第五章中心对称图形(二)小结与思考(一)
- 格式:doc
- 大小:562.00 KB
- 文档页数:2
一、 教学程序设计按照上面的构想,我将本节课教学过程划分为以下五个环节:1、创设情景,提出问题;2、动手实践,感受新知;3、自主评价,反馈调控;4、归纳总结,拓展思维;5、分层作业,能力升华活动一创设情景,提出问题问题1.关于中心对称你知道那些内容教师:提出问题学生:回答问题,发表自己的见解。
问题2.作图(1)作线段AO 关于点O 的对称图形(图1)(2)作△AOB 关于点O 的对称图形(图2)教师:提出问题并巡视观察学生的作图情况,对有困难的学生给予帮助。
学生:独立作图。
图2图1 O A O B A教师重点关注:1.对中心对称的掌握程度(系统性、全面性等);2.解决问题的积极性。
设计意图:一方面通过抢答的方式复习旧的知识来调动学生的积极性,另一方面通过操作进一步了解中心对称,为下面的学习作好准备。
活动二:动手实践,感受新知问题1.观察前面图一得到的线段AB ,若将它绕点O 旋转180°,你有什么发现?学生:操作、判断。
教师:归纳说明,由于OA = OB ,所以线段AB 绕它的中点O 旋转180°后与它重合..。
问题2,.观察图2,连接AD 、BC ,得到的是什么四边形?若将它绕对角线的交点O 旋转180°,你又发现了什么?学生:按教师的要求连接线段、判断形状、操作旋转、叙述发现。
教师:倾听,结合学生的发现定义中心对称图形。
定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
问题3.现在我们已知线段、平行四边形是中心对称图形,你还知道那些图形是中心对称图形,说说看。
学生:回答问题并互相评价。
教师:倾听并鼓励回答问题的同学,给出正确结论。
教师重点关注: C O B A1.学生能否发现旋转180°后重合这一关键点,能否正确判断一个图形是中心对称图形;2.学生的发散思维;3.概念的内涵与外延是否准确。
第4题 第五章 中心对称图形(二)小结与思考(一)班级 姓名 学号学习目标:1、梳理本章所学的知识,复习圆的有关概念及点与圆的位置关系.2、掌握并理解垂径定理,并能应用进行计算与证明.3、认识圆心角、弧、弦之间相等关系的定理,掌握圆心角和圆周角的关系定理,并能应用它们解决有关问题. 基础练习:1、若点A 的坐标是(3,4),⊙A 的半径是5,则原点O 与⊙A 的位置关系是 .2、下列说法错误的有 ( ) ①过圆心的线段是直径;②周长相等的两个圆是等圆;③长度相等的两条弧是等弧;④经过圆上一点可以作无数条弦A 、1个B 、2个C 、3个D 、4个3、如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF= .4、如图是高速公路上的一个单心圆曲隧道的截面,若路面AB 宽为10米,净高C D 为7米,则此隧道单心圆的半径O A 是 .5、如图,△ABC 内接于⊙O ,∠A=45°,OB=2cm ,则BC= cm .6、一条弦分圆为1∶5的两部分,则这条弦所对的圆周角的度数为 .7、如图,⋂BC 的度数为80°,弦AB 与CD 交于点E ,∠CEB=60°,则⋂AD 的度数等于 . 典例精析:问题一、如图,在△ABC 中,∠BAC=90°,AB=4cm ,AC=6cm ,AM 是中线. (1)以点A 为圆心,4cm 长为半径作⊙A ,则B 、C 、M 与⊙A 有什么位置关系?(2)若以点A 为圆心作⊙A ,使B 、C 、M 三点中至少有一点在圆内,且至少有一点在圆外,则⊙A 的半径r 的取值范围是什么?问题二、有一座圆弧形的拱桥,它的拱高(弧的中点到弦的距离) CD 是18m ,跨度( 所对的弦长)AB 为60m . (1)求桥拱的半径;(2)若当洪水来临时,水面在桥拱内的宽度等于或小于30m 时,就要采取紧急避险措施,一次雨后测得拱顶离水面只有4m .是否需要采取紧急措施?说明理由.问题三、如图,△ABC 是⊙O 的内接三角形,AC=BC ,D 为⊙O 上一点,延长DA 至点E ,使CE=CD .(1)AE 与BD 有什么数量关系,为什么? (2)若AC ⊥BC ,说明:AD+BD=2CD .问题四、如图,点P 是圆上的一个动点,弦AB=3,PC 是∠APB 的平分线, ∠BAC=30°. (1) ∠PAC 等于多少度时,四边形PACB 有最大面积?最大面积是多少? (2) 当∠PAC 等于多少度时,四边形PACB 是梯形?说明理由.A B CM第7题 C AB AB 第5题E F C DG O 第3题AA BC 图(a ) 图(b ) 图(c )图3(d ) AAC D P课后作业:1、若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm 、深约为2 cm 的小坑,则该铅球的直径约为 cm .2、下列说法:①如图(a ),可以利用刻度尺和三角板测量圆形工件的直径;②如图(b ),可以利用直角曲尺检查工件是否为半圆形;③如图(c ),两次使用丁字尺(C D 所在直线垂直平分线段AB3、如上右图,⊙O 是△ABC 的内切圆,OD ⊥AB 于点D ,交⊙O 于点E ,∠C=60°,如果⊙O 的半径为2,则下列结论错误的是 ( ) A 、AD=DB B、 =C 、OD=1D 、AB=3 4、如图,⊙O 是A B C ∆的外接圆,点D 在⊙O 上,已知∠ACB=∠D ,BC=2,则AB 的长是__________. 