独立重复试验
- 格式:ppt
- 大小:383.00 KB
- 文档页数:16
一、独立重复试验(1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验。
(2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A 恰好发生k次的概率为此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率。
(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。
(4)独立重复试验概率公式的特点:是n次独立重复试验中某事件A恰好发生k次的概率。
其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式。
1、独立重复试验:在同样的条件下,重复各次之间相互独立地进行的一种试验。
2、n次独立重复试验中某事件恰好发生k次的概率:如果在1次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率记为P n(k)=。
二、求独立重复试验的概率:(1)在n次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验的影响,即2,…,n)是第i次试验的结果.(2)独立重复试验是相互独立事件的特例,只要有“恰好”“恰有”字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k的意义。
三、独立重复试验的定义和特点1独立重复试验又称伯努利试验,是一种在相同条件下可以重复的试验,每次试验都是相互独立的。
在每个实验中,事情发生的概率是相同的,只有两种测试结果:事情要么发生,要么不发生。
2一般来说,相同条件下的$n$重复测试称为$n$独立重复测试。
在$n个独立的重复测试中,$a$事件的次数用$x$表示。
假设每个测试中事件$a$的概率为$p$,则$p(x=k)=\rm C^k_np^k(1p)^nk$,$k=0,1,2,\cdots,n$。
n次独立重复试验的统计学意义
n次独立重复试验是指在相同条件下,进行n次相互独立的试验。
在统计学中,进行n次独立重复试验的目的是为了得到样本数据的信息,从而对总体进行推断。
在n次独立重复试验中,每次试验都有一定的概率得到不同的结果,这些结果被称为随机变量。
根据中心极限定理,当n足够大时,这些随机变量的均值会趋向于正态分布。
因此,在进行大量独立重复试验后,我们可以使用统计方法来对总体的分布进行推断。
除了均值,还有其他统计量可以用来描述样本数据,例如方差、标准差等。
这些统计量可以帮助我们了解样本数据的变异程度和分布情况,从而更好地推断总体的特征。
在实际应用中,n次独立重复试验广泛应用于各种领域,例如医学、生物学、经济学等。
通过对样本数据进行统计分析,我们可以得到关于总体的重要信息,从而为决策提供科学依据。
- 1 -。
独立重复试验与二项分布独立重复试验与二项分布独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验。
二项分布前提:在n次独立重复试验中,事件A发生的次数X。
符号含义:p:每次试验中事件A发生的概率。
k:在n次独立重复试验中事件A发生的次数。
公式:$C_k^n p^k(1-p)^{n-k}$结论:随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率。
明确该公式中各量表示的意义:n为重复试验的次数;p 为在一次试验中某事件A发生的概率;k是在n次独立重复试验中事件A发生的次数。
判断正误1) n次独立重复试验的每次试验结果可以有多种。
×2) n次独立重复试验的每次试验的条件可以略有不同。
×3) 二项分布与超几何分布是同一种分布。
×4) 两点分布是二项分布的特殊情形。
√已知随机变量X服从二项分布,X~B(6,3),则P(X=2)等于$\frac{15}{64}$。
任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为$\frac{3}{8}$。
设随机变量X~B(2,p),若P(X≥1)=$\frac{3}{4}$,则$p=\frac{1}{3}$。
探究点1:独立重复试验的概率甲、乙两人各射击一次,击中目标的概率分别是$\frac{2}{3}$和$\frac{3}{4}$,假设每次射击是否击中目标,相互之间没有影响。
1) 求甲射击3次,至少1次未击中目标的概率。
记“甲射击3次至少有1次未击中目标”为事件A,由题意,射击3次,相当于3次独立重复试验,故$P(A_1)=1-P(A_0)=1-(\frac{2}{3})^3=\frac{19}{27}$。
2) 求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率。
记“甲射击2次,恰有2次击中目标”为事件A。
“乙射击2次,恰有1次击中目标”为事件B,则$P(A_2)=C_2^2(\frac{2}{3})^2(\frac{1}{3})^0=\frac{4}{9}$,$P(B_1)=C_2^1(\frac{3}{4})^1(\frac{1}{4})^1=\frac{3}{8}$。
独立重复试验、二项分布学案重点: 独立重复试验、二项分布的理解及应用会用二项分布模型解决一些简单的实际问题难点: 二项分布模型的构建 关键:二项分布的特征案例欣赏:有八张外表一样的卡片,其中四张写“大”,另四张写“小”;依次反扣在桌面上。
