(完整word版)量子力学12套内部模拟试题(word文档良心出品)
- 格式:doc
- 大小:589.50 KB
- 文档页数:19
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)(有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hcλλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5:这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =】如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及,eVc e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
《量子力学》大一题集一、选择题(每题5分,共50分)1.量子力学的研究对象主要是?A. 宏观物体的运动规律B. 微观粒子的运动规律C. 宇宙天体的运动规律D. 生命现象的运动规律2.下列哪位科学家是量子力学的奠基人之一?A. 牛顿B. 爱因斯坦C. 薛定谔D. 伽利略3.波粒二象性是指?A. 粒子只具有波动性B. 粒子只具有粒子性C. 粒子同时具有波动性和粒子性D. 波动和粒子是两种不同的物质4.在量子力学中,描述微观粒子状态的数学工具是?A. 牛顿运动定律B. 麦克斯韦方程组C. 波函数D. 爱因斯坦场方程5.下列哪个实验是量子力学发展史上的重要里程碑?A. 迈克尔逊-莫雷实验B. 双缝干涉实验C. 托马斯·杨的光干涉实验D. 薛定谔的猫实验6.量子力学中的“不确定性原理”是由谁提出的?A. 玻尔B. 海森堡C. 狄拉克D. 费曼7.在量子力学中,观测者对系统的影响称为?A. 观测者效应B. 量子纠缠C. 超位置D. 量子跃迁8.下列哪个现象是量子力学特有的,而经典力学无法解释?A. 光的折射B. 物体的自由落体C. 电子的双缝干涉D. 行星的运动9.量子纠缠是指?A. 两个粒子之间的引力作用B. 两个粒子之间的电磁作用C. 两个粒子之间的量子态的关联D. 两个粒子之间的强相互作用10.量子计算机相比经典计算机的最大优势是?A. 计算速度更快B. 存储容量更大C. 能耗更低D. 体积更小二、填空题(每题5分,共20分)1.在量子力学中,描述微观粒子运动状态的波函数需要满足_______方程。
2.量子力学中的“不确定性原理”表明,微观粒子的位置和动量是不确定的,其不确定度的乘积有一个_______的下限。
3.量子纠缠是_______之间的一种特殊关联,当其中一个粒子的状态发生改变时,另一个粒子的状态也会瞬间发生改变。
4.在量子力学中,观测者对系统的影响是不可忽视的,这种影响被称为_______。
【关键字】试题量子力学自测题(1)一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。
(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。
(4分)4、证明是厄密算符(5分)5、简述测不准关系的主要内容,并写出坐标和动量之间的测不准关系。
(6分)2、(15分)已知厄密算符,满足,且,求1、在A表象中算符、的矩阵表示;2、在B表象中算符的本征值和本征函数;3、从A表象到B表象的幺正变换矩阵S。
三、(15分)设氢原子在时处于状态,求1、时氢原子的、和的取值几率和平均值;2、时体系的波函数,并给出此时体系的、和的取值几率和平均值。
四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出这里,,是一个常数,,用微扰公式求能量至二级修正值,并与精确解相比较。
五、(10分)令,,分别求和作用于的本征态和的结果,并根据所得的结果说明和的重要性是什么?量子力学自测题(1)参考答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:2、定态:定态是能量取确定值的状态。
性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变。
3、全同费米子的波函数是反对称波函数。
两个费米子组成的全同粒子体系的波函数为:。
4、=,因为是厄密算符,所以是厄密算符。
5、设和的对易关系,是一个算符或普通的数。
以、和依次表示、和在态中的平均值,令,,则有,这个关系式称为测不准关系。
