数学物理方程与特殊函数 华中科技大学1第一章典型方程与定解条件
- 格式:ppt
- 大小:4.02 MB
- 文档页数:34
华中科技大学文华学院《数学物理方程与特殊函数》课程教学大纲一、课程名称:数学物理方程与特殊函数Equations of Mathematical Physics with Special functions二、课程编码:三、学时与学分:48/3四、先修课程:微积分、线性代数、复变函数与积分变换五、课程性质:必修六、课程教学目标及要求开设本课程的主要目的,在于通过典型物理问题数学模型的建立、定解条件的给出以及对模型实施具体求解和分析检验的全过程,搭建起贯通数学理论到实际应用的桥梁,在“缩微”的科研活动中进一步发展学生分析问题与解决问题的能力,使学生既能获得运用数学方法求解实际工程物理和技术问题的初步经验,又能了解Bessel函数与Legendre多项式等特殊函数的概念和基本性质,掌握求解数学物理方程常见定解问题的主要解法,特别是明确所述特殊函数在数学物理方程求解中的作用,进而为其进入各相关专业的深入学习,和深化其数学知识的积累,奠定良好的必要基础。
七、适用学科专业光信息、通信、电子、电力及相关专业(本科)八、基本教学内容与学时安排第一章数学物理方程基本概念(4学时)【内容】偏微方程基本概念,二阶线性方程的特征线与分类,典型方程的推导。
【基本要求】(1)了解三个典型方程(弦振动、热传导和Laplace方程)的推导过程;(2)掌握定解问题归属于初值、边值和混合问题的判识方法;(3)掌握二阶线性偏微方程的特征方程与特征线的求法,能以其为线索,用合适的变元代换将其化为标准方程。
【重点与难点】重点:各类泛定方程与定解问题的判识与解的确认,特征方程与特征线的求法,二阶线性偏微方程化为标准方程。
难点:推导三个典型方程。
第二章分离变量法(12学时)【内容】函数的Fourier级数展开理论与二阶常微方程的特征值理论;两端固定的弦自由振动、有限长杆上的热传导以及矩形薄板与圆盘上稳恒状态的温度分布;两端固定的弦的强迫振动、有热源的有限长杆上的热传导与Poisson 方程的特征函数展开求解法;非齐次边界条件齐次化的辅助函数法。