游戏规则:每次取其中的一张猜测,对比结果后反扣,放回桌面,重新按排好顺序,这样连续猜测8次。
甲、乙两人打赌.若甲猜对其中的四次就获胜,否则乙胜。
思考:1、前一次猜测的结果是否影响后一次的猜测?也就是每次猜测是否相互独立? 2、 游戏对双方是否公平?归纳总结:试验1: 重复抛一枚硬币 8 次,其中有2次正面向上. 试验2 : 重复掷一粒骰子6次,其中有2次出现 1 点. 指出以上试验的共同点:独立重复试验 :____________________________________________________ ____________________________________________________________。
独立重复试验又叫贝努里(瑞士数学家和物理学家)试验.对比分析,感知概念:在下列试验中, 是独立重复试验的有____________.①某射手射击1次,击中目标的概率是0.9,他连续射击4次; ②某人罚球命中的概率是0.8,在篮球比赛中罚球三次;③袋中有五个红球,两个白球,采取有放回的取球,每次取一个,取5次; ④袋中有五个红球,两个白球,采取无放回的取球,每次取一个,取5次; 一般地有,n 个相互独立的事件n n A A A A ,,,121 同时发生的概率为: ________________________________________________.问题回顾:甲猜测卡片的过程是否可以看成是独立重复试验?我们可用X 表示甲猜对的卡片数,下面探讨X 的取值和相应的概率,完成填空与表格。
X 的所有可能取值为:_____________________________. 对每次抽出的卡片猜对的概率均为p= ; 猜错的概率为q=1-p= 。
独立重复试验概率计算公式嘿,咱今天来聊聊独立重复试验概率计算公式。
你说这独立重复试验概率计算公式,它就像是一把神奇的钥匙,能帮咱打开很多问题的大门。
比如说,投硬币,抛骰子,这些简单的事儿背后,都藏着它的身影。
先来说说啥是独立重复试验。
就拿投篮来说吧,一个篮球运动员每次投篮命中的概率是 0.6,他连续投篮 5 次,每次投篮是否命中相互不影响,这就是独立重复试验。
那概率咋算呢?这就得请出咱们的主角——独立重复试验概率计算公式。
假设一次试验中某事件发生的概率是 p ,那么在 n 次独立重复试验中这个事件恰好发生 k 次的概率就是:P(X = k) = C(n, k) * p^k * (1 - p)^(n - k) 。
这里的 C(n, k) 表示的是组合数,就是从 n 个不同元素中取出 k 个元素的组合数。
咱还是拿投篮的例子来说事儿。
假设那个运动员投篮 5 次,想知道恰好命中 3 次的概率。
这里 p = 0.6 ,n = 5 ,k = 3 。
那咱就套公式算算:C(5, 3) * 0.6^3 * (1 - 0.6)^(5 - 3) 。
这公式看着复杂,其实理解了就不难。
就像你学骑自行车,一开始觉得车把晃悠,掌握不好平衡,等你多练几次,熟悉了,就轻松驾驭啦。
我记得有一次,学校组织数学竞赛,其中有一道题就是关于独立重复试验概率计算的。
题目说的是一个抽奖活动,每次中奖的概率是0.2,连续抽奖 10 次,求恰好中奖 2 次的概率。
当时好多同学都被这道题难住了,抓耳挠腮的。
我呢,静下心来,想起了这个公式,一步一步地算,最后得出了答案。
当我算出正确结果的时候,那心里别提多有成就感了!再比如说,种种子。
假设某种种子的发芽率是 80% ,咱种 8 颗种子,想知道恰好有 5 颗发芽的概率,这也能用这个公式来算。
其实啊,生活中很多事儿都能和这独立重复试验概率计算公式挂上钩。
像抽奖、质量检测、甚至是打游戏里的一些概率问题。
总之,独立重复试验概率计算公式虽然看起来有点让人头疼,但只要咱多琢磨,多练习,多在实际问题里用用,就能把它拿下,让它成为咱解决问题的好帮手!。
2.2.3独立重复试验与二项分布学习目标 1.理解n次独立重复试验的模型(重点).2.理解二项分布(重、难点). 3.能利用独立重复试验的模型及二项分布解决一些简单的实际问题(难点).知识点1独立重复试验1.独立重复实验的定义一般地,在相同条件下重复做的n次试验称为n次独立重复实验.2.独立重复试验中事件A恰好发生k次的概率一般地,如果在1次实验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n. 【预习评价】(1)有放回地抽样试验是独立重复试验吗?(2)在n次独立重复试验中,各次试验的结果相互有影响吗?提示(1)是.有放回地抽样试验是相同条件下重复做的n次试验,是独立重复试验.(2)在n次独立重复试验中,各次试验的结果相互之间无影响.因为每次试验是在相同条件下独立进行的,所以第i次试验的结果不受前i-1次结果的影响(其中i=1,2,…,n).知识点2二项分布一般地,在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.【预习评价】(1)你能说明两点分布与二项分布之间的关系吗?提示两点分布是特殊的二项分布,即X~B(n,p)中,当n=1时,二项分布便是两点分布,也就是说二项分布是两点分布的一般形式.(2)若随机变量X ~B ⎝ ⎛⎭⎪⎫5,13,则P (X =2)=( )A.⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233B.⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫133C.C 25⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫133D.C 25⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233题型一独立重复试验的判断【例1】判断下列试验是不是独立重复试验:(1)依次投掷四枚质地不同的硬币,3次正面向上;(2)某人射击,击中目标的概率是稳定的,他连续射击了10次,其中6次击中;(3)口袋中装有5个白球,3个红球,2个黑球,依次从中抽取5个球,恰好抽出4个白球.规律方法独立重复试验的判断依据(1)要看该实验是不是在相同的条件下可以重复进行.(2)每次试验相互独立,互不影响.【训练1】下列事件:①运动员甲射击一次,“射中9环”与“射中8环”;②甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”;③甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没射中目标”;④在相同的条件下,甲射击10次,5次击中目标.其中是独立重复试验的是()A.①B.②C.③D.④题型二独立重复试验的概率【例2】某单位6个员工借助互联网开展工作,每个员工上网的概率是0.5(相互独立).(1)求至少3人同时上网的概率;(2)至少几人同时上网的概率小于0.3.规律方法解答独立重复试验中的概率问题要注意以下几点:(1)先要判断问题中所涉及的试验是否为n次独立重复试验;(2)要注意分析所研究的事件的含义,并根据题意划分为若干个互斥事件的并.(3)要善于分析规律,恰当应用排列、组合数简化运算.【训练2】甲、乙两队进行排球比赛,已知在一局比赛中甲队胜的概率为2 3,没有平局.(1)若进行三局两胜制比赛,先胜两局者为胜,甲获胜的概率是多少?(2)若进行五局三胜制比赛,甲获胜的概率为多少?【例3】某公司安装了3台报警器,它们彼此独立工作,且发生险情时每台报警器报警的概率均为0.9.求发生险情时,下列事件的概率:(1)3台都未报警;(2)恰有1台报警;(3)恰有2台报警.【迁移1】(变换所求)例3条件不变,求3台都报警的概率.【迁移2】(变换所求)例3条件不变,求至少有2台报警的概率.【迁移3】 (变换所求)例3条件不变,求至少有1台报警的概率.规律方法 利用二项分布来解决实际问题的关键(1)在实际问题中建立二项分布的模型,也就是看它是否为n 次独立重复试验. (2)随机变量是否为在这n 次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布.【训练3】 100件产品中有3件不合格品,每次取一件,有放回地抽取3次,求取得不合格品的件数X 的分布列.课堂达标1.若X ~B (5,0.1),则P (X ≤2)等于( ) A.0.665 B.0.008 56 C.0.918 54D.0.991 442.一头猪服用某药品后被治愈的概率是90%,则服用这种药的5头猪中恰有3头被治愈的概率为( ) A.0.93B.1-(1-0.9)3C.C 35×0.93×0.12D.C 35×0.13×0.923.在4次独立重复试验中,事件出现的概率相同,若事件A 至少出现一次的概率为6581,则事件A 在一次试验中出现的概率为________.4.将一枚均匀的硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为________.5.在等差数列{a n }中,a 4=2,a 7=-4.现从数列{a n }的前10项中随机取数,每次取出一个数,取后放回,连续抽取三次,假定每次取数互不影响,求在这三次取数中,取出的数恰好为两个正数和一个负数的概率.课堂小结1.独立重复试验要从三方面考虑:第一,每次试验是在相同条件下进行的;第二,各次试验中的事件是相互独立的;第三,每次试验都只有两种结果,即事件要么发生,要么不发生.2.如果一次试验中某事件发生的概率是p ,那么n 次独立重复试验中这个事件恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k .此概率公式恰为[(1-p )+p ]n 展开式的第k +1项,故称该公式为二项分布公式.基础过关1.已知随机变量ξ~B ⎝ ⎛⎭⎪⎫6,13,则P (ξ=2)等于( ) A.316 B.4243 C.13243 D.802432.3位同学参加测试,假设每位同学能通过测试的概率都是13,且各人能否通过测试是相互独立的,则至少有1位同学能通过测试的概率为( ) A.827B.49C.23D.19273.投篮测试中,每人投3次,至少投中2次才算通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A.0.648B.0.432C.0.36D.0.3124.某射手射击1次,击中目标的概率为0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第三次击中目标的概率为0.9;②他恰好击中目标3次的概率为0.93×0.1;③他至少击中目标1次的概率为1-0.14.其中正确结论的序号为________.5.某市公租房的房源位于A ,B ,C 三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,该市的4位申请人中恰有2人申请A 片区房源的概率为________.6.一个学生通过某种英语听力测试的概率是12,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,求n 的最小值.7.在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23. (1)求油罐被引爆的概率;(2)若引爆或子弹打光则停止射击,设射击次数为X ,求X 不小于4的概率.