坐标和动量之间的测不准关系为:2、解1、由于,所以算符的本征值是,因为在A表象中,算符的矩阵是对角矩阵,所以,在A表象中算符的矩阵是:设在A 表象中算符的矩阵是,利用得:;由于,所以,;由于是厄密算符,, 令,其中为任意实常数,得在A 表象中的矩阵表示式为: 2、类似地,可求出在B 表象中算符的矩阵表示为:在B 表象中算符的本征方程为:,即 和不同时为零的条件是上述方程的系数行列式为零,即 对有:,对有:所以,在B 表象中算符的本征值是,本征函数为和 3、类似地,在A 表象中算符的本征值是,本征函数为和从A 表象到B 表象的幺正变换矩阵就是将算符在A 表象中的本征函数按列排成的矩阵,即 三、解: 已知氢原子的本征解为: ,将向氢原子的本征态展开, 1、=,不为零的展开系数只有三个,即,,,显然,题中所给的状态并未归一化,容易求出归一化常数为:,于是归一化的展开系数为: ,,(1)能量的取值几率,, 平均值为:(2)取值几率只有:,平均值 (3)的取值几率为: ,,平均值 2、时体系的波函数为:=由于、和皆为守恒量,所以它们的取值几率和平均值均不随时间改变,与时的结果是一样的。
可编辑修改精选全文完整版填空题答案1.量子力学的最早创始人是 普朗克 ,他的主要贡献是于 1900 年提出了 能量量子化 假设,解决了黑体辐射 的问题。
2.按照德布罗意公式λνεh p h ==,,质量为21,μμ的两粒子,若德布罗意波长同为λ,则它们的动量比p 1:p 2= 1:1 ;能量比E 1:E 2=12:μμ;若粒子速度为v=0.9c ,按相对论公式计算,其德布罗意波长'λ=24202//p c c μλ+。
3.用分辨率为1微米的显微镜观察自由电子的德布罗意波长,若电子的能量E=kT 23(k 为玻尔兹曼常数),要能看到它的德布罗意波长,则电子所处的最高温度T max =K h k 221031-≈⎪⎭⎫ ⎝⎛λμ。
4.阱宽为a 的一维无限深势阱,阱宽扩大1倍,粒子质量缩小1倍,则能级间距将扩大(缩小) 缩小1倍;若坐标系原点取在阱中心,而阱宽仍为a ,质量仍为μ,则第n 个能级的能量E n =3,2,12/2222=n a n μπ,相应的波函数=)(x n ψ()a x ax n a n <<=0sin 2πψ和()a x x n≥≤=,00ψ。
5.处于态311ψ的氢原子,在此态中测量能量、角动量的大小,角动量的z 分量的值分别为E=eV eV 51.136.132-=;L= 2;L z = ,轨道磁矩M z =B M 。
6.两个全同粒子组成的体系,单粒子量子态为)(q k ϕ,当它们是玻色子时波函数为),(21q q s ψ=()()()()[]玻色体系1221221121q q q q k k k k ϕϕϕϕ+;为费米子时),(21q q A ψ()()()()]费米体系12212211q q q q k k k k ϕϕϕϕ-7.非简并定态微扰理论中求能量和波函数近似值的公式是E n =()()+-'+'+∑≠020m nn m mn mnnE EH H E ,)(x n ψ = ()()() +-'+∑≠00020m m nnm mnn E EH ψψ,其中微扰矩阵元'mn H =()()⎰'τψψd H n m 00ˆ;而'nn H 表示的物理意义是 在未受微扰体系中,H '的平均值 。
WORD格式整理量子力学习题(一)单项选择题 1. 能量为100ev 的自由电子的De Broglie 波长是 0 0 0 0 A. 1.2 A. B. 1.5 A. C. 2.1 A. D. 2.5 A. 2. 能量为0.1ev 的自由中子的De Broglie 波长是 0 0 0 0 A.1.3 A. B. 0.9 A. C. 0.5 A. D. 1.8 A. 3. 能量为0.1ev ,质量为1g 的质点的De Broglie 波长是 0A.1.4 A.B.1.9 0C.1.17 10J 2 A.D. 2.04.温度T=1k 时, 具有动能 010J 2 A. 0 A. =—k B T ( k B 2 为Boltzeman 常数)的氦原子的DeBroglie 波长是 0 A.8 A. B. 5.6 5.用 Bohr-Sommerfeld 0 A. 0 A. D. 12.6 0A. A. E n 二 n ,.B.C. 10 的量子化条件得到的一维谐振子的能量为(n 二0,1,2,…) E n = (n :);. 2 C. E n =(n 1) ? ■ .D. E n =2n •. 6.在0k 附近,钠的价电子的能量为3ev ,其 0 0A.5.2 A.B. 7.1 A.C. 8.4 De Broglie 波长是 0 A. 7. 钾的脱出功是2ev ,当波长为 最大能量为 A. 0.25 10J 8J. B. 1.25 C. 0.25 1046 J.D. 1.25 0A. D. 9.4 03500 A 的紫外线照射到钾金属表面时,光电子的 10」8J. 10J 6J. 8. 当氢原子放出一个具有频率--的光子,反冲时由于它把能量传递给原子而产生 的频率改变为 h A. . B. 2 . C.2七 2心 9. C ompton 效应证实了A.电子具有波动性.B.C.光具有粒子性.D. -2 '2走.D. PC .光具有波动性• 电子具有粒子性. 10. D avisson 和Germer 的实验证实了 A.电子具有波动性.B.光具有波动性. C.光具有粒子性.D. 