量子力学讲义I.波函数与Schrodinger方程
- 格式:doc
- 大小:119.50 KB
- 文档页数:5
第二章 波函数和 Schrodinger 方程§1 波函数的统计解释__量子力学的第一条假设:量子状态公设一个微观粒子的状态可以由波函数来描述,波函数的模方为为粒子的概率密度,波函数满足归一化条件。
简言之:波函数完全描述微观粒子状态(一)波函数描写自由粒子的平 面 波 称为 de Broglie 波。
此式称为自由粒子的波函数。
如果粒子处于随时间和位臵变化的力场中运动,他的动量和能量不再是常量,粒子的状态就不能用平面波描写,而必须用较复杂的波描写,一般记为:,它通常是一个复函数。
如果用波函数描述粒子状态,则必须解决3个问题? (1) ψ 是怎样描述粒子的状态? (2) ψ 如何体现波粒二象性的? (3) ψ 描写的是什么样的波呢? (二)波函数的解释波函数对微观粒子的描写统一了粒子性与波动性的关键在于波函数的统计解释:如果微观粒子的波函数是 则某一时刻粒子出现在位臵r 处,体积元dV 中的粒子的概率,与波函数模的平方成正比。
exp ()iA Et ⎡⎤ψ=∙-⎢⎥⎣⎦p r (,)t ψr (,)t ψr()2,,,dW x y z t dV=ψ概率密度/dW dV所以, 与经典物理学中的波动不同,它不是某种实际的物理量振幅在空间的分布,而只是一种几率振幅。
波函数Ψ(x,y,z,t )的统计解释(哥本哈根解释):波函数模的平方代表某时刻t 在空间某点(x,y,z )附近单位体积内发现粒子的概率,即|Ψ| 2 代表概率密度。
波函数的统计意义是波恩于1926年提出的。
由于波恩在量子力学所作的基础研究,特别是波函数的统计解释,他与博特共享了1954年的诺贝尔物理学奖。
玻恩对波函数的统计诠释—哥本哈根学派(以玻尔和海森伯为首)观点。
玻恩假定: 描述粒子在空间的概率分布的“概率振幅”,而 则表示概率密度例题1:电子的自由平面波波函数在空间各点发现光子的概率相同 用电子双缝衍射实验说明概率波的含义 (1)入射强电子流干涉花样取决于概率分布,而概率分 布是确定的。
量子力学中的薛定谔方程与波函数解析在量子力学中,薛定谔方程(Schrodinger Equation)是描述微观粒子行为的基本方程。
它以奥地利物理学家厄尔温·薛定谔(Erwin Schrodinger)的名字命名,是量子力学理论的核心。
薛定谔方程的一般形式为:iħ∂Ψ/∂t = -ħ²/2m ∇²Ψ + VΨ其中,i是虚数单位,ħ是普朗克常量除以2π,∂Ψ/∂t表示波函数关于时间的偏导数,m是粒子的质量,∇²Ψ表示波函数的拉普拉斯算子,V是势能函数,Ψ表示波函数。
波函数Ψ是描述量子粒子的状态的数学函数。
它包含了粒子的位置、动量、自旋等信息。
根据量子力学的基本假设,波函数Ψ的模的平方|Ψ|² 可以解释为在不同位置找到粒子的概率密度。
薛定谔方程是一个偏微分方程,求解它得到的波函数解析表达式可以提供关于粒子行为的重要信息。
然而,对于复杂系统,薛定谔方程的解析求解并不容易。
因此,通常采用数值方法或近似方法进行求解。
对于简单系统,我们可以得到薛定谔方程的解析解。
以一维简谐振子为例,假设势能函数V(x) = 1/2 mω²x²,其中ω是振动频率。
代入薛定谔方程,可以得到一维简谐振子的波函数解析解:Ψ(x) = (mω/πħ)^(1/4) * exp(-mωx²/2ħ) * H(n) ((mω/ħ)^(1/2)x)其中H(n)是埃尔米特多项式(Hermite Polynomial),n为非负整数。
除了一维简谐振子,薛定谔方程的解析解还可以得到其他简单系统的波函数解。
例如,无限深势阱、方势垒、氢原子等都有其特定的波函数解析表达式。