5、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 .6、如图,△ABC 内接于⊙O ,∠BAC =120°, AB =AC ,BD 为 ⊙O 的直径,AD =6,则BC = .7、已知:如图,在⊙O 中,弦AB 、CD 交于点M 、AC 、DB 的延长线交于点N ,则图中相似三角形有________对8、如图,要把破残的圆片复制完整, 已知弧上的三点A 、B 、C .(1)用尺规作图法,找出弧BC 所在圆的圆心O (保留作图痕迹,不写作法); (2)设△ABC 是等腰三角形,底边BC = 10cm ,腰AB = 6 cm ,求圆片的半径R .9、如图,已知PB 交⊙O 于点A ,PO 与⊙O 交于点C ,且PA=AB=6cm ,PO =12cm.. (1)求⊙O 的半径;(2)求△PBO 的面积.10、已知:如图等边A B C △内接于⊙O ,点P 是劣弧BC 上的一点(端点除外),延长B P 至D ,使B D A P =,连结C D .(1)若AP 过圆心O ,如图①,请你判断PD C △是什么三角形?并说明理由. (2)若AP 不过圆心O ,如图②,PD C △又是什么三角形?为什么?11、如图1,半圆O 为△ABC 的外接半圆,AC 为直径,D 为 上的一动点. (1)问添加一个什么条件后,能使得B D B E B CB D=?请说明理由;(2)若AB ∥OD ,点D 所在的位置应满足什么条件?请说明理由;(3)如图,在 (1)和(2)的条件下,四边形AODB 是什么特殊的四边形?说明你的结论.第4题 第6题 N 第7题 图①D图②。
第五章生活中的轴对称3简单的轴对称图形(第2课时)一、学生起点分析学生的知识技能基础:学生在小学已经学习过生活中的轴对称图形,对轴对称图形的特点及对称轴有所了解,并能通过折纸动手制作轴对称图形。
在本章前面一节课中,又学习轴对称现象,对轴对称和轴对称图形的概念有了进一步的了解,具备了动手操作的基本技能。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些折纸活动,解决了一些简单的现实问题,感受到了从数学活动中积累数学经验的过程;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析(1)知识与技能1.本节通过实践操作与思考的有机结合,帮助我们认识简单的轴对称图形。
经历探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念.2.探索并了解线段垂直平分线的有关性质.3.应用线段垂直平分线的性质解决一些实际问题.4.尺规作图。
(2)过程与方法本节知识是通过对现实生活情景中的轴对称现象引出课题,在观察生活的基础上,从生活实践中探索轴对称现象的共同特征,进一步发展空间观念,体会轴对称在生活中的广泛运用和丰富的文化价值。
因此,在学习中,首先要养成善于观察的习惯,从不同的情境中,通过思考、分析,总结共性,学会学习。
(3)情感态度与价值观1.培养学生的抽象思维和空间观念,结合教学进行审美教育,让学生充分感知数学美,激发学生热爱数学的情感。
2.结合教材和联系生活实际培养学生的学习兴趣和热爱生活的情感。
3.通过小组折叠协作活动,培养学生协作学习的意识和研究探索的精神。
三、教学设计分析按照学生的认识规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法为辅。
教学中,精心设计了一个又一个带有启发性和思考性的问题,创设问题情境,诱导学生思考、操作,教师适时地演示,并用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于自主探索、合作交流的积极状态,从而培养学生的思维能力。
《中心对称图形》数学教学反思1、《中心对称图形》数学教学反思在教学中以出示旋转对称图形为切入点,让学生在复习旋转对称图形的知识上导出新的知识,这样有助于学生在原有的知识体系的基础上构建新的知识体系,有助于新的概念的掌握。
学生在初一下学期学习了轴对称的有关知识,在学习中心对称知识时一方面要用这一知识作类比,另一方面又要防止轴对称概念对中心对称概念的干扰,在教学中本课在揭示了中心对称图形的概念,加强了和轴对称图形的辨析,并在练习中掌握它们的区别,让学生在类比和辨析中更好地掌握中心对称图形这一概念。
中心对称图形的概念是本课重点,课前我和学生一起玩魔术,准备四张扑克牌,三张不是中心对称图形的牌,一张是中心对称图形的.牌,老师背过身,让学生任意转一张牌,老师都能猜出,让学生想为什么,同学们想不想学会这个本领?学习这节课的知识,你也会这个本领了。
对于刚才所提出的问题学生急于知道,但仅利用现有的知识技能又无法解决,从而形成认知的冲突,这就激发了他们的求知欲,使学生在问题最集中,思维最活跃的状态下开始学习。
