独立重复试验1
- 格式:ppt
- 大小:626.50 KB
- 文档页数:14
基础达标1.若在一次测量中出现正误差和负误差的概率都是12,则在5次测量中恰好出现2次正误差的概率是( )A .516B .25C .58D .1322.某电子管正品率为34,次品率为14,现对该批电子管进行测试,设第X 次首次测到正品,则P (X =3)=( )A .C 23⎝⎛⎭⎫142×34B .C 23⎝⎛⎭⎫342×14C .⎝⎛⎭⎫142×34 D .⎝⎛⎭⎫342×143.甲、乙两人进行羽毛球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3∶1的比分获胜的概率为( )A .827B .6481C .49D .894.一个学生通过某种英语听力测试的概率是12,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,那么n 的最小值为( )A .6B .5C .4D .35.口袋里放有大小相同的两个红球和一个白球,每次有放回地摸取一个球,定义数列{a n },a n =⎩⎪⎨⎪⎧-1,第n 次摸取红球1,第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( )A .C 57×(13)2×(23)5B .C 27×(23)2×(13)5C .C 57×(13)2×(13)5 D .C 27×(13)2×(23)2 6.下列例子中随机变量ξ服从二项分布的有________.(填序号) ①随机变量ξ表示重复抛掷一枚骰子n 次,出现点数是3的倍数的次数; ②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;③有一批产品共有N 件,其中M 件为次品,采用有放回抽取方法,ξ表示n 次抽取中出现次品的件数(M <N );④有一批产品共有N 件,其中M 件为次品,采用不放回抽取方法,ξ表示n 次抽取中出现次品的件数.7.某市公租房的房源位于甲、乙、丙三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的.则该市的4位申请人中恰有2人申请甲片区房源的概率为________.8.(2019·郑州高二检测)甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.则乙恰好比甲多击中目标2次的概率为________.9.(2019·西安高二检测)实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分析求甲打完3局、4局、5局才能取胜的概率. (2)求按比赛规则甲获胜的概率.10.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)用X 表示该地的5位车主中甲、乙两种保险都不购买的车主数,求X 的分布列.[能力提升11.一个口袋内有n (n >3)个大小相同的球,其中3个红球和(n -3)个白球,已知从口袋中随机取出1个球是红球的概率为p .若6p ∈N ,有放回地从口袋中连续4次取球(每次只取1个球),在4次取球中恰好2次取到红球的概率大于827,则p =________,n =________.12.张师傅驾车从公司开往火车站,途经4个交通岗,这4个交通岗将公司到火车站分成5个路段,每个路段的驾车时间都是3分钟,如果遇到红灯要停留1分钟.假设他在各交通岗是否遇到红灯是相互独立的,并且概率都是13.则张师傅此行程时间不少于16分钟的概率为________.13.(2019·沧州高二检测)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱).(1)求在1次游戏中, ①摸出3个白球的概率; ②获奖的概率;(2)求在2次游戏中获奖次数X 的分布列.14.(选做题)某公司招聘员工,先由两位专家面试,若两位专家都同意通过,则视作通过初审予以录用;若这两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审,则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率均为0.5,复审能通过的概率为0.3,各专家评审的结果相互独立.(1)求某应聘人员被录用的概率.(2)若4人应聘,设X为被录用的人数,试求随机变量X的分布列.。
2.2.2 独立重复试验与二项分布(第1课时)一、教学目标1.核心素养根据由特殊到一般的思维方式,归纳二项分布的概念及其概率计算公式,从而提升学生数学建模能力和逻辑推理能力.2.学习目标(本课时的目标应与后面的“问题探究”对应,每个探究解决一个目标)(1)从具体情境中理解n次独立重复试验及其特点及二项分布,并能解决一些简单的实际问题.(2)从具体情境中理解二项分布及其概率计算公式.(3)能解决一些简单与n次独立重复试验的模型及二项分布有关的实际问题3.学习重点理解掌握n次独立重复试验的模型及其基本特点,正确掌握二项分布.4.学习难点能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算.二、教学设计(一)课前设计预习任务任务1(可以多个任务,问是学生提问,编者不用考虑)阅读教材,思考:n次独立重复试验的定义是什么?二项分布的内容是什么?任务2归纳出n次独立重复试验的基本特点,默写二项分布的计算公式.预习自测1.n次独立重复试验应满足的条件:①每次试验之间是相互独立的;②每次试验只有发生与不发生两种结果之一;③每次试验发生的机会是均等的;④各次试验发生的事件是互斥的.其中正确的是()A .①②B .②③C .①②③D .①②④ 解:C .2.二项分布计算公式()=(1)kn k k n P X k C p p -=-中,,,1,n p p k -分别表示的是( )①事件不发生的概率;②事件发生的概率;③实验总次数;④事件发生的次数. A .①②③④ B .③①②④ C .③②①④ D .①②④③ 解:C . (二)课堂设计 1.知识回顾(1)不可能同时发生的事件A 与事件B 称为互斥事件,且()=()()P A B P A P B ++.(2)在事件A 发生的条件下事件B 发生的概率叫做“在A 条件下B 发生的概率”,记作(|)P B A ,且()(|)=()P AB P B A P A . (3)事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫做相互独立事件,且()=()()P AB P A P B .(4)事件12,,n A A A ⋅⋅⋅是相互独立的,则1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅. (5)二项式定理. 2.问题探究问题探究一 独立重复试验的定义及其基本特点? ●活动一 观察探究(1)某篮球队员罚球3次,每次命中率为0.7.