4.11】如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表,则a n = (用含n 的代数式表示).所剪次数1 2 3 4 … n 正三角形个数 4 7 10 13 … a n【练习4.12】如图,C 为线段AE 上一动点(不与点A 、E 重合),在AE 同侧分别作正△ABC 和正△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD =BE ;②PQ ∥AE ;③AP =BQ ;④DE =DP ;⑤∠AOB =60°. 恒成立的结论有 .(把你认为正确的序号都填上)【练习4.13】如图,正△ABC 的边长为2,以BC 边上的高AB 1为边作正△AB 1C 1,△ABC 与△AB 1C 1公共部分的面积记为S 1;再以正△AB 1C 1边B 1C 1上的高AB 2为边作正△AB 2C 2,△AB 1C 1与△AB 2C 2公共部分的面积记为S 2;…,以此类推,则S n = .(用含n 的式子表示)【练习4.14】三个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2= °.【练习4.15】如图所示,已知:点A(0,0),B(√3,0),C(0,1)在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于.【练习4.16】如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE =1,∠E=30°,则BC=.【练习4.17】如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD=.【练习4.18】如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n =.【练习4.19】如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1=°.【练习4.20】如图,点O是边长为2的等边三角形ABC内任意一点,且OD⊥AC,OE⊥AB,OF⊥BC,则OD+OE+OF=.【练习4.21】如图,边长为4的等边△ABC,AC边在x轴上,点B在y轴的正半轴上,以OB为边作等边△OBA1,边OA1与AB交于点O1,以O1B为边作等边△O1BA2,边O1A2与A1B交于点O2,以O2B为边作等边△O2BA3,边O2A3与A2B交于点O3,…,依此规律继续作等边△O n﹣1BA n,记△OO1A的面积为S1,△O1O2A1的面积为S2,△O2O3A2的面积为S3,…,△O n﹣1O n A n﹣1的面积为S n,则S n=.(n≥2,且n为整数)【练习4.22】如图,△ABC与△DEF为等边三角形,其边长分别为a,b,则△AEF的周长为 .【练习4.23】在平面直角坐标系中,A (0,3)、B (√3,0)、Q (0,72),C 是x 轴上一点,以AC 为边向右侧作正△ACD ,P 为AD 的中点.当C 从O 运动到B 点时,PQ 的最小值为 .【练习4.24】如图,AD 是等边△ABC 的中线,E 是AC 上一点,且AD =AE ,则∠EDC = °.【练习4.25】如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2= .【练习4.26】一个等边三角形,一个直角三角形以及一个等腰三角形如图放置,等腰三角形的底角∠3=80°,则∠1+∠2= .【练习4.27】如图,已知:∠MON=30°,点A1、A2、A3、…在射线OM上,点B1、B2、B3、…在射线ON上,△A1B1B2、△A2B2B3、△A3B3B4、…均为等边三角形,若OB1=1,则△A8B8B9的边长为.【练习4.28】如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P 从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.【练习4.29】已知,△ABC为等边三角形,点D为AC上的一个动点,点E为BC延长线上一点,且BD=DE.(1)如图1,若点D在边AC上,猜想线段AD与CE之间的关系,并说明理由;(2)如图2,若点D在AC的延长线上,(1)中的结论是否成立,请说明理由.【练习4.30】如图所示,已知△ABC中,AB=AC=BC=10厘米,M、N分别从点A、点B 同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒的速度,点N的速度是2厘米/秒,当点N第一次到达B点时,M、N同时停止运动.(1)M、N同时运动几秒后,M、N两点重合?(2)M、N同时运动几秒后,可得等边三角形△AMN?(3)M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN,如果存在,请求出此时M、N运动的时间?