通过一堂课的学习,在课堂结束时又回到了这个问题上,同学们明白了课前魔术表演的奥秘,也其乐融融地投入了游戏中,让他们体味到了数学的趣味和神奇。
本课在两个图形成中心对称的特征的导出由学生自主探索而得,在演示给学生两个三角形关于点成中心对称,让学生观察图形中对应线段的位置和数量关系,对应点的连线与对称中心的关系,然后让学生自己通过连线测量发现了对应线段平行且相等,对应点的连线经过对称中心,且被对称中心平分。
学生通过自主活动发现了规律,增加了他们学习数学的信心。
我在课尾安排了让学生欣赏生活中的中心对称图形,让学生知道中心对称图形与人们生活密切相关,而且充满了对称美,也让学生知道自己也能设计这些图形,再次让学生体味数学的魅力——图形美,在课后作业中布置学生搜集生活中的中心对称图形,并设计中心对称图形,让学生将课堂中所学的知识用到生活中去。
中心对称图形知识点总结和重难点精析中心对称图形是一种常见的几何形态,拥有独特的性质和作图方法。
本文将介绍中心对称图形的定义、性质、作图方法和应用,并针对重难点进行精析,帮助同学们更好地理解和掌握这一知识内容。
一、中心对称图形定义中心对称图形是指在平面内,把一个图形绕着一个定点旋转180度,能与自身重合的图形。
这个定点称为对称中心。
中心对称图形包括旋转对称图形和镜面对称图形,它们都是中心对称图形的特殊情况。
二、中心对称图形的性质中心对称图形的对称中心是对称点连线的中点。
中心对称图形对应的两个部分到对称中心的距离相等。
中心对称图形上对应点的连线经过对称中心,且被对称中心平分。
三、中心对称图形的作图方法直接作图法:对于一些比较简单的中心对称图形,我们可以直接根据定义,通过观察和推理得到其对称中心和对称点,从而完成作图。
代数法:对于一些比较复杂的中心对称图形,我们可以运用代数的相关知识,如坐标轴的变换等,来计算出对称点的坐标,从而完成作图。
几何法:对于一些特殊的中心对称图形,我们可以运用几何的相关知识,如全等三角形、平行四边形等,通过构造和计算得到对称点或对称中心,从而完成作图。
四、中心对称图形的应用中心对称图形在生活中的应用非常广泛,如机械设计、建筑结构、艺术设计和商标设计等。
例如,在机械设计中,一些齿轮和涡轮的形状是中心对称图形,因为这样的设计可以保证它们在运转过程中平稳、顺畅;在建筑结构中,许多建筑的平面图是中心对称图形,因为这样的设计可以增强建筑物的稳定性和美观性;在艺术设计,例如商标设计中,一些商标的图案是中心对称图形,因为这样的设计可以增强商标的辨识度和美观性。
五、重难点精析确定对称中心:确定一个中心对称图形的对称中心是作图的关键。
同学们需要学会观察和分析图形中隐藏的对称特征,如特殊点、平行线等,从而确定对称中心。
作图方法选择:对于不同复杂程度的中心对称图形,需要灵活选择作图方法。
直接作图法适用于简单图形,代数法和几何法适用于复杂图形。
中心对称图形教学反思引言在教育教学过程中,教师不仅需要传授知识,还需要关注学生的学习情况和学习效果。
本文将对中心对称图形的教学进行反思和总结,探讨教学过程中的问题,并提出对应的改进策略。
教学目标在进行教学反思之前,我们首先需要明确教学目标。
在教学中,中心对称图形的学习目标应包括: 1. 理解中心对称图形的概念和特征; 2. 能够识别中心对称图形,并进行分类; 3. 掌握中心对称图形的绘制方法; 4. 能够运用中心对称图形解决实际问题。
教学反思教学准备不充分在进行本次教学前,我没有充分准备教案和教学过程中需要用到的教具。
教案的设计是教学成功的基础,而教具的准备能够更好地帮助学生理解和掌握知识点。
这给了后续教学过程带来了一些麻烦。
缺乏趣味性中心对称图形的概念对于学生来说是一个抽象且较难理解的概念。
在教学过程中,我没有充分考虑到学生的兴趣和情感的培养,只是单纯地讲解知识点,这让学生产生了学习的阻力。
因此,学生对中心对称图形的概念理解不深。
缺乏练习机会在教学过程中,我没有给学生提供足够的练习机会。
只有通过大量的练习,学生才能够加深对中心对称图形的认识和掌握绘制方法。
在这方面,我存在一定的失误。
学生参与度不高在教学过程中,我没有有效地引导学生参与到课堂讨论和活动中。
学生的被动接受让他们无法主动地探索和发现知识。
这导致了学生对中心对称图形的学习兴趣不高。
改进策略提前准备教案和教具为了提高教学的效果,我应该提前准备好教案和教学所需的教具。
教案应该清晰明了,包含教学目标、教学过程和评价方式等内容。
同时,我应该准备好相关的教具,如图形纸、直尺、铅笔等,以便于更好地展示和讲解中心对称图形的概念和绘制方法。
注重趣味性和情感培养在将来的教学中,我需要更加注重趣味性和情感培养。
可以通过引入一些有趣的故事、视频或小游戏,让学生在轻松和有趣的氛围中学习中心对称图形。
同时,我也需要与学生建立良好的师生关系,关心学生的学习情况和需求,培养学生的学习兴趣和动力。
小结与思考:中心对称图形班级 姓名学习目标:进一步理解平行四边形(矩形、菱形、正方形)的有关性质和四边形是平行四边形的条件后,提高应用解题能力,培养有条理的表达能力,规范书写格式。
学习难点:平行四边形(矩形、菱形、正方形)的有关性质和判定的灵活的运用。