(2)投掷一枚相同的硬币4次,每次正面向上的概率为0.5. (3)某射击选手射击6次,每次射击击中的概率为0.9. (4)一纸箱内装有5个白球、3个黑球,有放回地抽取5个球. (5)投掷一枚图钉8次,每次时针尖向上的概率为0.4. 问题:上面这些试验有什么共同的特点? 提示:从下面几个方面探究:(1)实验的条件; (2)每次实验间的关系; (3)每次试验可能的结果; (4)每次试验的概率;通过归纳发现:(1)每个例中的每次试验在相同条件下发生的; (2)每个例中的每次试验是相互独立的;(3)每个例中的每次试验都只有两种结果:发生与不发生; (4)每个例中的每次试验发生的概率都是相同的. ●活动二 归纳总结(1)定义:一般地,在相同条件下重复做的n 次试验,各次试验的结果相互独立,就称n 次独立重复试验.(2)特点:①条件相同;②相互独立;③结果有二;④概率相等. ●活动三 学以致用例1 判断下列试验是不是独立重复试验:(说明理由) (1)依次投掷四枚质地不同的硬币,3次正面向上;(2)姚明作为中锋,他职业生涯的每次罚球命中率为0.9,他连续投篮3次,恰有2次命中; (3)一纸箱内装有5个白球,3个黑球,2个红球,从中依次抽取5个球,恰好抽出4个白球; (4)一纸箱内装有5个白球,3个黑球,2个红球,从中有放回地抽取5个球,恰好抽出4个白球. 【知识点:独立重复试验】详解:(1)不是,因为条件不相同;(2)是;(3)不是,因为每次发生的概率不等;(4)是; 问题探究二 什么是二项分布?其概率计算公式是什么? ●活动一 计算观察问题:姚明作为中锋,他职业生涯的每次罚球命中率为0.9, (1)他连续投篮3次,恰有1次命中的概率是多少; (2)他连续投篮3次,恰有2次命中的概率是多少; (3)他连续投篮3次, 3次都命中的概率是多少; 解答:(1)3次中恰有1次命中有几种情况?共有3种情况:123A A A ,123A A A ,123A A A (设(1,2,3)i A i =表示事件“第i ”次命中)每一种情况的概率都是:120.9(10.9)⨯- 则恰有1次命中的概率是:1230.9(10.9)P =⨯⨯- (2)3次中恰有2次命中有几种情况?共有3种情况:123A A A ,123A A A ,123A A A (设(1,2,3)i A i =表示事件“第i ”次命中)每一种情况的概率都是:210.9(10.9)⨯-则恰有1次命中的概率是:2130.9(10.9)P =⨯⨯-;(3)3次都命中只有1种情况,即:123A A A (设(1,2,3)i A i =表示事件“第i ”次命中) 则概率是:310.9P =⨯; 观察三个试验的共同点: (1)都是独立重复试验;(2)每次试验分别有3(1,2,3)iC i =种情况;(3)每次试验的每种情况发生的概率相同.(4)他连续投篮n 次,恰有k 次命中的概率是多少;此次试验有k n C 种情况,每种情况发生的概率都是:0.9(10.9)k n k -⨯- 则此次试验发生的概率是:0.9(10.9)k k n k n P C -=-●活动二 归纳总结归纳:一般地,在n 次独立重复试验,设事件A 发生的次数是X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1)k k n k n P X k C p p -==-,其中n k ,,2,1,0⋅⋅⋅=.此时称随机变量X 服从二项分布,记作(,)X B n p ,并称p 为成功概率.理解:1)公式()(1)k k n k n P X k C p p -==-中各字母的含义,n —试验发生的总次数;k —试验中事件A 恰好发生的次数;p —事件A 发生概率;(1-p )—事件A 恰不发生的概率. 2)二项式()1-np p ⎡⎤+⎣⎦的展开式中第k +1项为1(1)kn k k k n T C p p -+=-,那么()(1)k kn k n P X k C p p -==-就是二项式()1-np p ⎡⎤+⎣⎦展开式中中第k +1项,所以公式()(1)k k n k n P X k C p p -==-(),0,1,2,...,.k n =所以公式叫做二项分布.3)当n =1时,二项分 布就是两点分布.问题探究三 初步利用n 次独立重复试验的模型及二项分布解决一些简单的问题 例2 某射手每次射击击中目标的概率是0.9,求这名射手在5次射击中,(1)恰有4次击中目标的概率;(2)至少有4次击中目标的概率.(列出算式即可) 【知识点:二项分布,互斥事件的概率;数学思想:分类讨论】详解:设X 为击中目标的次数,则(5,0.9)X B(1)在5次射击中,恰有4次击中目标的概率为:44(54)540.9(10.9)P X C -==⨯⨯-(). (2)在5次射击中,至少有4次击中目标的概率为:44(54)55(55)5544+5=0.9(10.9)+0.9(10.9)P X P X P X C C --≥===⨯⨯-⨯⨯-()()()例3 重复抛掷一枚骰子6次,求至少4次得到点数为6的概率. 【知识点:二项分布,互斥事件的概率;数学思想:分类讨论】 详解:设X 为得到点数6的次数,则1(6,)6XB重复抛掷一枚骰子6次,至少4次得到点数为6的概率为:4(64)5(65)6(66)45666644+5+6111111=1+1+1666666P X P X P X P X C C C ---≥====⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯-⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()()例4 重复抛掷一枚骰子6次,求至少1次得到点数为6的概率.【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 详解:设X 为得到点数6的次数,则1(6,)6XB重复抛掷一枚骰子6次,至少1次得到点数为6的概率为:1(61)2(62)3(63)1256664(64)456641+2+3+4+5+6111111=1+1+1666666111 +1+66P X P X P X P X P X P X P X C C C C C ----≥=======⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯-⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭()()()()()()() 5(65)6(66)661111+16666C --⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭另解:设X 为得到点数6的次数,则1(6,)6X B记事件A 为“至少1次得到点数为6”,则事件A 为 “没有1次得到点数为6”,又由于0(60)6110=166P A P X C -⎛⎫⎛⎫==⨯⨯- ⎪ ⎪⎝⎭⎝⎭()()则0(60)06111=1166P A P A C -⎛⎫⎛⎫=--⨯⨯- ⎪ ⎪⎝⎭⎝⎭()()例5 重复抛掷一枚骰子6次,求至少2次得到点数为6的概率.