弹塑性力学断裂力学基础
- 格式:pptx
- 大小:306.43 KB
- 文档页数:6
断裂力学学习报告姓名:zx 学号:xxxxxxxx一、绪论(1)传统强度理论是在假定材料无缺陷、无裂纹的情况下建立起来的,认为只要满足r []σσ≤,材料将处于安全状态。
其中:[]σ——用安全系数除失效应力得到的许用应力;r σ——为相当应力,它是三个主力学按照一定顺序组合而成的,按照从第一强度理论到第四强度强度理论的顺序,相应的应力分别为1121233134()r r r r σσσσμσσσσσσ==-+=-=但是许多事实表明,材料受应力远小于设计应力,材料仍然被破坏。
使许多力学工作者迷惑不解,于是投入对其研究,最终发现所有材料并不是理想的,材料中含有大大小小、种类各异的裂纹,于是产生了对裂纹地研究。
断裂力学从客观存在裂纹出发,把构件看成连续和和间断的统一体,从而形成了这门新兴的强度学科。
(2)断裂力学的任务是:1. 研究裂纹体的应力场、应变场与位移场,,寻找控制材料开裂的物理参量;2. 研究材料抵抗裂纹扩展的能力——韧性指标的变化规律,确定其数值与及测定方法;3. 建立裂纹扩展的临界条件——断裂准则;4. 含裂纹的各种几何构件在不同荷载作用下,控制材料开裂的物理参量的计算。
(3)断裂力学的研究方法是:假设裂纹已经存在,从弹性力学或弹塑性力学的基本方程出发,把裂纹当作边界条件,考察裂纹顶端的应力场、应变场和位移场,设法建立这些场与控制断裂的物理参量的关系和裂纹尖端附近的局部断裂条件。
(4)断裂力学的几个基本概念:根据裂纹受力情况,裂纹可以分为三种基本类型:1. 张开型(I 型)裂纹受垂直于裂纹面的拉应力作用,裂纹上下两表面相对张开,如上图a 所示;2. 滑开型(II 型),又称平面内剪切型裂纹受平行于裂纹面而垂直于裂纹前缘OO ’的剪应力作用,裂纹上下两表面沿x 轴相对滑开,如上图b 所示;3. 撕开型(III 型),又称出平面剪切型或反平面剪切型裂纹受既平行于裂纹面又平行于裂纹前缘的剪应力作用,裂纹上下两表面沿z 轴相对错开,如上图c 所示.上述三种裂纹中I 型最为危险.而我们主要也是研究I 型裂纹,因为只要确定了I 型裂纹是安全的,则其它两种裂纹也是安全的。
材料力学知识点材料力学是研究材料在外力作用下的力学性能和变形规律的学科。
它是材料科学的重要组成部分,对于材料的设计、制备和应用具有重要的理论指导作用。
在材料力学中,有一些重要的知识点,下面我们将逐一介绍。
首先,弹性力学是材料力学的基础。
弹性力学研究材料在外力作用下的弹性变形规律,即材料在受力后能够恢复原状的性质。
弹性力学的重要参数包括弹性模量、泊松比等,它们描述了材料在受力时的变形特性,是材料设计和工程应用的重要参考依据。
其次,塑性力学是材料力学中的另一个重要分支。
塑性力学研究材料在超过一定应力后发生的塑性变形规律,即材料在受力后无法完全恢复原状的性质。
塑性力学的研究对象包括屈服点、应力应变曲线、硬化规律等,它们描述了材料在受力时的塑性变形特性,对于材料加工和强度计算具有重要意义。
再次,断裂力学是材料力学中的另一重要内容。
断裂力学研究材料在受到外力作用下发生断裂的规律,即材料在受到过大应力时出现破裂的性质。
断裂力学的研究内容包括断裂韧性、断裂模式、裂纹扩展规律等,它们描述了材料在受到破坏时的性能和行为,对于材料的安全评估和损伤分析具有重要作用。
最后,疲劳力学是材料力学中的另一个重要领域。
疲劳力学研究材料在交变载荷下的疲劳破坏规律,即材料在受到交变载荷作用下出现疲劳破坏的性质。
疲劳力学的研究内容包括疲劳寿命、疲劳极限、疲劳裂纹扩展规律等,它们描述了材料在受到交变载荷时的疲劳性能和破坏行为,对于材料的寿命预测和可靠性分析具有重要意义。