教学过程一、知识结构在虚线框内填写合适的条件, 以反映图形的变化二、知识回顾与典型例题(一)图形的旋转:定义、性质、画法(二)中心对称的性质:对称点连线都经过,且被 平分 (三)几种特殊的中心对称图形的定义、性质、判定(四)三角形、梯形的中位线:三、基础训练1.在等边三角形、平行四边形、矩形、菱形、正方形、等腰梯形中,既是中心对称图形又是轴对称图形的有 ( ) A .1个B .2个C .3个D .4个2.下列说法中,正确的是 ( ) A .一组对边平行的四边形是平行四边形 B .有一个角是直角的四边形是矩形 C .四条边相等的四边形是菱形 D .对角线互相垂直平分的四边形是正方形 3.正方形具有而菱形不一定具有的特征是 ( ) A .对角线互相垂直 B .四条边都相等 C .对角线互相平分 D .对角线相等5.如图,正方形ABCD 旋转后得到正方形AB ′C ′D ′.(1)旋转角是__;(2)若AB=1,C ′D=_____. 6.如图,四边形ABCD 是平行四边形,对角线AC 、BD 相交于点O ,AB=25,BC=30, AC=28,BD=46,∠ABC=70°,则∠ADC=_________,△COD 的周长为_________.7.在菱形ABCD 中,对角线AC 、BD 相交于点O .如果AC=8,BD=6,那么菱形的周长是_________,菱形的面积是_________.8.平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC=6cm ,BD=8cm 则边AB 长度x 的取值范围是 。
9.如图,点O 是菱形ABCD 对角线的交点,过点C 作BD 的平行线CE ,过点D 作AC 的平行线DE ,CE 与DE 相交于 点E ,试说明四边形OCED 是矩形。
南沙初中初三数学课堂作业(48)(命题:王 猛,审核:王银龙)班级__________姓名___________学号_________得分_________1.( 09江苏)如图,AB 是O ⊙的直径,弦C D A B ∥.若65ABD ∠=°,则ADC ∠= 。
2、(09北京)如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为BC 上一点,若∠CEA=28,则∠ABD= °。
3、(09贵州省安顺市)如图,⊙O 的半径OA =10cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为___________cm 。
4、(09年河北省)如图2,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小正方形内,则∠APB 等于___________。
5、已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).6、(09年湖北黄冈市)矩形ABCD 的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置A 1B 2C 3D 4时(如图所示),则顶点A 所经过的路线长是_________.7、(09凉山)将ABC △绕点B 逆时针旋转到A BC ''△使A B C '、、在同一直线上,若90BCA ∠=°,304cm BAC AB ∠==°,,则图中阴影部分面积为 cm 2. 8、(09龙岩)如图,AB 、CD 是半径为5的⊙O 的两条弦,AB = 8,CD = 6,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则P A +PC 的最小值为 .9、(09年杭州市)如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过△ABC 的内切圆圆心O ,且点E 在半圆弧上,①若正方形的顶点F 也在半圆弧上。
中心对称图形教学反思
本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形"、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。
教学中我非常重视本节开头的教学内容,采用观察、欣赏生活中的图片引入教学,激发学生的学习兴趣,在进行了解中心对称图形的概念时我采用了让学生观察分析探讨,使学生从感性认识上升到理性认识。
从实例出发,展现知识的形成过程,使学生不会感到数学知识学习的单调乏味,逐步提高学生抽象概括的能力。
初三学生对一些“动”图形很感兴趣,为此本节采用了动画形式,让学生亲身体验;从而使学生易于发现、总结。
教学时以启发和小组讨论交流为主,进行谈话式的引导,并注意利用变式练习题,准备开放性的习题配合,归纳小结注意点,以期达到调动学生学习的积极性,使学生的思维更加活跃,迸发出创新的火花,让学生在理解的基础上掌握中心对称图形是一个图形自身具备的特性,有别于中心对称,学会识别中心对称图形。
为了突破重点、难点,我采用了分组讨论、学生启发、实例分析的方法让学生自主说出来;相互补充,学会合作.培养了学生的良好学习习惯与和谐融洽的教学气氛。
在整个教学过程的设计中师是朋友、是合作者;讲解则是学生探索结果的概括,对学生的鼓励调动了学生的积极性.