【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】详解:设X 为得到点数6的次数,则1(6,)6XB记事件A 为“至少2次得到点数为6”,则事件A 为 “没有1次得到点数为6和恰好有1次得到点数为6”,又由于0(60)1(61)16611110+1=1+16666P A P X P X C C --⎛⎫⎛⎫⎛⎫⎛⎫===⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()则0(60)1(61)16611111=1116666P A P A C C --⎛⎫⎛⎫⎛⎫⎛⎫=--⨯⨯--⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()3.课堂总结 【知识梳理】(1)一般地,在相同条件下重复做的n 次试验,各次试验的结果相互独立,就称为n 次独立重复试验.(2)一般地,在在n 次独立重复试验,设事件A 发生的次数是X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1)k kn k n P X k C p p -==-,其中n k ,,2,1,0⋅⋅⋅=.此时称随机变量X 服从二项分布,记作(,)X B n p ,并称p 为成功概率.【重难点突破】(1)独立重复试验的判断①每次试验是在相同的条件下进行的;②每次试验的结果不会受其他试验的影响,即每次试验是相互独立的; ③基本事件的概率可知,且每次试验保持不变; ④每次试验只有两种结果,要么发生,要么不发生. (2)二项分布的判断①在一次试验中,事件A 发生与不发生二者必居其一. ②事件A 在每次试验中,发生的概率相同.③试验重复地进行了n 次(n ≥2),且每次试验结果互不影响. 4.随堂检测1.一个学生通过某种英语听力测试的概率是12,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,那么n 的最小值为( )A .3B .4C .5D .6【知识点:二项分布,对立事件的概率;数学思想:正难则反】 解:B2.若某射手每次射击击中目标的概率是0.9,每次射击的结果相互独立,那么在他连续4次的射击中,第一次未击中目标,后三次都击中目标的概率是( )A.33140.90.1C ⨯⨯B.30.9C.130.10.9⨯D.11340.90.1C ⨯⨯【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 解:C3.有10门炮同时各向目标各发一枚炮弹,如果每门炮的命中率都是0.1,则目标被击中的概率约是( ) A.0.55 B.0.45 C.0.75 D.0.65【知识点:独立重复试验,对立事件的概率】 解:D4.一批产品共有100个,次品率为 3%,从中有放回抽取3个恰有1个次品的概率是( )A.123973100C C CB.1230.030.97C ⨯⨯C.1330.03C ⨯D.1230.030.97C ⨯⨯【知识点:二项分布】 解:B5.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为 8081,则此射手射击一次的命中率是( )A.13B.23C.14D.25【知识点:二项分布,对立事件的概率;数学思想:正难则反】 解:B 4801(1)81p --= (三)课后作业 基础型 自主突破1.已知随机变量ξ~B (6,13),则P (ξ≥2)=( ) A.16143 B.471729 C.473729 D.1243【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 解:C0(60)1(61)1661111212=101=11+13333P P P P C C ξξξξ--⎛⎫⎛⎫⎛⎫⎛⎫≥=-≤-=-=-⨯⨯-⨯⨯- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()()2.某一试验中事件A 发生的概率为p ,则在n 次试验中,A 发生k 次的概率为( ) A .1-p k B .(1-p )k ·p n -k C .(1-p )kD .C k n (1-p )k ·p n -k【知识点:二项分布,对立事件的概率】 解:D3.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是( ) A .(12)5 B .C 25(12)5C .C 35(12)3D .C 25C 35(12)5 【知识点:二项分布】解:D 5次移动中有2次向右,剩下3次向上.4.某电子管正品率为34,次品率为14,现对该批电子管进行测试,设第ξ次首次测到正品,则P (ξ=3)的值为( ) A .C 23(14)2×34B .C 23(34)2×14C .(14)2×34 D .(34)2×14【知识点:二项分布,对立事件的概率】 解:D5.某种植物的种子发芽率是0.7,4颗种子中恰有3颗发芽的概率是________. 【知识点:二项分布】解:0.4116 33(43)430.7(10.7)P X C -==⨯⨯-()6.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为________(用数字作答).【知识点:二项分布】解:0.9477 33(43)44(44)443=3+=4=0.9(10.9)+0.9(10.9)P X P X P X C C --≥=⨯⨯-⨯⨯-()()()能力型 师生共研7.某单位6个员工借助互联网开展工作,每天每个员工上网的概率是0.5(相互独立),则一天内至少3人同时上网的概率为________.【知识点:二项分布,互斥事件、对立事件的概率;数学思想:分类讨论,正难则反】 解:2132 666012666111X 1012=1222P P X P X P X C C C ⎛⎫⎛⎫⎛⎫≥=-=-=-=-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)()()()8.2013年初,一考生参加北京大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确做出是相互独立的,并且每一道题被考生正确做出的概率都是34. (1)求该考生首次做错一道题时,已正确做出了两道题的概率;(2)若该考生至少做出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率. 【知识点:对立、互斥事件的概率,独立重复试验,二项分布;数学思想:分类讨论】 解:(1)记“该考生正确做出第i 道题”为事件A i (i =1,2,3,4),则P (A i )=34,由于每一道题能否被正确做出是相互独立的,所以这名考生首次做错一道题时,已正确做出两道题的概率为 P (A 1A 2A 3)=P (A 1)·P (A 2)·P (A 3)=34×34×14=964.