【练习4.31】如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC 为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.①△OBC与△ABD全等吗?判断并证明你的结论;②当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?【练习4.32】如图,等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE=CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF;(3)求△BDE的面积.【练习4.33】在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC 上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).【练习4.34】如图,在等边△ABC中,点D、E分别在边BC、AC上,且AE=CD,BE与AD相交于点P,BQ⊥AD于点Q.(1)求证:△ABE≌△CAD;(2)请问PQ与BP有何关系?并说明理由.题型五:等边三角形的性质与判定【练习5.1】在△ABC中,AB=AC,若∠B=60°,则△ABC的形状为()A.钝角三角形B.等边三角形C.直角三角形D.不等边三角形【练习5.2】已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA 延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②∠APO=∠DCO;③△OPC是等边三角形;④AB=AO+AP.其中正确的是()A.①③④B.①②③C.①③D.①②③④【练习5.3】如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是()A.8+2a B.8+a C.6+a D.6+2a【练习5.4】下列说法:①有一个角是60°的等腰三角形是等边三角形;②如果三角形的一个外角平分线平行三角形的一边,那么这个三角形是等腰三角形;③三角形三边的垂直平分线的交点与三角形三个顶点的距离相等;④有两个角相等的等腰三角形是等边三角形.其中正确的个数有()A.1个B.2个C.3个D.4个【练习5.5】将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()。
第一章图形与证明(二)1.1 等腰三角形的性质和判定Ⅰ.核心知识点扫描1.等腰三角形和等边三角形的性质和判定性质判定等腰三角形⑴等腰三角形两个底角相等(简称“等边对等角”) .⑵等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).⑴如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).⑵定义:如果一个三角形中有两条边相等,那么这个三角形是等腰三角形.图示(1)在△ABC中,∵AB=AC ∴∠B=∠C;(2)在△ABC中,AB=AC.若∠BAD=∠CAD,那么AD⊥BC,BD=CD;若BD=CD,那么∠BAD=∠CAD,AD⊥BC;若AD⊥BC,那么∠BAD=∠CAD,BD=CD.在△ABC中,∵∠B=∠C ∴AB=AC.等边三角形⑴等边三角形是特殊的等腰三角形,因此等边三角形具有等腰三角形的所有性质,并且,在每条边上都有“三线合一”;⑵等边三角形的每个内角都等于60°.⑴定义:三条边都相等的三角形是等边三角形.⑵有一个角是60°等腰三角形是等边三角形.⑶三个角都相等的三角形是等边三角形.图示∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°.(1)∵AB=BC=AC,∴△ABC是等边三角形;(2) ∵AB=BC,∠A=60°,∴△ABC是等边三角形;(3)∵∠A=∠B=∠C,∴∴△ABC是等边三角形.Ⅱ.知识点全面突破知识点1:等腰三角形性质(重点)⒈等腰三角形的性质定理1:等腰三角形的两个底角相等(简称“等边对等角”);可用符号语言表述如下:如图1-1-1,在△ABC中,∵AB=AC ∴∠B=∠C.已知:如图1-1-1,在△ABC中, AB=AC.求证:∠B=∠C.图1-1-3定理的证明分析:利用分析法思考证明的过程:如下所示:作顶角的平分线AD.()AB AC B C ABD ACD SAS BAD CAD AD AD =⎧⎪∠=∠⇐≅⇐∠=⎨⎪=⎩,具体证明过程略.此外,我们还可以用AAS 、ASA 、SSS 证明这一性质.如取BC 的中点D ,连接AD,在△ABD 和△ACD中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD (SSS ),∴B C ∠=∠.2.等腰三角形的性质定理2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).