本节课在充分调动学生学习积极性上还存在着不足.比如:有的学生发现问题却不能主动提出来。
教学中的学困生虽然有了一定的进步,但还有待于提高。
POBA321DCOB A九年级数学(上)校本练习071中心对称图形(二)小结1完成时间:40分钟 班级 姓名1.下列说法正确的是 ( ) A.平分弦的直径必垂直于这条弦 B.相等的圆心角所对的弧相等 C.90°的角所对的弦是直径 D.等弧所对的弦相等2.如图,点A 、B 、C 、D 都在⊙O 上,BC 为直径,AD=DC,∠1=20°,则∠2, ∠3的度数为( )A.15°,30°B. 20°,30°C.20°,35°D.20°,40°3. 一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm ,则此圆锥的表面积为 ( )A .4πcm 2B .12πcm 2C .16πcm 2D .28πcm24.如图,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB 上,此时∠AOE =56°,则α=______.5.如图,⊙O 的直径为10厘米,弦AB 为8厘米,P 为弦AB 上的一点.若OP 的长为整数,满足条件的点有_______个.第2题 第4题 第5题 第6题6.如图,已知PA 切⊙O 于点A ,PO 交⊙O 于点B ,若PA =6,BP =4,则⊙O 的半径为 .7.圆的弦长等于圆半径,则该弦所对的圆周角是 .8.三角形三边长为3cm 、4cm 、5cm,则它的外接圆半径为____,内切圆半径为___.9.等腰△ABC 内接于半径为5cm 的⊙O,若底边BC=8cm.则S △ABC =___________. 10.如图,⊙O 的半径为3cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB=OA ,动点P 从点出发,以πcm/s 的速度在⊙O 上按逆时针方 向运动一周回到点A 立即停止.当点P 运动的时间为 s 时,BP 与⊙O 相切.11.如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的 圆,45AOB ∠=︒,点P 在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点, 设OP x =,则x 的取值范围是_____12.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB =16cm ,水面最深地方的高度为4cm ,求BOAA O PP AOB(第10题)这个圆形截面的半径.13. 已知:如图,AB是⊙O的切线,切点为A,OB交⊙O于C且C为OB中点,过C点的弦CD使∠ACD=45°,AD的长为2,求弦AD、AC的长.14.如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中弧AB上一点,延长DA至E,使CE=CD.(1)求证:AE=BD;(2)若AC⊥BC, 求证CD.E。
数学中心对称教学反思(通用20篇)数学中心对称教学反思篇1应该说《中心对称》这节课的教学效果与我设计的预期效果差不多。
学生的配合度比较高。
师生的研究学习互动的氛围比较活跃。
1、设计流程:图片欣赏-----中心对称图形-----应用-------图片欣赏------成中心对称----性质与判定----应用-----练习与反馈----小结。
2、主要用意:通过观察图片引起学生的兴趣,欣赏图片让学生在学习中体验数学中,中心对称的美,从实际图片的设计着手引入新课,在图形的运动变化中进行概念的教学,在观察中思考中心对称的性质以及如何识别。
在例题的选择时注意加强中心对称的应用。
在问题预设中注重学生的发展。
出现问题或疑问时,加强了引导。
注重对学生学习过程中问题的解决。
按教材课本的要求,我让同学们欣赏图形、感受图形、识别图形,进而理解中心对称和中心对称图形的概念,体会对称中心的位置以及意义和价值,并感受中心对称图形与成中心对称的转化关系。
在上课时,让学生们欣赏图形,观察图形,然后再理解图形,进一步识别图形,从而把概念教学融入其中。
教学时根据新授内容预设学生可能出现的问题,加强应变并解决问题。
以教学案为裁体,协调好课本教材、教学案和,注重从学生实际出发,上课以学生为主,加强学生的活动性、参与性,有意识的突出学生的主体地位,让学生有思考问题的时间和空间。