(2)记“这名考生通过书面测试”为事件B ,则这名考生至少正确做出3道题,即正确做出3道或4道题,故P (B )=C 34×(34)3×14+C 44×(34)4=189256. 9.9粒种子分种在3个坑中,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种的费用,写出ξ的分布列. 【知识点:对立事件的概率,二项分布】解:每个坑内3粒种子都不发芽的概率为(1-0.5)3=18,所以每个坑不需要补种的概率为p =1-18=78.利用3次独立重复试验的公式求解即可.补种费用ξ的分布列为10.一批玉米种子,其发芽率是0.8.问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于98%?(lg2=0.301 0)【知识点:独立重复试验,对立事件的概率,二项分布;数学思想:正难则反】解:记事件A =“种一粒种子,发芽”,则P (A )=0.8,P (A -)=1-0.8=0.2.设每穴至少种n 粒,才能保证每穴至少有一粒发芽的概率大于98%.因为每穴种n 粒相当于n 次独立重复试验,记事件B =“每穴至少有一粒发芽”,则P (B -)=C 0n ·0.80·0.2n =0.2n .所以P (B )=1-P (B -)=1-0.2n .由题意有1-0.2n >98%,所以0.2n <0.02,两边取对数得n lg0.2<lg0.02.即n (lg2-1)<lg2-2.所以n >lg2-2lg2-1≈2.43,且n ∈N ,所以n ≥3. 故每穴至少种3粒,才能保证每穴至少有一粒发芽的概率大于98%.探究型 多维突破11.某校组织一次冬令营活动,有8名同学参加,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中X 名男同学.(1)求X 的分布列;(2)求去执行任务的同学中有男有女的概率.【知识点:对超几何分布】解:(1)X 的可能取值为0,1,2,3,且X 服从超几何分布,因此:P (X =0)=C 33C 38=156,P (X =1)=C 15C 23C 38=1556, P (X =2)=C 25C 13C 38=1528,P (X =3)=C 35C 38=528. ∴X 的分布列为(2)由上面的分布列,可知去执行任务的同学有男有女的概率为P (X =1)+P (X =2)=1556+1528=4556.12.一名学生骑自行车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1 3.(1)设ξ为这名学生在途中遇到的红灯次数,求ξ的分布列;(2)设η为这名学生在首次停车前经过的路口数,求η的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.【知识点:对立事件的概率,二项分布;数学思想:正难则反】解:(1)将遇到每个交通岗看做一次试验,遇到红灯的概率都是13,且每次试验结果相互独立,故ξ~B(6,13).所以ξ的分布列为P(ξ=k)=Ck6·(13)k·(23)6-k(k=0,1,2,…,6).(2)η=k(k=0,1,2,…,5)表示前k个路口没有遇上红灯,但在第k+1个路口遇上红灯,其概率为P(η=k)=(23)k·13,η=6表示一路没有遇上红灯,故其概率为P(η=6)=(23)6.所以η的分布列为(3)所求概率即P(ξ≥1)=1-P(ξ=0)=1-(23)6=665729.自助餐1.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p1和p2.则()A.p1=p2B.p1<p2C.p1>p2D.以上三种情况都有可能【知识点:古典概型】解:B2.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n}:a n =⎩⎨⎧-1,第n 次摸取红球,1,第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( ) A .C 57×(13)2×(23)5 B .C 47×(23)2×(13)5 C .C 27×(23)2×(13)5 D .C 37×(13)2×(23)5 【知识点:独立重复试验,二项分布】解:C3.某厂大量生产某种小零件,经抽样检验知道其次品率是1%,现把这种零件每6件装成一盒,那么每盒中恰好含一件次品的概率是( )A .(99100)6B .0.01C.C 16100(1-1100)5D .C 26(1100)2(1-1100)4 【知识点:对立事件的概率,二项分布】解:C4.在4次独立重复试验中,事件A 出现的概率相同,若事件A 至少发生一次的概率为6581,则事件A 在1次试验中出现的概率为( )A.13B.25C.56D .都不对【知识点:对立事件的概率,二项分布;数学思想:正难则反】解:A5.抛掷三个骰子,当至少有一个5点或一个6点出现时,就说这次试验成功,则在54次试验中成功次数X ~( )A .B (54,427)B .B (52,1927)C .B (54,1927)D .B (54,1724)【知识点:二项分布】解:C6.已知随机变量ξ服从二项分布ξ~B (6,13),则P (ξ=2)=( )A.316B.4243C.16243D.80243【知识点:二项分布】解:D7.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值等于( )A .0B .1C .2D .3【知识点:二项分布】解:C8.有n 位同学参加某项选拔测试,每位同学能通过测试的概率都是p (0<p <1),假设每位同学能否通过测试是相互独立的,则至少有一位同学能通过测试的概率为( )A .(1-p )nB .1-p nC .p nD .1-(1-p )n【知识点:对立事件的概率,二项分布;数学思想:正难则反】解:D9.一个袋中有5个白球,3个红球,现从袋中每次取出1个球,取出后记下球的颜色然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则P (ξ=12)=________.(写出表达式不必算出最后结果)【知识点:二项分布】解:C 911(38)9(58)2·3810.某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进了3球的概率为________.(用数字作答)【知识点:二项分布】解:1512811.A ,B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片,若某人已赢得所有卡片,则游戏终止.求掷硬币的次数不大于7次时游戏终止的概率.【知识点:互斥事件的概率,二项分布】解:P =(12)5×2+2×C 45(12)5(12)2=116+2×5×(12)7=964.12.