电子具有粒子性. U (x )斗0,0:X7中运动,设粒子的状态由 [°°,x E0,X11.粒子在一维无限深势阱 J(x)二Csin 描写,其归一化常数C 为aA ^r 1. B. . C. .a• a■ a12.设t(x)—(x),在x-x ,dx 范围内找到粒子的几率为 22.D.13.设粒子的波函数为2A.屮(x, y, z) dxdydz.'■ (x, y,z),在x—x • dx范围内找到粒子的几率为2B.屮(x, y,z) dx.2 2C.( '- (x, y, z) dydz)dx .D. . dx dy dz'- (x, yz)14.设:Mx)和:2(x)分别表示粒子的两个可能运动状态,则它们线性迭加的态c「i(x)dd)的几率分布为2 2A.|汕1 +对2 .2 2 *B. |G屮l| +C2屮2 +C1C2屮1屮2.2 2 *C.k 屮1 +C2 屮2 +2GC2屮1屮2.2 2 * * * *D.- c^;2 +。
量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。
A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。
答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。
答案:±1/23. 薛定谔方程描述的是粒子的_________。
答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。
答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。
答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。
答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。
在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。
波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。
2. 请简要说明量子力学中的不确定性原理。
答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。
选择填空1、单选题(1)html中的注释标签是()A、 <-- -->B、<--! -->C、<!-- -->D、<-- --!>(2)<strong>…</strong>标签的作用是()A、斜体B、下划线C、上划线D、加粗(3)网页中的空格在html代码里表示为()A、&B、 C、"D、<(4)定义锚记主要用到<a>标签中的()属性。
A、nameB、targetC、onclickD、onmouseover(5)要在新窗口中打开所点击的链接,实现方法是将<a>标签的target属性设为()A、_blankB、_selfC、_parentD、_top(6)下列代表无序清单的标签是()A、 <ul>…<li>…</ul>B、<ol>…<li>…</ol>C、<hl>…<li>…</hl>D、< li >…< ol >…</ li >(7)要实现表单元素中的复选框,input标签的type属性应设为()A、radioB、checkboxC、selectD、text(8)要实现表单元素中的单选框,input标签的type属性应设为()A、radioB、checkboxC、selectD、text(9)要使表单元素(如文本框)在预览时处于不可编辑状态,显灰色,要在input中加()属性A、selectedB、disabledC、typeD、checked2、多选题(选错、多选、少选都不给分)(5*2)(1)定义表格常用的3个标签是()A、tableB、trC、tdD、tp(2)哪两个属性可用于表格的合并单元格()A、colspanB、trspanC、tdspanD、rowspan(3)实现下拉列表框,要用到一下哪几个标签()A、inputB、selectC、optionD、radio(4)定义框架要用到以下的哪个标签()A、frameworkB、framesetC、frameD、framespace(5)要在网页中加入音乐或背景音乐,以下哪个标签可以实现()A、embedB、objectC、bgsoundD、sound3、填空题(1*8)(1)、可用p标签定义段落。
量子力学练习题题库量子力学练习题本练习题共352道,其中(一)单项选择题 145题,(二)填空题100题,(三) 判断题50题,(四) 名词解释32题,(五)证明题25题,(六)计算题40题。
做题时应注意的几个问题:1.强调对量子力学概念、知识体系的整体理解。
2.注重量子力学基本原理的理解及其简单的应用,如:无限深势阱、谐振子和氢原子等重要问题的求解及其结论,并与其对应的经典理论进行比较,力争把量子力学理论融汇贯通。