在学生讨论“中心对称与中心对称图形”时,注重从整体的眼光中看待问题,让学生学会相互转化。
当学生出现把对称中心这个名词说成中心点时,我及时板书加以强调。
在板书设计中注重书写跟数学思想方法有关的内容,如“整体、组合、分割、转化”这样做使得学生学一定的数学思想方法,做到了潜移默化。
在遇到预设不到的问题方面,充分地让学生主动参与,自主解决,充分发挥每个学生的参与意识和学习热情。
对学生将会出现的问题作估计,课上解决,课后反思。
3、不足之处:一、根据学生的实际情况请学生画一个点关于对称中心对称的点时应在分析后进行现场演示,这样更加符合学生学情。
第2课时中心对称图形原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!东宫白庶子,南寺远禅师。
——白居易《远师》【知识与技能】使学生了解中心对称图形及其基本性质;掌握平行四边形是中心对称图形.【过程与方法】1.经历观察、发展、探索中心对称图形的有关概念和基本性质的过程,积累一定的审美体验.2.了解中心对称图形及其基本性质,掌握平行四边形是中心对称图形.【情感态度】通过观察发现、动手操作、大胆猜想、自主探索、合作交流体验到成功的喜悦,学习的乐趣并积累一定的审美体验.【教学重点】中心对称图形的定义及其性质.【教学难点】中心对称图形与轴对称图形的区别;利用中心对称图形的有关概念和基本性质解决问题.一、创设情境,导入新课提问(1)什么是轴对称?轴对称有哪些性质?(2)对于轴对称图形,沿着某条对称轴对折能重合,那么有没有什么图形绕着某点旋转也能重合呢?今天,我们就来研究这个问题.【教学说明】复习轴对称,类比轴对称学习中心对称,通过提问引发思考,为下面的学习作了铺垫.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题中心对称图形思考教材第52页“观察”【教学说明】让学生作图、操作演示、观察分析、得出结论、发现概念、经历对概念产生过程的认识,进一步理解概念.做一做:教材第53页“做一做”【教学说明】经历中心对称,探索平行四边形性质的过程,明白性质的由来,正确深刻地理解中心对称及中心对称图形的概念.说一说:教材第53页“说一说”【教学说明】及时巩固所学知识,让学生知道数学来源于生活,又服务于生活.三、运用新知,深化理解1.下列图形中,不是中心对称图形的是()2.已知□ABCD的对角线BD=4cm,将ABCD绕其对称中心O旋转180°,则点D所转过的途径长为()A.4πcmB.3πcmC.2πcmD.πcm3.已知△ABC,把△ABC绕点C顺时针旋转180°得△FEC.(1)画出△FEC;(2)试猜想AE与BF有何关系?并说明理由;(3)若S△ABC=4cm2,求S四边形ABFE.4.用四块如图1所示的正方形卡片拼成一个新的正方形,使拼成的图是一个轴对称图形,请你在图2、图3、图4中各画出一种拼法(要求三种画法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形).【教学说明】让学生独立完成,以加深对所学知识的理解与运用,教师可以根据学生反馈的情况,适当查漏补缺,重点专项强化.在完成上述题目后,让学生完成练习册中本课时的对应训练部分.答案:1.B 2.C3.(1)如图所示;(2)AE=BF,AE∥BF,理由:∵△ABC绕点C旋转180°得到△FEC,∴点A与点F关于点C成中心对称,点B与点E关于点C成心对称,∴AC=CF,BC=CE,即AE与BF关于点C成中心对称,∴AE=BF,AE∥BF.(3)∵BC=CE,∴S△ABC=S△ACE(同高等底),理由:S△ACE=S△FEC,S△FEC=S△BCF,∴S四边形ABFE=4S△ABC=4×1=16(cm2).4.如图所示(答案不唯一)四、师生互动,课堂小结通过今天的学习,你掌握了哪些知识?还有什么困惑请与大家共同交流【教学说明】回顾所学知识,做到整体认识,突出方法总结,找出存在的问题,让学生全面掌握.1.布置作业:习题23中的第2、3题.2.完成练习册中本课时练习的作业部分.学生能比较准确地分清一个图形是否为中心对称图形,同时还能举出很多日常生活当中中心对称图形的实例,但对于不规则的图形如何将它分为面积相等的两部分还比较陌生,有待进一步提高.【素材积累】1、黄鹂才唱罢,摘村庄的上空摘树林子里,摘人家的土场上,一群花喜鹊便穿戴着黑白相间的朴素裙裾而闪亮登场,然后,便一天喜气的叽叽喳喳,叽叽喳喳叫起来。
24.1旋转知人者智,自知者明。