如图,一圆形靶分成A ,B ,C 三部分,其面积之比为1∶1∶2.某同学向该靶投掷3枚飞镖,每次1枚.假设他每次投掷必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中投中A 区域的概率;(2)设X 表示该同学在3次投掷中投中A 区域的次数,求X 的分布列;(3)若该同学投中A ,B ,C 三个区域分别可得3分,2分,1分,求他投掷3次恰好得4分的概率.【知识点:互斥事件的概率,二项分布】解:(1)设该同学在一次投掷中投中A 区域的概率为P (A ),依题意,P (A )=14.(2)依题意知,X ~B ⎝ ⎛⎭⎪⎫3,14,从而X 的分布列为:(3)设B i 表示事件“第i 次击中目标时,击中B 区域”,C i 表示事件“第i 次击中目标时,击中C区域”,i =1,2,3.依题意知P =P (B 1C 2C 3)+P (C 1B 2C 3)+P (C 1C 2B 3)=3×14×12×12=316.。
2.2.3独立重复实验与二项分布教学目标:知识与技能:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
过程与方法:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题 教学难点:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++=12()()()n P A P A P A +++13.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立14.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅ 二、讲解新课: 1 独立重复试验的定义: 指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)nP P -+展开式的第1k +项 3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).由于k n k k n q p C -恰好是二项展开式011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布(binomial distribution ),记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ).三、讲解范例:例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率;(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)解:设X 为击中目标的次数,则X ~B (10, 0.8 ) .(1)在 10 次射击中,恰有 8 次击中目标的概率为P (X = 8 ) =88108100.8(10.8)0.30C -⨯⨯-≈. (2)在 10 次射击中,至少有 8 次击中目标的概率为P (X ≥8) = P (X = 8) + P ( X = 9 ) + P ( X = 10 )8810899109101010101010100.8(10.8)0.8(10.8)0.8(10.8)C C C ---⨯⨯-+⨯⨯-+⨯⨯-0.68≈.例2.(2000年高考题)某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.解:依题意,随机变量ξ~B (2,5%).所以,P (ξ=0)=02C (95%)2=0.9025,P (ξ=1)=12C (5%)(95%)=0.095,P (2=ξ)=22C (5%)2=0.0025.因此,次品数ξ例3.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).解:依题意,随机变量ξ~B ⎪⎭⎫ ⎝⎛61,5.∴P (ξ=4)=6561445⋅⎪⎭⎫ ⎝⎛C =777625,P (ξ=5)=55C 561⎪⎭⎫ ⎝⎛=77761. ∴P (ξ>3)=P(ξ=4)+P (ξ=5)=388813 例4.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字): (1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率解:(1)记“预报1次,结果准确”为事件A .预报5次相当于5次独立重复试验,根据n 次独立重复试验中某事件恰好发生k 次的概率计算公式,5次预报中恰有4次准确的概率4454455(4)0.8(10.8)0.80.41P C -=⨯⨯-=≈ 答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==⨯⨯-+⨯⨯-450.80.80.4100.328=+≈+≈答:5次预报中至少有4次准确的概率约为0.74.例5.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验1小时内5台机床中没有1台需要工人照管的概率55513(0)(1)()44P =-=,1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =⨯⨯-, 所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)P P P =-+≈答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.点评:“至多”,“至少”问题往往考虑逆向思维法例6.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击n 次记事件A =“射击一次,击中目标”,则()0.25P A =.∵射击n 次相当于n 次独立重复试验,∴事件A 至少发生1次的概率为1(0)10.75nn P P =-=-. 由题意,令10.750.75n -≥,∴31()44n ≤,∴1lg4 4.823lg 4n ≥≈, ∴n 至少取5. 答:要使至少命中1次的概率不小于0.75,至少应射击5次例7.十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?解:依题意,从低层到顶层停不少于3次,应包括停3次,停4次,停5次,……,直到停9次 ∴从低层到顶层停不少于3次的概率 3364455549999991111111()()()()()()()2222222P C C C C =++++ 3459990129999999911()()2()()22C C C C C C C ⎡⎤=+++=-++⎣⎦+991233(246)()2256=-= 设从低层到顶层停k 次,则其概率为k 9999111C ()()()222k k k C -=, ∴当4k =或5k =时,9k C 最大,即991()2k C 最大, 答:从低层到顶层停不少于3次的概率为233256,停4次或5次概率最大. 