综上所述,材料力学知识点涵盖了弹性力学、塑性力学、断裂力学和疲劳力学等多个方面,它们共同构成了材料力学的理论体系,对于材料的设计、制备和应用具有重要的指导作用。
在实际工程中,我们需要综合运用这些知识点,对材料的力学性能进行全面评估,从而保证材料能够在各种复杂工况下发挥良好的性能,确保工程的安全可靠。
希望通过本文的介绍,读者能够对材料力学的重要知识点有所了解,并在实际工程中加以应用。
“合于使用”原则
“合于使用”原则是以断裂力学、材料力学、弹塑性力学及可靠性系统工程为基础的严密的科学准则,与“完整结构”在概念上的区别是它在焊接结构可能存在构件形状、材料性能偏差和缺陷的前提下,通过应力分析、断裂力学、材料实验、质量检查、无损探伤等科学分析,保证结构在服役期间不发生任何已知机制如脆性破坏、疲劳失效、应力腐蚀的失效事故。
因此该原则为焊接结构的设计、制造和安全使用提供了重要的依据和强有力的手段。
显然这一原则的基础是理论分析和试验测试的方法,它取代了“完美无缺”的经验方法,同时在保证评定结构安全运行的前提下还考虑了经济性。
“合于使用”评定方法将缺陷的危险性分为:
(1)不影响安全可靠性的缺陷则允许其继续存在;
(2)对安全性不造成危害,但缺陷在服役期间可能会继续扩展,必须进行寿命预测,并允许在监控下使用;
(3)影响安全可靠性,但是如果构件降级使用可以保证安全要求,则可降级使用;
(4)对含有对安全可靠性构成威胁的缺陷的构件,应立即采取措施,进行返修或停止使用。
“合于使用”的原则明确承认焊接结构具有构件形状差异、材料性能偏差和缺陷存在的可能性,但在应力分析、断裂力学分析、材料实验、质量检查和无损探伤等科学研究的基础上,要保证结构不发生任何已知机制的失效事故。
“合于使用”的概念的确立,以及“合于使用”的原则在工程上的应用,是与工程实践的深入尤其是断裂力学的发展完善密不可分的。
而作为“合于使用”原则在工程上的应用,缺陷评定方法的发展更与断裂力学有着非常紧密的关系。
岩石力学基础
岩石力学是研究岩石在受力作用下的变形和破坏规律的科学。
它是岩土工程学、地质学、矿山工程学、地震学等领域的重要基础学科,也是岩土工程设计和施工的基础之一。
岩石力学的研究对象是岩石体系,包括岩石、岩层、岩体等。
岩石体系在受到外部力的作用下会发生变形和破坏,因此,岩石力学的研究内容主要包括岩石变形和破坏的机理、规律和特征,以及岩石结构和性质等方面。
岩石力学的基础理论包括弹性力学、塑性力学、断裂力学等。
其中,弹性力学是岩石力学的基础,它描述了岩石在受到外部力作用下的弹性变形规律。
塑性力学则描述了岩石在超过一定应力时发生的塑性变形规律。
断裂力学则描述了岩石在超过其强度极限时发生的断裂和破坏规律。
除了基础理论外,岩石力学还包括实验方法和数值模拟方法。
实验方法主要是通过模拟实验来研究岩石体系的变形和破坏规律。
数值模拟方法则是利用计算机模拟岩石体系的受力变形和破坏过程。
岩石力学在工程领域中有着广泛的应用。
在岩土工程中,岩石力学可以用于分析岩土体系的稳定性、设计隧道和地下工程等。
在地震学中,岩石力学可以用于分析地震波在不同介质中传播的规律。
在矿山工程中,岩石力学可以用于分析采矿过程中的岩体稳定性等。
总之,岩石力学是一门重要的基础学科,它对于各个领域的工程设计和施工都有着重要的意义。
随着科技的不断发展,我们相信岩石力学一定会有更加广泛和深入的应用。
断裂力学基础目 录第一章 绪论第二章 线弹性断裂力学 第三章 弹塑性断裂力学 第四章 疲劳裂纹扩展第五章 复合型裂纹的脆性断裂理论 附 录 弹性力学基础第一章 绪 论ssss2a2bss2a?一、引例][s s ≤⎪⎭⎫ ⎝⎛+=b a 21maxs s Inglis(1913)用分子论观点计算出绝大部分固体材料的强度103MPa ,而实际断裂强度100MPa ?——材料缺陷第一章 绪论第一章 绪论 二、工程中的断裂事故1.1860~1870英国铁路事故死200人/年;2.1938年3月14日比利时费廉尔大桥断成三节,1947~1950比利时又有14座大桥脆性破坏; 3.美国二次大战期间2500艘自由轮,700艘严重破坏,其中145艘断成两段,10艘在平静海面发生。