《老子》原创不容易,【关注】店铺,不迷路!第2课时中心对称与中心对称图形1.理解中心对称和中心对称图形的定义,掌握中心对称图形的性质(重点);2.能够依据中心对称图形的定义判断某图形是否为中心对称图形(难点).一、情境导入剪纸,又叫刻纸,是中国汉族最古老的民间艺术之一,它的历史可追溯到公元6世纪.如图剪纸中两个金鱼之间有什么关系呢?二、合作探究探究点一:中心对称的性质如图,已知△AOB与△DOC成中心对称,△AOB的面积是12,AB=3,则△DOC中CD边上的高是( )A.3B.6C.8D.12解析:设AB边上的高为h,因为△AOB的面积是12,AB=3,所以12×3×h=12,所以h=8.又因为△AOB与△DOC成中心对称,△COD≌△AOB,所以△DOC 中CD边上的高是8.故选C.方法总结:成中心对称的两个图形全等,全等三角形的对应高相等.探究点二:中心对称图形的性质与识别【类型一】中心对称图形的识别下列标志图中,既是轴对称图形,又是中心对称图形的是( )解析:根据轴对称和中心对称的概念和性质逐一进行判断,选项A是中心对称图形,不是轴对称图形;选项B既是中心对称图形,又是轴对称图形;选项C 是轴对称图形,不是中心对称图形;选项D既不是中心对称图形,也不是轴对称图形.故选B.方法总结:识别中心对称图形的方法是根据概念,将这个图形绕某一点旋转180°,如果旋转后的图形能够与自身重合,那么这个图形就是中心对称图形.【类型二】与中心对称图形有关的作图如图,网格中有一个四边形和两个三角形.(1)请你分别画出三个图形关于点O的中心对称图形;(2)(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?解:(1)如图所示;(2)这个整体图形的对称轴有4条;此图形最少旋转90°能与自身重合.方法总结:作中心对称图形的一般步骤:(1)确定具有代表性的点(如线段的端点);(2)作出每个代表性点的对称点;(3)按照原图形的形状顺次连接各个对称点.【类型三】中心对称图形的性质及应用如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,试求图中阴影部分的面积.解析:观察图中阴影部分,可以利用中心对称图形的性质进行转化,将复杂问题简单化.解:因为矩形ABCD是中心对称图形,所以△BOF与△DOE关于点O成中心对称,所以图阴影部分的三个三角形就可以转化到直角△ADC中.又因为AB=2,BC=3,所以Rt△ADC的面积为×3×2=3,即图中阴影部分的面积为3.2方法总结:利用中心对称的性质将阴影部分转化到一个直角三角形中来解决更简单.【类型四】平面直角坐标系中的中心对称已知:如图,E(-4,2),F(-1,-1,以O为中心,作△EO的中心对称图形,则点E的对应点E′的坐标为________.解析:由中心对称可得到新的点与原来的点关于原点对称.∵E(-4,2),∴点E的对应点E′的坐标为(4,-2),故答案为(4,-2).方法总结:两点关于原点中心对称,横纵坐标均互为相反数.三、板书设计1.中心对称的定与性质成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分.2.中心对称图形把一个图形绕某一个定点旋转180°,如果旋转后的图形能和原来图形重合,那么这个图形叫做中心对称图形,这个定点就是对称中心.在教学过程中,应该鼓励学生进行自主探究,自己动手去探索中心对称和中心对称图形的特点,加深对新知识的认识和理解.教师在课堂上起辅助作用,引导学生自己解决问题,注重培养学生的独立意识.【素材积累】辛弃疾忧国忧民辛弃疾曾写《美芹十论》献给宋孝宗。
第4题
第五章 中心对称图形(二)
第30课时:小结与思考(一)
班级 姓名 学号
学习目标:
1、梳理本章所学的知识,复习圆的有关概念及点与圆的位置关系.
2、掌握并理解垂径定理,并能应用进行计算与证明.
3、认识圆心角、弧、弦之间相等关系的定理,掌握圆心角和圆周角的关系定理,并能应用它们解决有关问题. 基础练习:
1、若点A 的坐标是(3,4),⊙A 的半径是5,则原点O 与⊙A 的位置关系是 .
2、下列说法错误的有 ( ) ①过圆心的线段是直径;②周长相等的两个圆是等圆;③长度相等的两条弧是等弧;④经过圆上一点可以作无数条弦
A 、1个
B 、2个
C 、3个
D 、4个
3、如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF= .