例8.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12. 记事件A =“甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”,记事件C =“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜∴甲打完3局取胜的概率为33311()()28P A C ==. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负∴甲打完4局才能取胜的概率为2231113()()22216P B C =⨯⨯⨯=. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负∴甲打完5局才能取胜的概率为22241113()()()22216P C C =⨯⨯⨯=. (2)事件D =“按比赛规则甲获胜”,则D A B C =++,又因为事件A 、B 、C 彼此互斥, 故1331()()()()()816162P D P A B C P A P B P C =++=++=++=. 答:按比赛规则甲获胜的概率为12. 例9.一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于98%?(2)若每穴种3粒,求恰好两粒发芽的概率.(lg 20.3010=)解:记事件A =“种一粒种子,发芽”,则()0.8P A =,()10.80.2P A =-=,(1)设每穴至少种n 粒,才能保证每穴至少有一粒发芽的概率大于98%.∵每穴种n 粒相当于n 次独立重复试验,记事件B =“每穴至少有一粒发芽”,则00()(0)0.8(10.8)0.2n n n n P B P C ==-=. ∴()1()10.2nP B P B =-=-.由题意,令()98%P B >,所以0.20.02n <,两边取常用对数得, lg0.2lg0.02n <.即(lg 21)lg 22n -<-, ∴lg 22 1.6990 2.43lg 210.6990n ->=≈-,且n N ∈,所以取3n ≥. 答:每穴至少种3粒,才能保证每穴至少有一粒发芽的概率大于98%.(2)∵每穴种3粒相当于3次独立重复试验,∴每穴种3粒,恰好两粒发芽的概率为2230.80.20.384P C =⨯⨯==,答:每穴种3粒,恰好两粒发芽的概率为0.384四、课堂练习:1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )()A 32100.70.3C ⨯⨯ ()B 1230.70.3C ⨯⨯ ()C 310 ()D 21733103A A A ⋅ 3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( )()A 33351A A - ()B 211232323355A A A A A A ⋅⋅+ ()C 331()5- ()D 22112333232()()()()5555C C ⨯⨯+⨯⨯ 4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为 .(设每次命中的环数都是自然数)6.一名篮球运动员投篮命中率为60%,在一次决赛中投10个球,则投中的球数不少于9个的概率为 .7.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8081,则此射手的命中率为 .8.某车间有5台车床,每台车床的停车或开车是相互独立的,若每台车床在任一时刻处于停车状态的概率为31,求:(1)在任一时刻车间有3台车床处于停车的概率;(2)至少有一台处于停车的概率9.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:⑴全部成活的概率; ⑵全部死亡的概率;⑶恰好成活3棵的概率; ⑷至少成活4棵的概率10.(1)设在四次独立重复试验中,事件A 至少发生一次的概率为8081,试求在一次试验中事件A 发生的概率(2)某人向某个目标射击,直至击中目标为止,每次射击击中目标的概率为13,求在第n 次才击中目标的概率 答案:1. C 2. D 3. A 4. A 5. 0.784 6. 0.0467. 23 8.(1)()323551240333243P C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭(2)()()5552211113243P B P B C ⎛⎫=-=-= ⎪⎝⎭ 9.⑴5550.90.59049C =; ⑵5550.10.00001C =;⑶()3325530.90.10.0729P C =⋅=; ⑷()()55450.91854P P P =+=10.(1) 23P = (2) 112()33n P -=⋅ 五、小结 :1.独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行第二:各次试验中的事件是相互独立的不发生2.如果1次试验中某事件发生的概率是P ,那么n 次独立重复试验中这个事件恰好发生k 次的概率为k n k k n n P P C k P --=)1()(对于此式可以这么理解:由于1次试验中事件A 要么发生,要么不发生,所以在n 次独立重复试验中A 恰好发生k 次,则在另外的n k -次中A 没有发生,即A 发生,由()P A P =,()1P A P =-所以上面的公式恰为n P P ])1[(+-展开式中的第1k +项,可见排列组合、二项式定理及概率间存在着密切的联系六、课后作业:课本56页 练习1、2七、板书设计(略)八、课后记:教学反思:1. 理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
独立重复试验、二项分布学案重点: 独立重复试验、二项分布的理解及应用会用二项分布模型解决一些简单的实际问题难点: 二项分布模型的构建 关键:二项分布的特征案例欣赏:有八张外表一样的卡片,其中四张写“大”,另四张写“小”;依次反扣在桌面上。
游戏规则:每次取其中的一张猜测,对比结果后反扣,放回桌面,重新按排好顺序,这样连续猜测8次。
甲、乙两人打赌.若甲猜对其中的四次就获胜,否则乙胜。
思考:1、前一次猜测的结果是否影响后一次的猜测?也就是每次猜测是否相互独立? 2、 游戏对双方是否公平?归纳总结:试验1: 重复抛一枚硬币 8 次,其中有2次正面向上. 试验2 : 重复掷一粒骰子6次,其中有2次出现 1 点. 指出以上试验的共同点:独立重复试验 :____________________________________________________ ____________________________________________________________。
