独立重复试验教案
- 格式:pdf
- 大小:142.43 KB
- 文档页数:3
概率论与数理统计教学教案第1章随机事件与概率B 称为事件k n A 个事件为B 称为事件1nk k A =为n 个事件,n A 的积事件,称1k k A ∞=为可列个事件的积事件)事件A B -称为事件与事件B 的差事件,表示A 发生且 ,∅=B A 称为事件A 与事件B 是互不相容或互斥的,表示事件与事件B 不能同时发生A B S =且B =∅,称事件与事件B 互为逆事件,或称事件A 与事件A ,B 中必有一个发生,且仅有一个发生,的对立事件记作S A =-..事件间的运算律:设,,A B C 为事件,则有)交换律: A B A =, A )结合律: A C B A ()(=)分配律: ()(B A C B A = ()(B A C B A =B C ;ABC A B C =;ABCABC ABC ; ABC ABC ABC ABC AB BC CA =;)至多有两个次品(考虑其对立事件))()()ABC ABC ABC ABC ABC ABC ABC A B C ==.授课序号02(n k -+)k n ≤个元素的不同组合总数为1)(1)!n k k --+是平面上某个区域, 它的面积记为的位置和形状无关,)()A A μ=. ,2,, 有11i i i A ∞∞==⎫=⎪⎭∑2.概率的运算性质(1)0≤(2)A 若+P(A n ).(3)对于任意两个事件)(A B P -=,)k人取到具有快充功能的充电器(记为事件件产品,其中有货架上有外观相同的商品求这两件商品来自同一产地的概率某接待站在某一周曾接待过推断接待时间是有规定的?B=)0.6授课序号03)2|B A =两点说明:计算条件概率的方法在缩减的样本空间)在样本空间S 中,先求事件.乘法公式:(P AB A A A ,,,21 2,,;n2n B B S =,)n,则()AP=全概率公式的主要用处在于它可以将一个复杂事件的概率计算问题,题,最后应用概率的可加性求出最终结果的样本空间为,.)(|)C P A B C在矿内同时装有两种报警系统(Ⅰ)和(Ⅱ),每种系统单独使用时,失灵的情况下,系统(Ⅱ)仍有效的概率为只白球,每次自袋中任取一只球若在袋中连续取球四次, 试求第一、二次取到红球且第三、四次取到授课序号04k i n <≤三个事件相互独立:)()(C P A ,)()3n n ≥)若事件,21A A ,,n A 相互独立,则有212()1()n n P A A P A A A =-1212()1()()()n n P A A A P A P A P A =-=- .独立性在系统可靠性中的应用 对于一个元件,它能正常工作的概率称为元件的可靠性. 对于一个系统,它能正常工作的概率称为系统的(2)每次试验都仅考虑两个可能结果:事件A 和事件A ,且在每次试验中都有p A P =)(,p A P -=1)(.2.定理:设在一次试验中事件A 发生的概率为p ()01p <<,则在n 重伯努利试验中,事件A 恰好发生了k ()k n ≤次的概率为k n k k n n p p C k P --=)1()(,n k ,,2,1,0 =,10<<p .三.例题讲解例1.设B A ,互不相容,若0)(,0)(>>B P A P ,问B A ,是否相互独立?例2.设随机事件A 与B 相互独立,A 与C 相互独立,BC =∅,若1()(),2P A P B ==1(|)4P AC A B =,求()P C .例3.甲、乙、丙三人独立破译一份密码,设甲的成功率为0.4,乙的成功率为0.3,丙的成功率为0.2,求密码被破译的概率.例1.26 加工某一零件共需经过7道工序, 每道工序的次品率都是5%,假定各道工序是互不影响的, 求加工出来的零件的次品率.例4.来看四个独立工作的元件组成的系统的可靠性,设每个元件的可靠性均为p ,分别按图1.4的两种方式组成系统(分别记为S 1和S 2),求两种组合方式的可靠性.图1.4 系统S 1(左图)和系统S 2(右图) 例5.某店内有4名售货员,根据经验每名售货员平均在1小时内用秤15分钟.问该店配置几台秤较为合理.数字化仓库评估规范1 范围本文件规定了数字化仓库评估的基本原则与评估指标构成及评估内容,并提供了评估指标体系的构建和评估分析方法。
2.2.3独立重复试验与二项分布(第一课时)教学目标:理解n 次独立重复试验的模型及二项分布教学重点:理解n 次独立重复试验的模型及二项分布教学过程一、复习引入:1. 已知事件B 发生条件下事件A 发生的概率称为事件A 关于事件B 的条件概率,记作(|)P A B .2. 对任意事件A 和B ,若()0P B ≠,则“在事件B 发生的条件下A 的条件概率”,记作P(A | B),定义为(|)P AB P A B P B ()=()3. 事件B 发生与否对事件A 发生的概率没有影响,即(|)()P A B P A =.称A 与B 独立二、讲解新课: 1 独立重复试验的定义: 指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)n P P -+展开式的第1k +项 例1.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率解:(1)记“预报1次,结果准确”为事件A .预报5次相当于5次独立重复试验,根据n 次独立重复试验中某事件恰好发生k 次的概率计算公式,5次预报中恰有4次准确的概率4454455(4)0.8(10.8)0.80.41P C -=⨯⨯-=≈答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==⨯⨯-+⨯⨯-450.80.80.4100.328=+≈+≈答:5次预报中至少有4次准确的概率约为0.74. 例2.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验 1小时内5台机床中没有1台需要工人照管的概率55513(0)(1)()44P =-=,1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =⨯⨯-, 所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)P P P =-+≈答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.点评:“至多”,“至少”问题往往考虑逆向思维法例3.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击n 次记事件A =“射击一次,击中目标”,则()0.25P A =.∵射击n 次相当于n 次独立重复试验,∴事件A 至少发生1次的概率为1(0)10.75nn P P =-=-. 由题意,令10.750.75n -≥,∴31()44n ≤,∴1lg4 4.82lg 4n ≥≈, ∴n 至少取5. 答:要使至少命中1次的概率不小于0.75,至少应射击5次课堂小节:本节课学习了n 次独立重复试验的模型及二项分布。