能力提升8.箱子里有5个黄球,4个白球,每次随机取出1个球,若取出黄球,则放回箱中重新取球,若取出白球,则停止取球,那么在4次取球之后停止取球的概率为( ) A.35×14B.⎝ ⎛⎭⎪⎫593×49 C.C 14×⎝ ⎛⎭⎪⎫593×49 D.C 14×⎝ ⎛⎭⎪⎫493×59 9.口袋里放有大小相同的两个红球和一个白球,每次有放回地摸取一个球,定义数列{a n },a n =⎩⎨⎧-1,第n 次摸取红球,1,第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( ) A.C 57×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫235B.C 27×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫135C.C 57×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫135D.C 27×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫23210.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P移动五次后位于点(2,3)的概率是________(用数字作答).11.甲、乙两人投篮命中的概率分别为p,q,他们各投两次,若p=12,且甲比乙投中次数多的概率恰好等于736,则q的值为________.12.一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是1 3.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列;(3)这名学生在途中至少遇到一次红灯的概率.13.(选做题)实力相当的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率;(2)求按比赛规则甲获胜的概率.。
独立重复试验概率公式首先,我们来定义独立重复试验。
独立重复试验是指在相同的条件下进行多次试验,并且每次试验的结果独立于前一次的结果。
例如,抛掷一枚硬币就是一个独立重复试验,每次试验的结果可能是正面或反面,而且每次试验的结果都不会影响到下一次试验的结果。
在独立重复试验中,我们关注的一个重要概念是事件。
事件是我们试验中一些可能结果的集合。
例如,在抛掷一枚硬币的试验中,正面朝上可以看作是一个事件,因为它是试验结果的一个可能值。
对于一个独立重复试验,事件发生的概率可以用以下公式计算:P(A)=1-P(A')=1-(1-p)^n其中,P(A)表示事件A发生的概率,p表示事件A在一次试验中发生的概率,n表示试验的次数。
这个公式的推导基于以下两个假设:1.试验的结果是独立的:每次试验的结果不会受到前一次试验的结果的影响。
2.试验的结果不会改变:每次试验的成功概率总是相同的。
在这个公式中,1-p表示事件A在一次试验中不发生的概率。
因为试验的结果是独立的,所以事件A在n次试验中都不发生的概率是(1-p)^n。
因此,P(A)=1-(1-p)^n表示事件A在n次试验中至少发生一次的概率。
这个公式在实际应用中非常有用。
例如,我们可以用它来计算在一次游戏中至少中奖一次的概率,或者计算进行一定次数的调查后得到至少一位满意顾客的概率。
为了更好地理解这个公式,我们可以通过一个具体的例子进行说明。
假设我们有一箱子里有5个红球和5个蓝球。
现在我们从箱子中随机抽取球,进行10次试验。
试验的目标是从箱子中抽取到红球。
我们可以用独立重复试验概率公式来计算在10次试验中抽取到至少一个红球的概率。
根据题目中的信息,红球抽取的概率是1/2,因为总共有10个球中的5个是红球。
将这些值代入独立重复试验概率公式中,我们可以计算出概率:P(A)=1-(1-1/2)^10=1-(1/2)^10=1-1/1024≈0.999所以,在10次试验中至少抽取一次红球的概率接近于1通过这个例子,我们可以看到独立重复试验概率公式的实际应用。
2.2.3独立重复实验与二项分布一、复习引入:1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形5 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n=8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么 12()n P A A A +++=12()()()n P A P A P A +++13.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立14.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅二、讲解新课:1 独立重复试验的定义:2.独立重复试验的概率公式:k n k kn n P P C k P --=)1()(.它是[](1)nP P -+展开式的第1k +项3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k kn n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:由于k n k knq p C -恰好是二项展开式11100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布(binomial distribution ),记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k kn q p C -=b (k ;n ,p ).