独立重复试验又叫贝努里(瑞士数学家和物理学家)试验.对比分析,感知概念:在下列试验中, 是独立重复试验的有____________.①某射手射击1次,击中目标的概率是0.9,他连续射击4次; ②某人罚球命中的概率是0.8,在篮球比赛中罚球三次;③袋中有五个红球,两个白球,采取有放回的取球,每次取一个,取5次; ④袋中有五个红球,两个白球,采取无放回的取球,每次取一个,取5次; 一般地有,n 个相互独立的事件n n A A A A ,,,121 同时发生的概率为: ________________________________________________.问题回顾:甲猜测卡片的过程是否可以看成是独立重复试验?我们可用X 表示甲猜对的卡片数,下面探讨X 的取值和相应的概率,完成填空与表格。
X 的所有可能取值为:_____________________________. 对每次抽出的卡片猜对的概率均为p= ; 猜错的概率为q=1-p= 。
2.2.3独立重复实验与二项分布一、复习引入:1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形5 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n=8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么 12()n P A A A +++=12()()()n P A P A P A +++13.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立14.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅二、讲解新课:1 独立重复试验的定义:2.独立重复试验的概率公式:k n k kn n P P C k P --=)1()(.它是[](1)nP P -+展开式的第1k +项3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k kn n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:由于k n k knq p C -恰好是二项展开式11100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布(binomial distribution ),记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k kn q p C -=b (k ;n ,p ).三、讲解范例:例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中, (1)恰有 8 次击中目标的概率;(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)例2.(全国高考题)某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.例3.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).例4.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率例5.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)点评:“至多”,“至少”问题往往考虑逆向思维法例6.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?例7.十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?例8.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率.例9.一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于98%?(2)若每穴种3粒,求恰好两粒发芽的概率.(lg 20.3010=)四、课堂练习: 1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )()A 32100.70.3C ⨯⨯ ()B 1230.70.3C ⨯⨯ ()C 310 ()D 21733103A A A ⋅3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( )()A 33351A A - ()B 211232323355A A A A A A ⋅⋅+()C 331()5- ()D 22112333232()()()()5555C C ⨯⨯+⨯⨯ 4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为 .(设每次命中的环数都是自然数)6.一名篮球运动员投篮命中率为60%,在一次决赛中投10个球,则投中的球数不少于9个的概率为 . 7.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8081,则此射手的命中率为 . 8.某车间有5台车床,每台车床的停车或开车是相互独立的,若每台车床在任一时刻处于停车状态的概率为31,求:(1)在任一时刻车间有3台车床处于停车的概率;(2)至少有一台处于停车的概率9.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求: ⑴全部成活的概率; ⑵全部死亡的概率; ⑶恰好成活3棵的概率; ⑷至少成活4棵的概率10.(1)设在四次独立重复试验中,事件A 至少发生一次的概率为8081,试求在一次试验中事件A 发生的概率(2)某人向某个目标射击,直至击中目标为止,每次射击击中目标的概率为1,求在第n五、小结 :1.独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行第二:各次试验中的事件是相互独立的2.如果1次试验中某事件发生的概率是P,那么n次独立重复试验中这个事件恰好发生k次的概率为kn k kn n P P C k P --=)1()(对于此式可以这么理解:由于1次试验中事件A 要么发生,要么不发生,所以在n 次独立重复试验中A 恰好发生k 次,则在另外的n k -次中A 没有发生,即A 发生,由()P A P =,()1P A P=-所以上面的公式恰为n P P ])1[(+-展开式中的第1k +项,可见排列组合、二项式定理及概率间存在着密切的联系2.3离散型随机变量的均值与方差 2.3.1离散型随机变量的均值一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量 并且不改变其属性(离散型、连续型)5. 