轧制过程中的力学概述
- 格式:ppt
- 大小:1.35 MB
- 文档页数:31
轧制强化机理
轧制强化是一种金属材料加工方法,通过对金属材料进行连续挤压和扭曲来改善其力学性能。
轧制强化机制主要包括以下几个方面:
1. 晶粒细化:在轧制过程中,金属材料会受到连续的塑性变形和压缩,这会导致原来较大的晶粒逐渐细化。
晶粒细化可以提高材料的强度和硬度,同时还可以改善其韧性和延展性。
2. 织构形成:轧制过程中,金属材料的晶粒会发生定向排列,形成一定的织构。
织构可以使材料在特定方向上具有优异的力学性能,例如增加其屈服强度和延展性。
3. 残余应力增加:轧制过程中,金属材料受到连续的塑性变形和压缩,会导致材料内部形成残余应力。
这些残余应力可以增加材料的屈服强度和抗变形能力,从而提高材料的强度。
4. 位错密度增加:轧制过程中,位错会在材料中产生和积累,形成高位错密度区域。
位错密度的增加可以增加材料的硬度和强度,并提高其抵抗变形和疲劳的能力。
总的来说,轧制强化通过连续的塑性变形和压缩作用,可改变金属材料的微观结构和性能,提高其力学性能和抗变形能力。
金属压力加工:即金属塑性加工,对具有塑性的金属施加外力作用使其产生塑性变形,而不破坏其完整性,改变金属的形状、尺寸和性能获得所要求的产品的一种加工方法按温度特征分类 1.热加工:在充分再结晶温度以上的温度范围内所完成的加工过程,T=∽熔。
2.冷加工:在不产生回复和再结晶温度以下进行的加工T=熔以下。
3.温加工:介于冷热加工之间的温度进行的加工.按受力和变形方式分类:由压力的作用使金属产生变形的方式有锻造、轧制和挤压轧制轧制:金属坯料通过旋转的轧辊缝隙进行塑性变形。
轧制分成纵轧(金属在相互平行且旋转方向相反的轧辊缝隙间进行塑性变形)横轧和斜轧。
内力:物体受外力作用产生变形时,内部各部分因相对位置改变而引起的相互作用力。
分析内力用切面法。
应力(全应力):单位面积上的内力全应力可分解成两个分量,正应力σ和剪应力τ)主变形和主变形图示:绝对主变形:压下量Dh=H-h 宽展量Db=b-B 延伸量Dl=l-L 相对主变形:相对压下量e1=(l-L)/L*100% 相对宽展量e2=(b-B)/B*100% 相对延伸量e3=(H-h)/H*100% 延伸系数m=l/L 压下系数h=H/h 宽展系数w=b/B ①物体变形后其三个真实相对主变形之代数和等于零;②当三个主变形同时存在时,则其中之一在数值上等于另外两个主变形之和,且符号相反。
③当一个主变形为0时,其余两个主变形数值相等符号相反金属塑性变形时的体积不变条件:金属塑性变形时,金属体积改变都很小,其变形前的体积V1和变形后的体积V2相等.这种关系称之为体积不变条件,用数学式表示为V1=V2 最小阻力定律认为:如果变形物体内各质点有向各个方向流动的可能,则变形物体内每个质点将沿力最小方向移动。
影响金属塑性流动和变形的因素:摩擦的影响变形区的几何因素的影响工具的形状和坯料形状的影响外端的影响变形温度的影响金属性质不均的影响基本应力:由外力作用所引起的应力叫做基本应力。
轧制力的计算范文轧制力是指在金属轧制过程中,金属带材或板材所受到的压力。
轧制力的计算非常重要,它能够帮助我们预测并控制轧制过程中的变形和应变,以获得所需的产品质量。
下面将详细介绍轧制力的计算方法。
