则有
x 0
2 x
x 0
eik0 y sin Reik0 y sin Te
ik y y
ik0 cos eik0 y sin Rik0 cos eik0 y sin Tik xe
ik y y
由于势能与 y 无关,则有 k y k0 sin ,上式变为
2 Ze / x, x 0 V x 的结果相比较. , x 0
解:根据维理定律
x 1 1 E V x Ze2 dx 2 2 x 2
如果当 x 0 时, x 不趋于零,上述积分会发散, E 会趋近于负无穷大 .这是不可能的 ,所以 我们得到 0 0 .这样我们就可以用 Laplace 变换来解决这个问题. 势能为 V x 一维薛定谔方程为
2
2
k02 sin 2
ii 在 x 0 区域中,波函数的形式和 i 中一样
在 0 x t 区域中, E V 0 ,薛定谔方程变为
2
/ 2m 2 0
在 y 方向上势能是不变的,我们有 exp ik x exp kx ,其中 k k0 sin ,
C
4ik
eikc e c 1 ik / e c 1 ik /
2 2
因为在 I 中已经取入射波的形式为 eikx ,所以透射系数 T CC * ,则有
T
k
2
2 2
4k 2 2 sinh 2 c 4k 2 2
2
当 c
1 ,即 V0 E
2
s
2
1 1 s 1 s ds