4、如图是高速公路上的一个单心圆曲隧道的截面,若路面A B 宽为10米,净高C D 为7米,则此隧道单心圆的半径O A 是 .
5、如图,△ABC 内接于⊙O ,∠A=45°,OB=2cm ,则BC= cm .
6、一条弦分圆为1∶5的两部分,则这条弦所对的圆周角的度数为 .
7、如图,⋂
BC 的度数为80°,弦AB 与CD 交于点E ,∠CEB=60°,则⋂
AD 的度数等于 . 典例精析:
问题一、如图,在△ABC 中,∠BAC=90°,AB=4cm ,AC=6cm ,AM 是中线. (1)以点A 为圆心,4cm 长为半径作⊙A ,则B 、C 、M 与⊙A 有什么位置关系?
(2)若以点A 为圆心作⊙A ,使B 、C 、M 三点中至少有一点在圆内,且至少有一点在圆外,则⊙A 的半径r 的取值范围是什么?
问题二、有一座圆弧形的拱桥,它的拱高(弧的中点到弦的距离) CD 是18m ,跨度
( 所对的弦长)AB 为60m . (1)求桥拱的半径;
(2)
若当洪水来临时,水面在桥拱内的宽度等于或小于30m 时,就要采取紧急避险措施,一次雨后测得拱顶离水面只有4m .是否需要采取紧急措施?说明理由.
问题三、如图,△ABC 是⊙O 的内接三角形,AC=BC ,D 为⊙O 中 上一点,延长DA 至点E ,使CE=CD .
(1)AE 与BD 有什么数量关系,为什么? (2)若AC ⊥BC ,说明:AD+BD=2CD .
问题四、如图,点P 是圆上的一个动点,弦AB=3,PC 是∠APB 的平分线, ∠BAC=30°. (1) ∠PAC 等于多少度时,四边形PACB 有最大面积?最大面积是多少? (2) 当∠PAC 等于多少度时,四边形PACB 是梯形?说明理由.
A
B C
M
第7题 C AB E F C D
G O 第3题
A
A B
C 图(a ) 图(b ) 图(c ) 图3(d ) A
A
B C D P
作业:
1、若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm 、深约为2 cm 的小坑,则该铅球的直径约为 cm .
2、下列说法:①如图(a ),可以利用刻度尺和三角板测量圆形工件的直径;②如图(b ),可以利用直角曲尺检查工件是否为半圆形;③如图(c ),两次使用丁字尺(C D 所在直线垂直平分线段A B
3、如上右图,⊙O 是△ABC 的内切圆,OD ⊥AB 于点D ,交⊙O 于点E ,∠C=60°,如果⊙O 的半径为2,则下列结论错误的是 ( ) A 、AD=DB B
、 = C
、OD=1 D 、AB=3
4、如图,⊙O 是A B C ∆的外接圆,点D 在⊙O 上,已知∠
ACB=∠D ,BC=2,则AB 的长是__________. 5、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕A B 的长为 .
6、如图,△ABC 内接于⊙O ,∠BAC =120°, AB =AC ,BD 为 ⊙O 的直径,AD =6,则BC = .
7、已知:如图,在⊙O 中,弦AB 、CD 交于点M 、AC 、DB 的延长线交于点N ,则图中相似三角形有________对
8、如图,要把破残的圆片复制完整, 已知弧上的三点A 、B 、C .
(1)用尺规作图法,找出弧BC 所在圆的圆心O (保留作图痕迹,不写作法); (2)设△ABC 是等腰三角形,底边BC = 10cm ,腰AB = 6 cm ,求圆片的半径R .
9、如图,已知PB 交⊙O 于点A ,PO 与⊙O 交于点C ,且PA=AB=6cm ,PO =12cm.. (1)求⊙O 的半径;(2)求△PBO 的面积.
10、已知:如图等边A B C △内接于⊙O ,点P 是劣弧BC 上的一点(端点除外),延长B P 至D ,使B D A P =,连结C D .
(1)若A P 过圆心O ,如图①,请你判断PD C △是什么三角形?并说明理由. (2)若A P 不过圆心O ,如图②,PD C △又是什么三角形?为什么?
11、如图1,半圆O 为△ABC 的外接半圆,AC 为直径,D 为 上的一动点. (1)问添加一个什么条件后,能使得
B D B E B C
B D
=?请说明理由;
(2)若AB ∥OD ,点D 所在的位置应满足什么条件?请说明理由;
(3)如图,在 (1)和(2)的条件下,四边形AODB 是什么特殊的四边形?说明你的结
论.
第4题 第6题 N 第7题 AE EB D
图①
D
图② BC。