1.塑性力学方法:在轧制过程中,金属材料会发生变形,塑性力学方法通过考虑材料的弹性、塑性和流变行为,从宏观和微观两个角度对轧制力进行计算。
宏观力学方法的基本假设是轧制过程中金属材料的体积守恒。
根据这个假设,轧制力可以通过以下公式进行计算:F=σ×A其中,F是轧制力,σ是金属带材或板材在轧制过程中所受到的应力,A是轧制区截面的面积。
金属材料的应力可以通过以下公式进行计算:σ=K×ε^n其中,K是比例常数,ε是真应变(真实变形),n是流变指数。
这些参数可以通过实验和理论分析来确定。
微观力学方法考虑了金属材料的结晶学和滑移机制。
它使用了位错理论和格点模型来计算轧制力。
这种方法需要对材料的晶体结构和力学性质进行深入研究和分析。
2.能量方法:能量方法的基本假设是轧制力是使金属材料的能量损失等于所用的能量传递速率的比例常数。
根据这个假设,轧制力可以通过以下公式进行计算:F=ΔE/Δt其中,ΔE是金属材料在轧制过程中的能量损失,Δt是时间。
能量损失可以通过测量轧制区的温度变化来计算,或者使用热力学和热传导理论进行估计。
需要注意的是,轧制力的计算方法多种多样,不同的金属材料和轧制过程可能需要不同的计算方法。
此外,实际的轧制力还受到很多其他因素的影响,如润滑条件、辊形状、辊缩径等。
总结起来,轧制力的计算是金属轧制过程中的重要问题。
通过正确地计算轧制力,我们能够更好地控制产品的变形和应变,提高产品的质量。
同时,轧制力的计算也为轧制设备的设计和优化提供了重要的理论依据。
钢锭轧制坯的轧制过程中的应力变形机理研究引言钢铁工业是全球重要的基础产业之一,钢锭的生产是其中至关重要的环节。
钢锭经过轧制过程得到不同形状的产品,而在这个过程中,很多因素会对钢锭的性能产生重要影响。
其中,应力变形机理是一个关键的研究领域,通过深入了解应力变形机理,我们可以优化轧制过程,提高产品质量。
一、钢锭轧制过程的应力变形机理1.1 压下过程中的应力变形机理在钢锭轧制过程中,钢锭经历了一系列的压下操作。
在压下过程中,钢锭受到了外界的应力,导致其发生塑性变形。
塑性变形的机理涉及了很多因素,包括晶体结构、位错运动、晶粒形状等。
这些因素相互作用,使得钢锭发生塑性变形,并逐渐改变其形状和结构。
1.2 轧制过程中的应力分布钢锭经过压下后,会出现应力分布的不均匀现象。
这主要是由于轧制过程中的摩擦、冷却等因素引起的。
在轧制过程中,钢锭受到了轧制辊的压力,这个压力不仅作用于钢锭的表面,还通过钢锭的内部传递。
由于钢锭的内部结构和性质的不均匀性,轧制过程中会出现应力分布的非均匀现象。
1.3 应力变形机理对产品性能的影响应力变形机理对产品性能有着重要的影响。
首先,应力变形机理会影响产品的力学性能。
通过优化轧制过程,可以改变钢锭的结构和形状,从而改变产品的力学性能。
其次,应力变形还会影响产品的表面质量。
不恰当的应力变形机理会导致产品表面出现裂纹、皱纹等缺陷,降低产品的外观质量。
二、应力变形机理的研究方法2.1 数值模拟方法数值模拟是研究应力变形机理的常用方法之一。
通过建立合理的数学模型,可以对钢锭轧制过程进行仿真计算。
数值模拟可以模拟钢锭的塑性变形、应力分布等过程,从而深入理解钢锭的应力变形机理。
2.2 实验方法实验方法是研究应力变形机理的另一种重要手段。
通过设计合理的实验方案,可以模拟钢锭轧制过程中的应力变形现象。