3.数学手段上,应多看示例,尽量避免陷入过多的、繁难的数学计算中。
4.通过完成练习题,使自己加深对理论内容的理解,通过把实际物理过程用数学模型求解,培养自己独立解决实际问题的能力。
(一) 单项选择题 (共145题)1.能量为100ev的自由电子的De Broglie 波长是A. 1.2B. 1.5C.2.1D. 2.5.2. 能量为0.1ev的自由中子的De Broglie 波长是 A.1.3 B.0.9C. 0.5D. 1.8.D. 2.0.4.温度T1k时,具有动能为Boltzeman常数的氦原子的De Broglie 波长是A.8B. 5.6C. 10D. 12.6.5.用Bohr-Sommerfeld的量子化条件得到的一维谐振子的能量为()AB C D6.在0k附近,钠的价电子的能量为3ev,其De Broglie波长是A.5.2B. 7.1C. 8.4D. 9.4.7.钾的脱出功是2ev,当波长为3500的紫外线照射到钾金属表面时,光电子的最大能量为C. 0.25JD. 1.25J.8.当氢原子放出一个具有频率的光子,反冲时由于它把能量传递给原子而产生的频率改变为ABC D9pton 效应证实了A.电子具有波动性B. 光具有波动性.C.光具有粒子性D. 电子具有粒子性.10.Davisson 和Germer 的实验证实了电子具有波动性. B. 光具有波动性. C. 光具有粒子性 D. 电子具有粒子性.11.粒子在一维无限深势阱中运动,设粒子的状态由描写,其归一化常数C为A BC D12. 设,在范围内找到粒子的几率为A B C D13. 设粒子的波函数为 ,在范围内找到粒子的几率为ABCD14.设和分别表示粒子的两个可能运动状态,则它们线性迭加的态的几率分布为 A B. + C. + D. +.A.单值、正交、连续B.归一、正交、完全性C.连续、有限、完全性D.单值、连续、有限.A.波动性是由于大量的微粒分布于空间而形成的疏密波B.微粒被看成在三维空间连续分布的某种波包C.单个微观粒子具有波动性和粒子性D. A, B, C.17.已知波函数, ,,其中定态波函数是A B.和C D.和.18.若波函数归一化,则19.波函数、为任意常数,A.与描写粒子的状态不同 B.与所描写的粒子在空间各点出现的几率的比是1: C.与所描写的粒子在空间各点出现的几率的比是 D.与描写粒子的状态相同.20.波函数的傅里叶变换式是A BC D21.量子力学运动方程的建立,需满足一定的条件:1方程中仅含有波函数关于时间的一阶导数. 2方程中仅含有波函数关于时间的二阶以下的导数.3方程中关于波函数对空间坐标的导数应为线性的. 4 方程中关于波函数对时间坐标的导数应为线性的.5 方程中不能含有决定体系状态的具体参量. 6 方程中可以含有决定体系状态的能量. 则方程应满足的条件是A. 1、3和6B. 2、3、4和5. C. 1、3、4和5. D.2、3、4、5和6.22.两个粒子的薛定谔方程是A B C D.23.几率流密度矢量的表达式为 A B CD24.质量流密度矢量的表达式为A B C D25. 电流密度矢量的表达式为AB CD26.下列哪种论述不是定态的特点A.几率密度和几率流密度矢量都不随时间变化 B.几率流密度矢量不随时间变化 C.任何力学量的平均值都不随时间变化 D.定态波函数描述的体系一定具有确定的能量.27.在一维无限深势阱中运动的质量为的粒子的能级为A.,B.,C., D28. 在一维无限深势阱中运动的质量为的粒子的能级为 A., B., C., D29. 在一维无限深势阱中运动的质量为的粒子的能级为A.,B., C., D30. 在一维无限深势阱中运动的质量为的粒子处于基态,其位置几率分布最大处是 A., B.,C.,D31. 在一维无限深势阱中运动的质量为的粒子处于第一激发态,其位置几率分布最大处是A., B., C., D32.在一维无限深势阱中运动的粒子,其体系的A.能量是量子化的,而动量是连续变化的 B.能量和动量都是量子化的 C.能量和动量都是连续变化的D.能量连续变化而动量是量子化的.AB C D34.线性谐振子的第一激发态的波函数为,其位置几率分布最大处为ABCD35.线性谐振子的 A.能量是量子化的,而动量是连续变化的B.能量和动量都是量子化的 C.能量和动量都是连续变化的D.能量连续变化而动量是量子化的.36.线性谐振子的能量本征方程是AB C D37.氢原子的能级为A..B..CD38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为AB C D39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为A B C D40.波函数和是平方可积函数,则力学量算符为厄密算符的定义是A B C D41. 和是厄密算符,则A.必为厄密算符.B.必为厄密算符C.必为厄密算符D. 必为厄密算符42.已知算符和,则A.和都是厄密算符B.必是厄密算符C.必是厄密算符D.必是厄密算符.43.