同时期大量的战机事故——广泛采用焊接工艺和高强度材料; 4.1954年1月10日英国大型喷气民航客机彗星号坠落,同时期共三架坠落;二、工程中的断裂事故5.1958美国北极星号导弹固体燃料发动机壳体爆炸; 6.1969年11月美国F3左翼脱落; 7.1972年我国歼5坠毁;8.近年来桥梁、房屋、锅炉和压力容器、汽车等第一章 绪论二、工程中的断裂事故 第一章 绪论 二、工程中的断裂事故9.2007年11月2日美国F15 空中解体;第一章 绪论三、断裂力学发展简史1.1913年,C. E. Inglis(英格列斯)将裂纹(缺陷)简化为椭圆形切口,用线弹性方法研究了含椭圆孔无限大板受均匀拉伸问题——按应力集中观点解释了材料实际强度远低于理论强度是由于固体材料存在缺陷的缘故。
2.1921 年,A. A. Griffith(格里非斯)用弹性体能量平衡的观点研究了玻璃、陶瓷等脆性材料中的裂纹扩展问题,提出了脆性材料裂纹扩展的能量准则,成为线弹性断裂力学的核心之一—能量释放率准则。
第一章 绪论 三、断裂力学发展简史3.1955~1957年,G. R. Irwin(欧文)通过对裂尖附近应力场的研究,提出了新的断裂参量—应力强度因子,并建立断裂判据,成为线弹性断裂力学的另一核心—应力强度因子断裂准则。
经典断裂力学的发展历史及未来的发展方向1. 前沿断裂力学是固体力学的一个分支,研究含裂纹型缺陷的物体的强度和裂纹扩展的规律。
断裂力学的研究内容包括:用力学的理论与方法探求描述主导裂纹起裂与扩展的力学参量;确定材料抵抗裂纹扩展能力的指标和上述二者的联系 —— 断裂准则。
自 20 世纪 50 年代开始形成与发展的断裂力学已在航空、航天、交通运输、化工、机械、核电、材料、能源、微电子、生物医学、地震等工程领域得到广泛的应用[1]。
2. 经典断裂力学的发展历史2.1 线弹性断裂力学由于材料存在着裂纹或缺陷,材料的实际强度一般仅为其理论强度的1/10- 1/100。
根据裂纹受力情况与裂纹面的位移方式,可将裂纹分为三种基本类型,即:I 型或张开型(拉裂型);Ⅱ型或滑移型(面内剪切型);Ⅲ型或撕裂型(面外剪切型)。
在这三种裂纹型式中,I 型裂纹是最危险的,容易引起低应力脆断[2]。
早在 1921 年 Griffith 在研究玻璃断裂的问题时,提出了能量释放率准则,奠定了断裂力学的基础。
Griffith 能量理论将裂纹失稳扩展的临界条件表示为:G I = G Ic (G I 为应变能释放率),即脆性断裂的G 准则。
G Ic 是材料常数,表征材料对裂纹扩展的抵抗能力,由实验确定。
上述能量准则没有考虑裂纹尖端附近的应力和应变,而裂纹尖端附近的应力应变场的分析对断裂安全设计非常重要。
1955年,G.R.Irwin(欧文)用弹性力学理论分析了裂纹尖端应力应变场后提出了简单但很实用的公式[3],即对于三种类型裂纹尖端领域的应力场与位移场公式可写成如下形式:σij (N) =K √2πr ij (N ) (θ)u i(N)=K N √r πg i (N ) (θ)2.2 弹塑性断裂力学由于线弹性断裂力学是把材料作为理想线弹性体,运用线弹性理论研究裂纹失稳和扩展规律,从而提出裂纹失稳的准则和扩展规律。
但事实上由于裂纹尖端应力高度集中,在裂纹尖端附近必然首先屈服形成塑性区域.若塑性区与裂纹尺寸相比很小,则可以认为塑性区对绝大部分的弹性应力分布影响不大,应力强度因子可近似地表示弹性变形区的应力场。