实验方法可以通过测量钢锭的应力分布、变形量等参数,来分析应力变形机理的影响因素。
2.3 综合研究方法综合研究方法是将数值模拟和实验方法相结合,形成一种综合研究的手段。
绪论金属压力加工:金属压力加工时金属在外力作用并且不破坏自身完整性的条件下稳定改变其形状与尺寸,而且也改善其组织和性能的加工方法,也叫金属的塑性加工。
金属加工分类:弯曲、剪切、锻造、轧制、挤压、拉拔、冲压锻造:自由锻(镦粗、延伸)、模锻轧制:纵轧、横扎、斜扎挤压:正挤压、反挤压第一章金属塑性变形原理第二章应力和变形第一节力和应力一、外力外力:作用力、反作用力(1)作用力:压力加工设备的可动工具部分对工件作用的力叫做作用力,又叫主动力。
(2)约束反力:正压力、,摩擦力约束反力:变形物体的整体运动和质点流动受到工具另外组成部分的约束,及工件与工具接触面上摩擦里的制约,工件在这些力的作用下产生形变,这些力叫约束反力。
二、内里和应力内力:当物体在外力作用下,并且物体的运动受到阻碍时,或者由于物理和物理化学等作用而引起物体内原子之间距离发生改变,在物体内部产生的一种力,叫作内力。
引起内力的两种原因:(1)为平衡外部的机械作用,在金属内部产生于外力相平衡的内力。
(2)由于物理和物理化学作用而引起的内力。
应力:内力的强度称为应力,或者说内力的大小是以应力来度量的,单位面积上作用的内力称为应力。
第二节变形变形:金属在受力状态下产生内里的同时,其形状及尺寸也产生变化,这种现象称为变形变形:弹性变形,塑性变形从微观上看:弹性变形的实质,就是所施加的外力或能不足以使原子跃过势垒。
塑性形变,如果能越过上述势垒而使大量原子定向的从原有的平衡位置转移到另一平衡位置上去,这就表现为塑性形变。
从宏观上看:金属在外里作用下产生变形,外力去除后,又恢复到原来的形状和尺寸,这样的变形称为弹性变形。
如果外力去除后,变形金属的形状和尺寸能保留下来,不会恢复到变形前的状态,这样的变形称为塑性变形。
第三节应力状态及图示主平面:只有正应力,而切应力为零的平面称为主平面主应力:主平面上的正应力称为主应力塑性变形中拉应力最容易导致金属破坏,因为它使金属内的细小疏松、空隙、裂纹等缺陷扩大,压应力有利于减小或抑制缺陷的发生与发展。
轧制原理1、基本原理和工艺1.1基本概念⑴轧制过程:轧制过程是靠旋转的轧辊与轧件之间形成的摩擦力将轧件拖近辊缝之间,并使之受到压缩产生塑性变形的过程。
轧制过程除了使轧件获得一定形状和尺寸外,还必须具有一定的性能。
⑵轧制变形区:①轧制变形区:在辊缝中的轧件承受轧制力作用发生变形的部分称为轧制变形区,通常也称为几何变形区。
②咬入角(α):是指轧件开始轧入轧辊时,轧件和轧辊最先接触的点和轧辊中心连线所构成的园心角。
Δh=D(1- cosα)式中:Δh—该道次的压下量,Δh=H–h。
D—轧辊工作直径。
③接触弧长度:轧件与轧辊相接触的园弧的水平投影长度称为接触弧长度。
④前滑:在轧制过程中,轧件出口速度Vh大于轧辊在该处的线速度V,即Vh与对应点的轧辊园周速度之差与轧辊园周速度之比称为前滑值,即V h -VS h = ×100%V式中:Sh—前滑值Vh—在轧辊出口处轧件的速度V —轧辊的园周速度⑤后滑:轧件进入轧辊的速度V H 小于轧辊在该点处线速度V 的水平分量 Vcos α的现象称为后滑现象。