自由粒子的运动用平面波描写,则其能量的简并度为A.1B. 2C. 3D. 4.A B C D.45.角动量Z分量的归一化本征函数为A BC D是的本征函数,不是的本征函数 B.不是的本征函数,是的本征函数.C 是、的共同本征函数. D. 即不是的本征函数,也不是的本征函数.47.若不考虑电子的自旋,氢原子能级n3的简并度为 A. 3 B. 6 C.9 D. 12.48.氢原子能级的特点是 A.相邻两能级间距随量子数的增大而增大 B.能级的绝对值随量子数的增大而增大 C.能级随量子数的增大而减小 D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为,这种性质是库仑场特有的B.中心力场特有的. C.奏力场特有的 D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为,则其几率分布最大处对应于Bohr原子模型中的圆轨道半径是 A B C D51.设体系处于状态,则该体系的能量取值及取值几率分别为 A BC D52.接51题,该体系的角动量的取值及相应几率分别为 A B C D53. 接51题,该体系的角动量Z分量的取值及相应几率分别为 A BC D54. 接51题,该体系的角动量Z分量的平均值为A B C D55. 接51题,该体系的能量的平均值为A..B..CD56.体系处于状态,则体系的动量取值为A B C D57.接上题,体系的动量取值几率分别为 A. 1,0. B. 1/2,1/2C. 1/4,3/4/ D. 1/3,2/3.58.接56题, 体系的动量平均值为A B C D59.一振子处于态中,则该振子能量取值分别为A BC D60.接上题,该振子的能量取值的几率分别为A B. ,. C.,D61.接59题,该振子的能量平均值为 B C D62.对易关系等于为的任意函数 A..B..CD63. 对易关系等于 A BC D64.对易关系等于A B CD65. 对易关系等于A B C D66. 对易关系等于A B C D67. 对易关系等于A B CD68. 对易关系等于A B CD69. 对易关系等于A B C D70. 对易关系等于A B C D71. 对易关系等于A B C D72. 对易关系等于A B C D73. 对易关系等于A B C D74. 对易关系等于A B C D75. 对易关系等于A B C D76. 对易关系等于A B C DA B C D78. 对易式等于m,n为任意正整数A B C DA B C D80对易式等于c为任意常数A B C D81.算符和的对易关系为,则、的测不准关系是A BC D82.已知,则和的测不准关系是A B C D83. 算符和的对易关系为,则、的测不准关系是A B CD84.电子在库仑场中运动的能量本征方程是A BC D85.类氢原子体系的能量是量子化的,其能量表达式为A B C D86. 在一维无限深势阱中运动的质量为的粒子,其状态为,则在此态中体系能量的可测值为A., B,C., D87.接上题,能量可测值、出现的几率分别为 A.1/4,3/4B. 3/4,1/4C.1/2, 1/2D. 0,1.88.接86题,能量的平均值为A., B., C., D89.若一算符的逆算符存在,则等于A. 1B. 0C. -1D. 2.90.如果力学量算符和满足对易关系, 则A. 和一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值B. 和一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.C. 和不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值.D. 和不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.可取一切实数值 B.只能取不为负的一切实数 C.可取一切实数,但不能等于零. D.只能取不为正的实数.92.对易关系式等于A BCD93.定义算符, 则等于A B C D94.接上题, 则等于AB C D95. 接93题, 则等于AB C D96.氢原子的能量本征函数A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z分量算符的本征函数 B.只是体系能量算符、角动量Z分量算符的本征函数,不是角动量平方算符的本征函数 C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z 分量算符的本征函数 D.是体系能量算符、角动量平方算符、角动量Z分量算符的共同本征函数.97.体系处于态中,则A.是体系角动量平方算符、角动量Z分量算符的共同本征函数 B.是体系角动量平方算符的本征函数,不是角动量Z分量算符的本征函数 C.不是体系角动量平方算符的本征函数,是角动量Z分量算符的本征函数 D.即不是体系角动量平方算符的本征函数,也不是角动量Z分量算符的本征函数.98.