可用符号语言表述如下:如图1-1-2,在△ABC 中,AB=AC.若∠BAD=∠CAD ,那么AD ⊥BC ,BD=CD ; 若BD=CD ,那么∠BAD=∠CAD ,AD ⊥BC ;若AD ⊥BC ,那么∠BAD=∠CAD ,BD=CD.详解:①等腰三角形是特殊的三角形,它拥有一般三角形所具有的所有的性质.同时它还具有一般三角形所没有的特点和性质;②定理1常用来证明同一个三角形中的两个角相等;定理2实际上是等腰三角形中的两个结论,已知其中任意一个可以得到另两个结论,常用来证明角相等、线段相等或垂直;③将这两条性质用在特殊的等腰三角形即等边三角形中,可得等边三角的性质:等边三角形的各角都相等,并且都等于60°;等边三角形每一条边上的中线高都与所对的角平分线互相重合.例1.如图1-1-3,房屋的顶角∠BAC=100O ,过屋顶A 的立柱,屋椽AB=AC 求∠B ,∠C ,∠BAD ,∠CAD 的度数.解:在△ABC 中, AB=AC(已知).∴∠B=∠C(等边对等角) .∴∠B=∠C=21(180O -∠BAC) 图1-1-1图1-1-2=21(180O -100O )=40O (三角形内角和定理) .又∵AD ⊥BC ,∴∠BAD=∠CAD(等腰三角形顶角的平分线与底边上的高互相重合),∴∠BAD=∠CAD=50O .点拨:已知等腰三角形的顶角,根据等边对等角及三角形的内角和定理可求出∠B 与∠C 的度数,再根据等腰三角形的三线合一,可得AD 是顶角的平分线,则∠BAD 与∠CAD 的度数即可求.例2:(2010,山东济南)(一题多解)如图1-1-4,已知AB AC AD AE ==,.求证BD CE =.证明:方法1 如图1-1-5过点A 作AH ⊥BC ,交BC 于点H . ∵AB=AC ,AD=AE ,AH ⊥BC , ∴BH=CH , DH=EH∴BH 一DH=CH 一EH 即BD=CE 方法2 ∵AB=AC ∴∠B=∠C ∵AD=AE ∴∠ADE=∠AED∴180O-∠ADE=180O-∠AED 即∠ADB=∠AEC ∵AB=AC ,∠B=∠C ,∠ADB=∠AEC ∴△ABD ≌△ACE ∴BD=CE .点拨:在等腰三角形中,虽然顶角平分线、底边上的中线、底边上的高互相重合,但如何添加,要根据具体情况来定.本题中适合高AH AH ,利用等腰三角形的“三线合一”来解决这个问题。
等腰三角形和等边三角形的性质一、等腰三角形的性质1.1 定义:等腰三角形是指有两边相等的三角形。
1.2 两边相等:在等腰三角形中,两个底角相等,两条底边相等。
1.3 底角平分线:在等腰三角形中,底边的垂直平分线同时也是底角平分线。
1.4 顶角平分线:在等腰三角形中,顶角的平分线、底边的中线和底角的平分线三线合一。
1.5 面积公式:等腰三角形的面积公式为:S=12absinC,其中 a 和 b 分别为等腰三角形的底边,C 为顶角。
二、等边三角形的性质2.1 定义:等边三角形是指三边相等的三角形。
2.2 内角相等:在等边三角形中,三个内角都相等,每个内角为60∘。
2.3 外角相等:在等边三角形中,每个外角都相等,每个外角为120∘。
2.4 中线相等:在等边三角形中,三条中线相等,且都垂直于对边。
2.5 高线相等:在等边三角形中,三条高线相等,且都垂直于对边。
2.6 面积公式:等边三角形的面积公式为:S=√34a2,其中 a 为等边三角形的边长。
2.7 圆周角定理:在等边三角形中,每个圆周角都等于60∘。
2.8 圆心对称:等边三角形具有圆心对称性,即三角形的三条高线、三条中线、三条角平分线都相交于同一点,称为三角形的垂心。
2.9 稳定性:等边三角形是稳定的,不会因为外力的作用而变形。
总结:等腰三角形和等边三角形是特殊的三角形,它们具有独特的性质。
通过掌握这些性质,我们可以更好地理解和解决与等腰三角形和等边三角形相关的问题。
习题及方法:1.习题:判断以下三角形是否为等腰三角形。
解答:根据等腰三角形的性质,只需要判断两边是否相等即可。
如果两边相等,则为等腰三角形。
2.习题:已知等腰三角形的底边长为8cm,腰长为5cm,求该三角形的面积。
解答:根据等腰三角形的性质,底边上的高也是腰长的垂直平分线。
因此,可以将三角形分成两个直角三角形,每个直角三角形的底边为4cm,高为5cm。
面积公式为S=12×底边×高,所以面积为12×4cm×5cm=10cm2。