分布列:设离散型随机变量ξ可能取得值为x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列6. 分布列的两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1)7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k kn n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k knq p C -=b (k ;n ,p ).8. 离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,P(k A )=p ,P(kA )=q(q=1-p),那么p q -=1).于是得到随机变量ξ的概率分布如下:称这样的随机变量ξ服从几何记作g (k ,p )= 1k q p -,其中k =0,1,2,…, p q -=1.二、讲解新课:根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下在n 次射击之前,可以根据这个分布列估计n 次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望根据射手射击所得环数ξ的分布列,我们可以估计,在n 次射击中,预计大约有n n P 02.0)4(=⨯=ξ次得4环;n n P 04.0)5(=⨯=ξ次得5环;…………n n P 22.0)10(=⨯=ξ次得10环.故在n 次射击的总环数大约为+⨯⨯n 02.04++⨯⨯ n 04.05n ⨯⨯22.010+⨯=02.04(++⨯ 04.05n ⨯⨯)22.010,从而,预计n 次射击的平均环数约为+⨯02.04++⨯ 04.0532.822.010=⨯.这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个)(i P =ξ(i =0,1,2, (10),我们可以同样预计他任意n 次射击的平均环数:+=⨯)0(0ξP +=⨯)1(1ξP …)10(10=⨯+ξP .1. 均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望.2. 均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平n p n 1==,=ξE +1(x +2x …nx n 1)⨯+,所以ξ的数学期望又称为平均数、均值4. 均值或期望的一个性质:若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,它们的分布列为于是=ηE ++11)(p b ax ++22)(p b ax …+++n n p b ax )(…=+11(p x a +22p x …++n n p x …)++1(p b +2p …++n p …)=b aE +ξ,由此,我们得到了期望的一个性质:b aE b a E +=+ξξ)(5.若ξB (n,p ),则E ξ=np证明如下: ∵ k n k k n k n k k n q p C p p C k P --=-==)1()(ξ,∴=ξE 0×n nq p C 00+1×111-n n q p C +2×222-n n q p C +…+k ×k n k k n q p C -+…+n ×0q p C n n n . 又∵ 11)]!1()1[()!1()!1()!(!!--=-----⋅=-⋅=k n knnC k n k n n k n k n k kC ,∴=ξE (np 001n n C p q --+2111--n n qp C +…+)1()1(111------k n k k n q pC +…+)0111q pC n n n ---np q p np n =+=-1)(. 故 若ξ~B (n ,p ),则=ξE np .三、讲解范例:例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分ξ的期望。
2.2.3独立重复实验与二项分布(1)【学习目标】:在了解条件概率和相互独立事件概念的前提下,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.【重点】: 独立重复试验、二项分布的理解及应用、二项分布模型解决一些简单的实际问题【难点】:二项分布模型的构建【新知预习】: 11独立重复试验的定义:2.独立重复试验的概率公式:离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:由于k n k k nq p C -恰好是二项展开式 011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布记作ξ~B (n ,p ),其中p 为成功概率【例题探究】:练习:某射手每次射击击中目标的概率是0.8, 求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率;(3)仅在第8次击中目标的概率;(4)第8次击中目标的概率;(5)要保证击中目标的概率大于0.99,至少应 射击多少次?例1:诸葛亮解出题目的概率是0.9,三个臭皮匠各自独立解出的概率都是0.6,皮匠中至少一人解出题目即胜出比赛,诸葛亮和臭皮匠团队哪个胜出的可能性大?例2: 某气象站天气预报的准确率为0.8 ,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有1次准确的概率 ;(3)5次预报中恰有2次准确,且其中第3次准确的概率;例3:实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率【课堂小结】【课内达标】:1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )()A 32100.70.3C ⨯⨯ ()B 1230.70.3C ⨯⨯ ()C 310 ()D 21733103A A A ⋅ 3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C4. 一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于0.98 ?(2)若每穴种3粒,求恰好两粒发芽的概率.巩固型作业:全品:课时测评思维拓展型作业:甲、乙两选手比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4,那么对甲而言,采用3局2胜制,还是5局3胜制更有利?思考题:二项分布与两点分布及超几何分布有什么区别与联系?【课后收获】:。