三、讲解范例:例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中, (1)恰有 8 次击中目标的概率;(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)例2.(全国高考题)某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.例3.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).例4.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率例5.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)点评:“至多”,“至少”问题往往考虑逆向思维法例6.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?例7.十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?例8.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率.例9.一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于98%?(2)若每穴种3粒,求恰好两粒发芽的概率.(lg 20.3010=)四、课堂练习: 1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )()A 32100.70.3C ⨯⨯ ()B 1230.70.3C ⨯⨯ ()C 310 ()D 21733103A A A ⋅3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( )()A 33351A A - ()B 211232323355A A A A A A ⋅⋅+()C 331()5- ()D 22112333232()()()()5555C C ⨯⨯+⨯⨯ 4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为 .(设每次命中的环数都是自然数)6.一名篮球运动员投篮命中率为60%,在一次决赛中投10个球,则投中的球数不少于9个的概率为 . 7.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8081,则此射手的命中率为 . 8.某车间有5台车床,每台车床的停车或开车是相互独立的,若每台车床在任一时刻处于停车状态的概率为31,求:(1)在任一时刻车间有3台车床处于停车的概率;(2)至少有一台处于停车的概率9.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求: ⑴全部成活的概率; ⑵全部死亡的概率; ⑶恰好成活3棵的概率; ⑷至少成活4棵的概率10.(1)设在四次独立重复试验中,事件A 至少发生一次的概率为8081,试求在一次试验中事件A 发生的概率(2)某人向某个目标射击,直至击中目标为止,每次射击击中目标的概率为1,求在第n五、小结 :1.独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行第二:各次试验中的事件是相互独立的2.如果1次试验中某事件发生的概率是P,那么n次独立重复试验中这个事件恰好发生k次的概率为kn k kn n P P C k P --=)1()(对于此式可以这么理解:由于1次试验中事件A 要么发生,要么不发生,所以在n 次独立重复试验中A 恰好发生k 次,则在另外的n k -次中A 没有发生,即A 发生,由()P A P =,()1P A P=-所以上面的公式恰为n P P ])1[(+-展开式中的第1k +项,可见排列组合、二项式定理及概率间存在着密切的联系2.3离散型随机变量的均值与方差 2.3.1离散型随机变量的均值一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量 并且不改变其属性(离散型、连续型)5. 分布列:设离散型随机变量ξ可能取得值为x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列6. 分布列的两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1)7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k kn n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k knq p C -=b (k ;n ,p ).8. 离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,P(k A )=p ,P(kA )=q(q=1-p),那么p q -=1).于是得到随机变量ξ的概率分布如下:称这样的随机变量ξ服从几何记作g (k ,p )= 1k q p -,其中k =0,1,2,…, p q -=1.