2.2.3独立重复实验与二项分布教学目标:知识与技能:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
过程与方法:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题 教学难点:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++=12()()()n P A P A P A +++13.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立14.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅ 二、讲解新课: 1 独立重复试验的定义: 指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)nP P -+展开式的第1k +项 3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).由于k n k k n q p C -恰好是二项展开式011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布(binomial distribution ),记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ).三、讲解范例:例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率;(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)解:设X 为击中目标的次数,则X ~B (10, 0.8 ) .(1)在 10 次射击中,恰有 8 次击中目标的概率为P (X = 8 ) =88108100.8(10.8)0.30C -⨯⨯-≈. (2)在 10 次射击中,至少有 8 次击中目标的概率为P (X ≥8) = P (X = 8) + P ( X = 9 ) + P ( X = 10 )8810899109101010101010100.8(10.8)0.8(10.8)0.8(10.8)C C C ---⨯⨯-+⨯⨯-+⨯⨯-0.68≈.例2.(2000年高考题)某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布.解:依题意,随机变量ξ~B (2,5%).所以,P (ξ=0)=02C (95%)2=0.9025,P (ξ=1)=12C (5%)(95%)=0.095,P (2=ξ)=22C (5%)2=0.0025.因此,次品数ξ例3.>3).解:依题意,随机变量ξ~B ⎪⎭⎫ ⎝⎛61,5.∴P (ξ=4)=6561445⋅⎪⎭⎫ ⎝⎛C =777625,P (ξ=5)=55C 561⎪⎭⎫ ⎝⎛=77761. ∴P (ξ>3)=P(ξ=4)+P (ξ=5)=388813 例4.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字): (1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率解:(1)记“预报1次,结果准确”为事件A .预报5次相当于5次独立重复试验,根据n 次独立重复试验中某事件恰好发生k 次的概率计算公式,5次预报中恰有4次准确的概率4454455(4)0.8(10.8)0.80.41P C -=⨯⨯-=≈ 答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==⨯⨯-+⨯⨯-450.80.80.4100.328=+≈+≈答:5次预报中至少有4次准确的概率约为0.74.例5.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验1小时内5台机床中没有1台需要工人照管的概率55513(0)(1)()44P =-=,1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =⨯⨯-, 所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)P P P =-+≈答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.点评:“至多”,“至少”问题往往考虑逆向思维法例6.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击n 次记事件A =“射击一次,击中目标”,则()0.25P A =.∵射击n 次相当于n 次独立重复试验,∴事件A 至少发生1次的概率为1(0)10.75nn P P =-=-. 由题意,令10.750.75n -≥,∴31()44n ≤,∴1lg4 4.823lg 4n ≥≈, ∴n 至少取5. 答:要使至少命中1次的概率不小于0.75,至少应射击5次例7.十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?