1.1 等腰三角形主要师生活动一、创设情境,导入新知如图,位于海上B、C两处的两艘救生船接到A处遇险船只的报警,当时测得∠B =∠C. 如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪因素)?师生活动:让学生自主探究,举手回答问题(学生积极踊跃发言,问答提出的问题.)复习回答:问题1:等腰三角形有哪些性质定理及推论?二、探究新知二、小组合作,探究概念和性质知识点一:等腰三角形的判定前面已经证明了等腰三角形的两底角相等.反过来,有两个角相等的三角形是等腰三角形吗?回顾导入:建立数学模型:如图,在△ABC中,∠B =∠C,那么它们所对的边AB和AC有什么数量关系?方法思考:∠作高AD可以吗?∠作角平分线AD呢?∠作中线AD呢?师追问:你能验证你的结论吗?证明:过A作AD平分∠BAC交BC于点D.在∠ABD与∠ACD中,∠∠ABD∠∠ACD (AAS).∠ AB = AC.学生可能会由前面定理的证明获得启发,如作BC的中线,或作CA的平分线,或作BC上的高线,教师应让学生思考判断哪些方法可行,这三种方法中只有后两种方法可以判定所构造的两个三角形全等.这是培养学生推理能力的好机会,也是学生体会从基本事实和已知定理出发进行推理的设计意图:中这里应引导学生养成“反过来”思考问题的意识,即思考一个命题的逆命题的真假,因为这也是获得数学结论的一条重要途径,同时,这样设置问题也为学生下一节学习互逆命题做个铺垫,设计意图:由浅入深,引导学生将实际问题转化为数学问题,培养数形结合思想.设计意图:学生通过观察、思考、证明、归纳等腰三角形的判定方法,培养学生的证明能力,体会解决等腰三角形问题的常用辅助线是作等腰三角形底边上的高线、顶角的角.公理化思想的机会,教师应注意引导,教学中应鼓励学生按要求将证明过程书写出来.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形.(简称“等角对等边”).应用格式:在∠ABC中,∠∠B =∠C,∠ AB = AC (等角对等边).辨一辨:如图,下列推理正确吗?∵∵1 = ∵2 ,∵ BD = DC(等角对等边).∵∵1 =∵2 ,∵ DC = BC(等角对等边).错,因为都不是在同一个三角形中.典例精析例1 已知:如图,AB = DC,BD = CA,BD与CA相交于点E.求证:∠AED是等腰三角形.证明:∠ AB = DC,BD = CA,AD = DA,∠∠ABD∠∠DCA (SSS).∠∠ADB =∠DAC (全等三角形的对应角相等).∠ AE = DE (等角对等边).∠∠AED是等腰三角形.知识点二:反证法设计意图:给学生独立思考时间,再讨论交流,教师要适当引导,进一步规范学生推理过程的书写.想一想:小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗? 如果成立,你能证明它吗?在∠ABC中,如果∠B ≠∠C,那么AB ≠ AC.师生活动:学生先思考,然后小组讨论,发现用正常的证明思路不好解决问题,教师此时提出反证法并出示小明的解题过程.小明是这样想的:如图,在∠ABC中,已知∠B≠∠C,此时,AB与AC要么相等,要么不相等.假设AB= AC,那么根据“等角对等边”定理可得∠B =∠C,但已知条件是∠B ≠∠C.“∠B =∠C ”与“∠B≠∠C ”相矛盾,因此AB ≠ AC.你能理解他的推理过程吗?师生活动:师生一同认识反证法的概念,并总结反证法的证明步骤.反证法概念:在证明时,先假设命题的结论不成立,然后由此推导出与已知条件或基本事实或已证明过的定理相矛盾,从而证明命题的结论一定成立,这种证明方法称为反证法.用反证法证题的一般步骤:1. 假设:先假设命题的结论不成立;2. 归谬:从这个假设出发,应用正确的推论方法,得出与定义、公理、已证定理或已知条件相矛盾的结果;3. 结论:由矛盾的结果判定假设不正确,从而肯定命题的结论正确.例2 用反证法证明:一个三角形中不能有两个角三、当堂练习,巩固所学是直角.已知:∠ABC.求证:∠A,∠B,∠C中不能有两个角是直角.【分析】按反证法证明命题的步骤,首先要假定结论“∠A,∠B,∠C中不能有两个角是直角”不成立,即它的反面“∠A,∠B,∠C中有两个角是直角”成立,然后,从这个假定出发推下去,找出矛盾.证明:假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°,则∠A+∠B+∠C=90°+90°+∠C>180°.这与三角形的内角和定理矛盾,故假设不成立.所以一个三角形中不能有两个角是直角.三、当堂练习,巩固所学1. 已知:如图,∠A = 36°,∠DBC = 36°,∠C = 72°,∠∠1 = °,∠2 = °;∠ 图中有个等腰三角形;∠ 若AD = 4 cm,则BC = cm;∠ 若过点D作DE∠BC,交AB于点E,则图中有个等腰三角形.2. 已知:等腰三角形ABC的底角平分线BD,CE相交于点O.求证:∠OBC为等腰三角形.3.求证:在同一平面内,如果一条直线和两条平行直线中的一条相交,那么和另一条也相交.设计意图:通过例2,让学生初步感受反证法的证明思路与书写的过程,体会反证法的证明与作用.设计意图:通过设置课堂检测,及时获知学生对所学知识的掌握情况,在问题的选择上以基础为主,灵活运用所学知识解决问题,巩固新知.已知:直线l1,l2,l3在同一平面内,且l1∠ l2,l3与l1相交于点P.求证:l3与l2相交.证明:假设______________,那么________.因为已知_________,所以过直线l2外一点P,有两条直线和l2平行,这与“__________________________________________” 矛盾.所以___________,即求证的命题正确.等腰三角形的判定与反证法。