二、讲解新课:根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下在n 次射击之前,可以根据这个分布列估计n 次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望根据射手射击所得环数ξ的分布列,我们可以估计,在n 次射击中,预计大约有n n P 02.0)4(=⨯=ξ次得4环;n n P 04.0)5(=⨯=ξ次得5环;…………n n P 22.0)10(=⨯=ξ次得10环.故在n 次射击的总环数大约为+⨯⨯n 02.04++⨯⨯ n 04.05n ⨯⨯22.010+⨯=02.04(++⨯ 04.05n ⨯⨯)22.010,从而,预计n 次射击的平均环数约为+⨯02.04++⨯ 04.0532.822.010=⨯.这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个)(i P =ξ(i =0,1,2, (10),我们可以同样预计他任意n 次射击的平均环数:+=⨯)0(0ξP +=⨯)1(1ξP …)10(10=⨯+ξP .1. 均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望.2. 均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平n p n 1==,=ξE +1(x +2x …nx n 1)⨯+,所以ξ的数学期望又称为平均数、均值4. 均值或期望的一个性质:若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,它们的分布列为于是=ηE ++11)(p b ax ++22)(p b ax …+++n n p b ax )(…=+11(p x a +22p x …++n n p x …)++1(p b +2p …++n p …)=b aE +ξ,由此,我们得到了期望的一个性质:b aE b a E +=+ξξ)(5.若ξB (n,p ),则E ξ=np证明如下: ∵ k n k k n k n k k n q p C p p C k P --=-==)1()(ξ,∴=ξE 0×n nq p C 00+1×111-n n q p C +2×222-n n q p C +…+k ×k n k k n q p C -+…+n ×0q p C n n n . 又∵ 11)]!1()1[()!1()!1()!(!!--=-----⋅=-⋅=k n knnC k n k n n k n k n k kC ,∴=ξE (np 001n n C p q --+2111--n n qp C +…+)1()1(111------k n k k n q pC +…+)0111q pC n n n ---np q p np n =+=-1)(. 故 若ξ~B (n ,p ),则=ξE np .三、讲解范例:例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分ξ的期望。
2.2.3独立重复实验与二项分布(1)【学习目标】:在了解条件概率和相互独立事件概念的前提下,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.【重点】: 独立重复试验、二项分布的理解及应用、二项分布模型解决一些简单的实际问题【难点】:二项分布模型的构建【新知预习】: 11独立重复试验的定义:2.独立重复试验的概率公式:离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:由于k n k k nq p C -恰好是二项展开式 011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布记作ξ~B (n ,p ),其中p 为成功概率【例题探究】:练习:某射手每次射击击中目标的概率是0.8, 求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率;(3)仅在第8次击中目标的概率;(4)第8次击中目标的概率;(5)要保证击中目标的概率大于0.99,至少应 射击多少次?例1:诸葛亮解出题目的概率是0.9,三个臭皮匠各自独立解出的概率都是0.6,皮匠中至少一人解出题目即胜出比赛,诸葛亮和臭皮匠团队哪个胜出的可能性大?例2: 某气象站天气预报的准确率为0.8 ,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有1次准确的概率 ;(3)5次预报中恰有2次准确,且其中第3次准确的概率;例3:实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率【课堂小结】【课内达标】:1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )()A 32100.70.3C ⨯⨯ ()B 1230.70.3C ⨯⨯ ()C 310 ()D 21733103A A A ⋅ 3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C4. 一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于0.98 ?(2)若每穴种3粒,求恰好两粒发芽的概率.巩固型作业:全品:课时测评思维拓展型作业:甲、乙两选手比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4,那么对甲而言,采用3局2胜制,还是5局3胜制更有利?思考题:二项分布与两点分布及超几何分布有什么区别与联系?【课后收获】:。