对易关系式等于A B C D99.动量为的自由粒子的波函数在坐标表象中的表示是,它在动量表象中的表示是ABCD100.力学量算符对应于本征值为的本征函数在坐标表象中的表示是AB C D101.一粒子在一维无限深势阱中运动的状态为,其中、是其能量本征函数,则在能量表象中的表示是A..B..C..D102.线性谐振子的能量本征函数在能量表象中的表示是 A B CD103. 线性谐振子的能量本征函数在能量表象中的表示是 A B C D104.在的共同表象中,波函数,在该态中的平均值为AB CD. 0.105.算符只有分立的本征值,对应的本征函数是,则算符在表象中的矩阵元的表示是以本征值为对角元素的对角方阵B一个上三角方阵. C.一个下三角方阵.D.一个主对角线上的元素等于零的方阵.107.力学量算符在动量表象中的微分形式是 ABCD108.线性谐振子的哈密顿算符在动量表象中的微分形式是 A B CD109.在表象中,其本征值是 AB0 C D110.接上题, 的归一化本征态分别为 A BC D111.幺正矩阵的定义式为 ABCD112.幺正变换 A.不改变算符的本征值,但可改变其本征矢. B.不改变算符的本征值,也不改变其本征矢 C.改变算符的本征值,但不改变其本征矢D.即改变算符的本征值,也改变其本征矢.113.算符,则对易关系式等于 ABC D114.非简并定态微扰理论中第个能级的表达式是考虑二级近似ABC D115. 非简并定态微扰理论中第个能级的一级修正项为 A BC D116. 非简并定态微扰理论中第个能级的二级修正项为 A B C D 117. 非简并定态微扰理论中第个波函数一级修正项为 ABC D118.沿方向加一均匀外电场,带电为且质量为的线性谐振子的哈密顿为 A BCD119.非简并定态微扰理论的适用条件是A B C D 120.转动惯量为I,电偶极矩为的空间转子处于均匀电场中,则该体系的哈密顿为A B C D121.非简并定态微扰理论中,波函数的一级近似公式为A B C D122.氢原子的一级斯塔克效应中,对于的能级由原来的一个能级分裂为五个子能级 B. 四个子能级C. 三个子能级 D. 两个子能级.123.一体系在微扰作用下,由初态跃迁到终态的几率为A BC D写出体系的哈密顿 B选取合理的尝试波函数.C 计算体系的哈密顿的平均值 D体系哈密顿的平均值对变分参数求变分.电子具有波动性B.光具有波动性. C. 原子的能级是分立的. D. 电子具有自旋.126.为自旋角动量算符,则等于A BC .D127. 为Pauli算符,则等于A B CD128.单电子的自旋角动量平方算符的本征值为A B C D129.单电子的Pauli算符平方的本征值为A0 B1 C. 2D. 3.130.Pauli算符的三个分量之积等于A. 0 B1CD131.电子自旋角动量的分量算符在表象中矩阵表示为A B C D 132. 电子自旋角动量的y分量算符在表象中矩阵表示为A B C D 133. 电子自旋角动量的z分量算符在表象中矩阵表示为A B C D 134.是角动量算符,,则等于A BC. 1 D. 0135.接上题, 等于A B C D. 0.136.接134题, 等于A B C D. 0.137.一电子处于自旋态中,则的可测值分别为A B .C D138.接上题,测得为的几率分别是A B CD139.接137题, 的平均值为0 B C D140.在表象中,,则在该态中的可测值分别为 ABC D141.接上题,测量的值为的几率分别为A B.1/2,1/2. C.3/4,1/4. D.1/4, 3/4.142.接140题,的平均值为A B C D143.下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系 B.氢原子中的电子、质子、中子组成的体系是全同粒子体系 C.光子和电子组成的体系是全同粒子体系 D.粒子和电子组成的体系是全同粒子体系.144.全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数 A.是对称的 B.是反对称的 C.具有确定的对称性. D.不具有对称性.145.分别处于态和态的两个电子,它们的总角动量的量子数的取值是0,1,2,3,4B.1,2,3,4. C. 0,1,2,3 D.1,2,3.(二) 填空题(共100题)1pton效应证实了。
561模拟试题试题1一. (20分)设氢原子处于 ()()()()()()()ϕθϕθϕθϕθψ,Y R 21,Y R 21,Y R 21,,112110311021---=r r r r 的状态上,求其能量、角动量平方及角动量z 分量的可能取值与相应的取值几率,进而求出它们的平均值。
二. (20分)作一维运动的粒子,当哈密顿算符为()x V p H +=μ2ˆˆ20时,能级是0nE ,如果哈密顿算符变成μαp H H ˆˆˆ0+=(α为实参数),求变化后的能级n E 。