v cos α-v HS H = ×100% v cos αS H —后滑值。
v H —在轧辊入口处轧件的速度。
在前滑区和后滑区分界的中性面处轧件的水平速度与此处轧辊的水平速度相等,即V γ=Vcos γ。
⑶轧制变形的表示方法:①用绝对变形量表示:即用轧制前,后轧件绝对尺寸之差表示的变形量。
绝对压下是量为轧制前、后轧件厚度H 、h 之差,即△h=H-h ; 绝对延伸量为轧制前、后轧件长度L 、l 之差,即△l=L-l ;②用相对变形量表示,即用轧制前、后轧件尺寸的相对变化表示的变形量。
H-h相对压下量: ×100%H l-L相对延伸量: ×100%L③用变形系数表示:即用轧制前、后轧制尺寸的比值表示的变形程度。
压下系数:η=H/h 延伸系数:μ=l/L变形系数能够简单而正确地反映变形的大小,因而在轧制变形方面得到极为广泛的应用。
冷轧的原理
冷轧是一种重要的金属加工工艺,它通过冷变形来改善金属材料的性能和表面质量。
在冷轧过程中,金属材料经过多道次的轧制和加工,最终得到所需的厚度和形状。
冷轧的原理涉及到材料的塑性变形、晶粒结构的改变以及应力和变形的分布等方面。
下面将从这几个方面来详细介绍冷轧的原理。
首先,冷轧的原理与金属材料的塑性变形有关。
在冷轧过程中,金属材料在室温下进行变形,这就要求金属材料具有足够的塑性,能够在室温下发生变形而不发生断裂。
通过冷轧,金属材料的晶粒会发生滑移和再结晶等变化,从而改善了金属的塑性和韧性。
其次,冷轧的原理还涉及到晶粒结构的改变。
在冷轧过程中,金属材料的晶粒会发生变形和再结晶,从而使晶粒尺寸得到细化,晶界得到清晰化,从而提高了金属材料的强度和硬度。
此外,冷轧还可以消除材料中的组织缺陷,提高材料的均匀性和稳定性。
另外,冷轧的原理还与应力和变形的分布有关。
在冷轧过程中,金属材料受到了较大的应力和变形,这些应力和变形会导致材料内部的晶粒发生改变,从而改善了材料的力学性能。
通过合理控制轧制力和轧制温度,可以使金属材料得到均匀的应力和变形分布,从而提高了材料的整体性能。
总的来说,冷轧的原理是通过控制金属材料的塑性变形、晶粒结构的改变以及应力和变形的分布,来改善金属材料的性能和表面质量。
冷轧是一种重要的金属加工工艺,它在提高金属材料力学性能的同时,还可以提高材料的表面光洁度和尺寸精度。
因此,冷轧在钢铁、有色金属等行业都有着广泛的应用。
通过深入了解冷轧的原理,可以更好地掌握冷轧工艺,提高产品的质量和生产效率。
1 第四章 轧制变形基本原理金属塑性加工是利用金属能够产生永久变形的能力,使其在外力作用下进行塑性成型的一种金属加工技术,也常叫金属压力加工。
基本加工变形方式可以分为:锻造、轧制、挤压、分为:热加工、冷加工、温加工。
金属塑性加工的优点(1)因无废屑,可以节约大量的金属,成材率较高;(2)可改善金属的内部组织和与之相关联的性能;(3)生产率高,适于大量生产。
第一节 轧钢的分类轧钢是利用金属的塑性使金属在两个旋转的轧辊之间受到压缩产生塑性变形,从而得到具有一定形状、尺寸和性能的钢材的加工过程。
被轧制的金属叫轧件;使轧件实现塑性变形的机械设备叫轧钢机;轧制后的成品叫钢材。
一、根据轧件纵轴线与轧辊轴线的相对位置分类轧制可分为横轧、纵轧和斜轧。
如图1、2、3。