对于更复杂的系统,如多粒子体系或相互作用系统,薛定谔方程的解析解非常困难。
这时,我们常常采用数值方法,如薛定谔方程的数值求解算法(如分裂算子法、变分法等)来获得波函数的近似解。
总之,薛定谔方程与波函数解析是量子力学研究中的重要内容。
第1章波函数与Schrodinger方程1.1 波函数的统计诠释1.2 Schrodinger方程1.3 量子态叠加原理第2章一维势场中的粒子2.1 一维势场中粒子能量本征态的一般性质2.2 方势2.3 δ势2.4 一维谐振子第3章力学量用算符表达3.1 算符的运算规则3.2 厄米算符的本征值与本征函数3.3 共同本征函数3.4 连续谱本征函数的“归一化”第4章力学量随时间的演化与对称性4.1 力学量随时间的演化*4.2 波包的运动,Ehrenfest定理4.3 Schrodinger图像与Heisenberg图像4.4 守恒量与对称性的关系4.5 全同粒子体系与波函数的交换对称性第5章中心力场5.1 中心力场中粒子运动的一般性质*5.2 无限深球方势阱5.3 三维各向同性谐振子5.4 氢原子第6章电磁场中粒子的运动6.1 电磁场中荷电粒子的运动,两类动量6.2 正常Zeeman效应6.3 Landau能级第7章量子力学的矩阵形式与表象变换7.1 量子态的不同表象,幺正变换7.2 力学量(算符)的矩阵表示7.3 量子力学的矩阵形式7.4 Dirac符号第8章自旋8.1 电子自旋态与自旋算符8.2 总角动量的本征态8.3 碱金属原子光谱的双线结构与反常Zeeman效应8.4 自旋单态与三重态,*自旋纠缠态第9章力学量本征值问题的代数解法9.1 谐振子的Schrodinger因式分解法9.2 角动量的本征值与本征态*9.3 两个角动量的耦合,Clebsch-Gordan系数第10章微扰论10.1 束缚态微扰论*10.2 散射态微扰论第11章量子跃迁11.1 量子态随时间的演化*11.2 突发微扰与绝热微扰11.3 周期微扰,有限时间内的常微扰*11.4 能量-时间不确定度关系*11.5 光的吸收与辐射的半经典理论第12章其他近似方法*12.1 Fermi气体模型12.2 变分法*12.3 分子结构注:加星号的部分只做概念上的要求。
I.波函数与Schrodinger方程
1. 经典波有波函数吗?量子波函数与经典波函数有什么异同?
答:波函数就其本义而言不是量子力学特有的概念.任何波都有相应的波图执只是习惯上这一术语通常专用于描
述量子态而不常用于经典波.经典波例如沿轴方向传播的平面单色波,波动动量对和的函数——波函数可写为
,其复指数形式为,波函数给出了传播方向上时刻在点处的振动
状态。
经典波的波函数通常称之为:波的表达式或波运动方程.量子力学中,把德布罗意关系 p =k 及 E =ω代入
上式就得到自由粒子的波函数 ( 自由粒子的波的表达式 ).
经典波与概率狡的唯一共性是叠加相干性。
但概率波函数是态函数,而态的叠加与经典波的叠加有着本质的差别.经典波函数描述的是经典波动量对时空变量的函数关系.量子力学中的概率波函数其意义不同于经典物理中的任何物理量.概率波函数虽是态函执但本身不是力学量.态函数给出的也不是物理量间的关系.概率波函数的意义是:由波函效描述微观体系各种力学量的概率分朽.作为一种约定的处理方法,经典波可表为复指数函数形式但只有它的实部才有物理意义.而概率波函数一般应为复函数.非相对论量子力学中,粒子不产生出不泯灭.粒子一定在全空间中出现,导致了概率被函数归一化问题,而经典波则不存征这个问题.概率波函数乘上一常数后,粒子在空间各点出现的相对概率不变.因而,仍描述原来的状态.而经
典波中不同的波幅的波表不同的波动状态,振幅为零的态表示静止态.而量子力学中,振幅处处为零的态表示不存在粒子.另外经典波函数与量子被函数满足各自的、特征不同的波方程.