三. (20分)质量为μ的粒子处于如下的一维位势中 ()()()x V x c x V 0+-=δ 其中,()⎩⎨⎧>≤=0 ,0,010x V x x V 且 0>c ,01>V , 求其负的能量本征值。
四.(20分)已知在2L 与z L 的共同表象中,算符yL ˆ的矩阵形式为562⎪⎪⎪⎭⎫ ⎝⎛--=0i0i 0i0i 02ˆy L 求yL ˆ的本征值和归一化的本征矢。
五.(20分)两个线谐振子,它们的质量皆为μ,角频率皆为ω,加上微扰项21 ˆx x Wλ-=(21,x x 分别为两个谐振子的坐标)后,用微扰论求体系基态能量至二级修正、第二激发态能量至一级修正。
试题2一.(20分)质量为m 的粒子作一维自由运动,如果粒子处于()kx A x 2sin =ψ的状态 上,求其动量pˆ与动能T ˆ的取值几率分布及平均值。
二. (20分)质量为m 的粒子处于如下一维势阱中()⎪⎩⎪⎨⎧>>≤≤<∞=a x V a x x x V )0(0 ,00.0若已知该粒子在此势阱中存在一个能量20V E =的状态,试确定此势阱的宽度a 。
三. (20分)体系的三维空间是由三个相互正交的态矢1u、2u和3u 构成的,以其为基矢的两个算符Hˆ和B ˆ的矩阵形式如下563⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--=010100001ˆ ;100010001ˆb B H ω其中,ω,b 为实常数。
证明算符Hˆ和B ˆ是厄米特算符,并且两者相互对易,进而求出它们的共同本征函数。
四. (20分)固有磁矩为s ˆγμ=的电子,0=t 时处于2 =x s 的状态,同时进入z 方向均匀磁场k 0B B =中。
求0>t 时测量x sˆ得2-=x s 的几率是多少。
γ为已知常数,sˆ 为自旋算符。
五.(20分)一个电荷为q 、质量为μ和角频率为ω的线谐振子,受到恒定弱电场ε的作用,即x q W ˆε-=,求其能量近似到二级修正、波函数到一级修正。
试题3一.(20分)质量为m 的粒子,在阱宽为a 的一维无限深势阱中运动,当0=t 时,粒子处于状态()()()()x x x x 3214141210,ϕϕϕψ+-=其中,()x n ϕ为粒子的第n 个本征态。
(1) 求0=t 时能量的取值几率; (2) 求0>t 时的波函数()t x ,ψ;564(3) 求0>t 时能量的取值几率。
二.(20分)设体系的哈密顿算符为()22221ˆ21ˆˆ21ˆz y x L I L L I H ++=利用适当的变换求出体系的能量本征值与相应的本征矢。
三. (20分) 自旋为21、固有磁矩为sγμ=(γ为实常数)的粒子,处于均匀外磁场j 0 B B =中,设0=t 时,粒子处于2=z s 的状态,求出0>t 时的波函数,进而计算x sˆ与z s ˆ的平均值。
四.(20分)若一维体系的哈密顿算符()x V p H +=μ2ˆˆ2不显含时间,在能量表象中证明: (1) ()mn m n mnx E E p -=i μ(2) ()()mmn mn n m p x E E 22222μ=-∑(3)()()mmnmnn mx V x x E E⎪⎭⎫⎝⎛=-∑d d 22μ五. (20分) 各向同性三维谐振子的哈密顿算符为())(21ˆˆˆ21ˆ2222222z y x p p p H z y x +++++=μωμ 加上微扰()zx yz xy W++-=λˆ之后,用微扰论求第一激发态的一级能量565修正。
试题4一.(20分)质为m 的粒子处于一维位势()⎪⎩⎪⎨⎧>>≤≤<∞=a x V ax x x V 00 ,00,)(0中,导出其能量本征值00V E <<时满足的方程。
二.(20分)质量为m 的粒子作一维自由运动,如果粒子处于()kx A x 2sin =ψ的状态 上,求其动量pˆ与动能T ˆ的其中几率分布及平均值。
三.(20分)若一维体系的哈密顿算符()x V p H +=μ2ˆˆ2不显含时间,在能量表象中证明:(1) ()mn m n mn x E E p -= i μ(2) ()()mmn mnn mp x E E22222μ=-∑(3)()()mnnmnn mx V x x E E⎪⎭⎫ ⎝⎛=-∑d d 22μ566四.(20分)求自旋角动量在任意方向n(方向余弦为γβαcos ,cos ,cos )的投影算符γβαcos ˆcos ˆcos ˆˆz y x n s s s s++= 的本征值和相应的本征矢。
五.(20分)设有一量子体系,其能量算符0ˆH 的本征矢记为() ,2,1,0=n n ,给定厄米特算符B Aˆ,ˆ及[]A B C ˆ,ˆi ˆ=。
设体系受到微扰[]ˆ,ˆi ˆH A W λ=的作用,若已知0ˆ0,0ˆ0,0ˆ0000C C B B A A ===,试在微扰后的基态(无简并)下计算Bˆ的平均值,准确到λ量级。
试题5一.(20分)氢原子在0=t 时刻处于状态()()()()⎥⎦⎤⎢⎣⎡++=r r r C r 3212131210,ϕϕϕψ式中,()r nϕ为氢原子的第n 个本征态。