横轧:轧辊转动方向相同,轧件的纵向轴线与轧辊的纵向轴线平行或成一定锥角,轧制时轧件随着轧辊作相应的转动。
它主要用来轧制生产回转体轧件,如变断面轴坯、齿轮坯等。
纵轧:轧辊的转动方向相反,轧件的纵向轴线与轧辊的水平轴线在水平面上的投影相互垂直,轧制后的轧件不仅断面减小、形状改变,长度亦有较大的增长。
它是轧钢生产中应用最广泛的一种轧制方法,如各种型材和板材的轧制。
斜轧:轧辊转动方向相同,其轴线与轧件纵向轴线在水平面上的投影相互平行,但在垂直面上的投影各与轧件纵轴成一交角,因而轧制时轧件既旋转,又前进,作螺旋运动。
它主要用来生产管材和回转体型材。
图1 横轧简图1—轧辊;2—轧件;3—支撑辊图2 纵轧示意图图3 斜轧简图1—轧辊;2—坯料;3—毛管;4—顶头;5—顶杆二、根据轧制温度不同又可分为热轧和冷轧。
所有的固态金属和合金都是晶体。
温度和加工变形程度对金属的晶体组织结构及性能都有不可忽视的影响。
金属在常温下的加工变形过程中,其内部晶体发生变形和压碎,而引起金属的强度、硬度和脆性升高,塑性和韧性下降的现象,叫做金属的加工硬化。
把一根金属丝固定于某一点在手中来回弯曲多次后,钢丝就会变硬、变脆进而断裂,这就是加工硬化现象的一个例子。
第1章 轧制过程基本概念轧制:金属通过旋转的轧辊受到压缩,横断面积减小,长度增加的过程。
纵轧:二轧辊轴线平行,转向相反,轧件运动方向与轧辊轴线垂直。
斜轧:轧辊轴线不平行,即在空间交成一个角度,轧辊转向相同,轧件作螺旋运动。
横轧:轧辊轴线平行,但转向相同,轧件仅绕自身的轴线旋转,没有直线运动。
轧制过程:靠旋转的轧辊与轧件之间的摩擦力将轧件拖入辊缝之间,并使之受到压缩产生塑性变形,获得一定形状、尺寸和性能产品的压力加工过程。
体积不变规律:在塑性加工变形过程中,如果忽略金属密度的变化,可以认为变形前后金属体积保持不变。
最小阻力定律:物体在塑性变形过程中,其质点总是向着阻力最小的方向流动。
简单轧制过程:轧制时上下辊径相同,转速相等,轧辊无切槽,均为传动辊,无外加张力或推力,轧辊为刚性的。
变形区概念:轧件承受轧辊作用,产生塑性变形的区域。
几何变形区:轧件直接承受轧辊作用,产生塑性变形的区域。
物理变形区:轧件间接承受轧辊作用,产生塑性变形的区域。
接触弧s (咬入弧):轧制时,轧件与轧辊相接触的圆弧(弧AB )咬入角α:接触弧所对应的圆心角。
变形区(接触弧)长度(l ):接触弧的水平投影长度。
咬入角α: △h = D (l-cos α)cos α=1- △h /D变形区长度l 简单轧制,即上下辊直径相等。
绝对变形量:轧前、轧后轧件尺寸的绝对差值。
压下量 △ h = H-h宽展量 △b = b-B延伸量 △l = l- L相对变形量:轧前、轧后轧件尺寸的相对变化。
相对压下量ε=( △h/H )% e = ln h/H相对宽展量 εb=(△b /B )% eb= ln b/B相对延伸量 εl=(△l/L )% el= ln l/L 。
变形系数:轧前轧后轧件尺寸的比值表示的变形。
压下系数:η=H/h宽展系数:β(ω)= b/B延伸系数: μ ( λ )=l/L总延伸系数与总压下率(累积压下率)设轧件原始面积为F0 ,经过n 道次轧制后面积为Fn ,则轧制过程:靠旋转的轧辊与轧件之间的摩擦力将轧件拖入辊缝,并使之受到 压缩 产生塑性变形,获得一定形状、尺寸和性能的压力加工过程。