2 .波函数的物理意义——微观粒子的状态完全由其被函数描述,这里“完全'的含义是什么?波函数归一化的含义又是什么 ?
答:按照波函数的统计解释波函数统计地描述了体系的量子态.如已知单粒子 ( 不考虑自旋 ) 波函数为,
则不仅可确定粒子的位置概率分布,而且如动员等粒子其他力学且的概率分布也均可通过而完全确定.出于量子理论与经典理论不同,它一般只能预言测量的统计结果.而只要已知体系波函数,便可由它获得该体系的一切可能物理信息.从这个意义上着,有关体系的全部信息显然都已包含在波函数中,所以我们此微现粒子的状态完全由其波函数描述,并把波函数称为态函数.非相对论量子力学中粒子不产生、不泯灭.根据波函数的统计解释,在任何时刻,粒子一定在空间出现,所以,在整个空
间中发现粒子是必然事件.概率论中认为必然事件的概率等于 1 .因而,粒子在整个空间中出现的概率即概率密度对
整个空间积分应等于1 .式中积分号下的无限大符号表示对整个空间积分.这个条件称为归一化条件.满足归一化条件的波函数称为归一化波函数.显然,平方可积波函数才可以归一化.
3 .证明从单粒子薛定谔方程得出的粒子速度场是非旋的,即求证,其中,为几率密度,为几率流
密度。
证:几率密度和几率流密度的表达式为:
,,
因此速度场为:
其旋度为:
4 .粒子在一维势场 V(x) 中运动,试证明:属于不同能级的束缚态波函数互相正交.
证:设,分别为属于能级,的束缚态波函数.由于是一维束缚态,都是实函数,故只需证明
均应满足定态薛定谔方程,即
( 1 )
( 2 )
以左乘式( 1 ),左乘式( 2 ),再相减,即得
对全空间积分,得到
(束缚态波函数在无穷远处必须趋于 0 )。
因此,,就有
( 3 )
亦即与正交。
5. 粒子在深度为 Vo ,宽度为 a 的直角势阱 ( 如下图 ) 中运动,求:
(a) 阱口刚好出现一个束缚态能级 ( 即) 的条件。
(b) 束绍态能级总数.并和无限深势阱作比较。
解:粒子能量 E 小于 Vo 时为束缚态, E 大于 Vo 时为游离态.定态薛定房方程为:
( 1 )
令( 2 )
式( 1 )可以写成
(阱内)( 3 )
(阱外)( 4 )
无限远处束缚态波函数应趋于 0 ,因此式 (4) 的解应取为
( 5 )
当阱口刚好出现束缚态能级时,,因此
( 6 )
阱内波函数可由式 (3) 解出,当,解为
( 7 )
阱内、外和应该连续,而由式 (6) 可知,处将这条件用于式 (7) ,即得
( 8 )
亦即阱口刚好出现束缚能级的条件为
( 9 )
即
( 10 )
一维势阱至少有一个束绍能级.因此,如,只存在一个束缚态,偶宇称 ( 基态 ) .如,
除基态外。
阱口将再出现一个奇宇称态能级,共二个能级.如,阱口将出现第三个能级 ( 偶字称 ) .依
此类推.由此可知,对于任何扩值,束缚态能级总数为
, (11)
其中符号表示不超过的最大整数
当粒子在宽度为 a 的无限深势阱中运动时,能级为
则的能级数为
(12)
也就是说,如果只计算的能级数,则有限深 ( ) 势阱的能级数比无限深势阱的能级数多一个。
注意,后者的每一个能级均一一对应地高于前者的相应能级。
电子科技大学光电信息学院Copyright © 2005。