(1) 计算?=C ;(2) 计算0=t 时能量的取值几率与平均值;(3) 写出任意时刻t 的波函数()t r ,ψ。
二.(20分) 证明:(1) 若一个算符与角动量算符J ˆ的两个分量对易,则其必与Jˆ567的另一个分量对易;(2)在2ˆJ 与z J ˆ的共同本征态JM 下,xJ ˆ与y J ˆ的平均值为零,且当J M =时,测量x J ˆ与yJ ˆ的不确定性之积为最小。
三. (20分)有一质量为m 的粒子,在如下势场中运动()⎪⎩⎪⎨⎧<<≤≤><∞=b x a V a x b x x x V ,0 ,0,0,0试求出束缚能级所满足的方程。
四.(20分)由两个自旋为21的粒子构成的体系,若两个粒子的自旋态分别处于⎪⎪⎭⎫⎝⎛=011χ;⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛-⋅=2i exp 2sin 2i exp 2cos 2ϕθϕθχ 的态上,求体系分别处单态与三重态度几率。
五.(20分)一个质量为μ、角频率微0ω的线谐振子,受到微扰2 ˆx Wβ=的作用, (1) 用微扰论求能量的一级修正;(2) 求能量的严格解,并与(1)的结果比较。
试题6568一. (20分)设氢原子处于()()()()()()()ϕθϕθϕθϕθψ,Y R 21,Y R 21,Y R 21,,112110311021---=r r r r 的状态上,求其能量、角动量平方及角动量z 分量的可能取值与相应的取值几率,进而求出它们的平均值。
二.(20分)已知算符B Aˆ,ˆ满足A A B A A A A A ˆˆˆ ,1ˆˆˆˆ ,0ˆ2+++==+=,证明B Bˆˆ2=,并在B ˆ表象中求出A ˆ的矩阵表示。
三.(20分)作一维运动的粒子,当哈密顿算符为()x V p H +=μ2ˆˆ20时,能级是0n E ,如果哈密顿算符变成μαp H H ˆˆˆ0+=(α为实参数),求变化后的能级n E 。
四. (20分) 两个自旋为21的非全同粒子,自旋间的相互作用是21ˆˆs s C ⋅,其中,C 是常数,1ˆs 与2ˆs 分别是粒子1和粒子2的自旋算符。
设0=t 时,粒子1的自旋沿z 轴的正方向,粒子2的自旋沿z 轴的负方向,求0>t 时测量粒子2的自旋处于z 轴负方向的几率。
五.(20分)三维各向同性谐振子的能量算符为()222220212ˆˆz y x m m p H +++=ω试写出能量本征值与本征函数。
如这谐振子又受到微扰569xy W 22ˆωλ=()1<<λ的作用,用微扰论求基态能量到二级微扰修正,并与精确解比较。
试题7一. (20分) 线谐振子在0=t 时处于()()()()x x x x 3102123210,ϕϕϕψ++=态上,其中()x n ϕ为线谐振子第n 个本征值对应的本征函数。
(1) 求在()0,x ψ态上能量的可测值、取值几率与平均值; (2) 写出0>t 时刻的波函数及相应的能量取值几率与平均值。
二.(20分)对一维定态问题,若哈密顿量为()x V p H +=μ2ˆˆ2 且设其具有断续譜,即n E n H n=ˆ,证明 (1)()k p k x E Eknnn k22222ˆμ=-∑ (2) 若()x V 与μ无关,则 ()μ∂∂-=-∑kknnn kE x E E2222三.(20分)两个自旋为21的粒子,它们之间的相互作用为是57021ˆˆs s ⋅γ,其中,γ是常数。
设0=t 时,粒子1的自旋沿z 轴的正方向,粒子2的自旋沿x 轴的正方向,求0>t 时测量粒子1的自旋沿z轴正方向的几率。
四.(20分)质量为μ、电荷为q 的粒子,在方向互相垂直的均匀电场()0,0,εε=和均匀磁场()B B ,0,0= 中运动,取电磁场的标势和矢势分别为x εφ-=和()0,,0Bx A =,其哈密顿算符为φμq A c q p H +⎪⎭⎫ ⎝⎛-=2ˆ21ˆ找出包括Hˆ在内的力学量完全集,并进而求出能量的本征值和本征矢。
五.(20分) 类氢离子中,电子与原子核的库仑相互作用为()r Ze r V 2-=(Ze 为核电荷) 当核电荷变为()e Z1+时,相互作用能增加re W2ˆ-=,试用微扰论计算它对能量的一级修正,并与严格解比较。
试题8一. (20分)质量为m 的粒子,在如下势场()()()x V x V x V ~0+-=δ571中运动,其中,()⎩⎨⎧>≤=0 ,0 ,0~1x V x x V 0V 、1V 为两个正实数, 求能量本征值E ()0<E 。
二.(20分) 质量为m 的粒子处于一维谐振子势场()()0,2121>=k kx x V 的基态,(1) 若弹性系数k 突然变成k 2,即势场变成()22kx x V =,随即测量粒子的能量,求发现粒子处于新势场()x V 2基态度几率; (2) 势场突然由()x V 1变为()x V 2后,不进行测量,经过一段时间τ后,势场又恢复成()x V 1,问τ取什么值时粒子仍恢复到原来()x V 1势场的基态(几率为100%)。