解:依题意,从低层到顶层停不少于3次,应包括停3次,停4次,停5次,……,直到停9次 ∴从低层到顶层停不少于3次的概率 3364455549999991111111()()()()()()()2222222P C C C C =++++ 3459990129999999911()()2()()22C C C C C C C ⎡⎤=+++=-++⎣⎦+991233(246)()2256=-= 设从低层到顶层停k 次,则其概率为k 9999111C ()()()222k k k C -=, ∴当4k =或5k =时,9k C 最大,即991()2k C 最大, 答:从低层到顶层停不少于3次的概率为233256,停4次或5次概率最大. 例8.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12. 记事件A =“甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”,记事件C =“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜∴甲打完3局取胜的概率为33311()()28P A C ==. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负∴甲打完4局才能取胜的概率为2231113()()22216P B C =⨯⨯⨯=. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负∴甲打完5局才能取胜的概率为22241113()()()22216P C C =⨯⨯⨯=. (2)事件D =“按比赛规则甲获胜”,则D A B C =++,又因为事件A 、B 、C 彼此互斥, 故1331()()()()()816162P D P A B C P A P B P C =++=++=++=. 答:按比赛规则甲获胜的概率为12. 例9.一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于98%?(2)若每穴种3粒,求恰好两粒发芽的概率.(lg 20.3010=)解:记事件A =“种一粒种子,发芽”,则()0.8P A =,()10.80.2P A =-=,(1)设每穴至少种n 粒,才能保证每穴至少有一粒发芽的概率大于98%.∵每穴种n 粒相当于n 次独立重复试验,记事件B =“每穴至少有一粒发芽”,则00()(0)0.8(10.8)0.2n n n n P B P C ==-=. ∴()1()10.2nP B P B =-=-.由题意,令()98%P B >,所以0.20.02n <,两边取常用对数得, lg0.2lg0.02n <.即(lg 21)lg 22n -<-, ∴lg 22 1.6990 2.43lg 210.6990n ->=≈-,且n N ∈,所以取3n ≥. 答:每穴至少种3粒,才能保证每穴至少有一粒发芽的概率大于98%.(2)∵每穴种3粒相当于3次独立重复试验,∴每穴种3粒,恰好两粒发芽的概率为2230.80.20.384P C =⨯⨯==,答:每穴种3粒,恰好两粒发芽的概率为0.384四、课堂练习:1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )()A 32100.70.3C ⨯⨯ ()B 1230.70.3C ⨯⨯ ()C 310 ()D 21733103A A A ⋅ 3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( )()A 33351A A - ()B 211232323355A A A A A A ⋅⋅+ ()C 331()5- ()D 22112333232()()()()5555C C ⨯⨯+⨯⨯ 4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为 .(设每次命中的环数都是自然数)6.一名篮球运动员投篮命中率为60%,在一次决赛中投10个球,则投中的球数不少于9个的概率为 .7.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8081,则此射手的命中率为 .8.某车间有5台车床,每台车床的停车或开车是相互独立的,若每台车床在任一时刻处于停车状态的概率为31,求:(1)在任一时刻车间有3台车床处于停车的概率;(2)至少有一台处于停车的概率9.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:⑴全部成活的概率; ⑵全部死亡的概率;⑶恰好成活3棵的概率; ⑷至少成活4棵的概率10.(1)设在四次独立重复试验中,事件A 至少发生一次的概率为8081,试求在一次试验中事件A 发生的概率(2)某人向某个目标射击,直至击中目标为止,每次射击击中目标的概率为13,求在第n 次才击中目标的概率 答案:1. C 2. D 3. A 4. A 5. 0.784 6. 0.0467. 23 8.(1)()323551240333243P C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭(2)()()5552211113243P B P B C ⎛⎫=-=-= ⎪⎝⎭ 9.⑴5550.90.59049C =; ⑵5550.10.00001C =;⑶()3325530.90.10.0729P C =⋅=; ⑷()()55450.91854P P P =+=10.(1) 23P = (2) 112()33n P -=⋅ 五、小结 :1.独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行第二:各次试验中的事件是相互独立的不发生2.如果1次试验中某事件发生的概率是P ,那么n 次独立重复试验中这个事件恰好发生k 次的概率为k n k k n n P P C k P --=)1()(对于此式可以这么理解:由于1次试验中事件A 要么发生,要么不发生,所以在n 次独立重复试验中A 恰好发生k 次,则在另外的n k -次中A 没有发生,即A 发生,由()P A P =,()1P A P =-所以上面的公式恰为n P P ])1[(+-展开式中的第1k +项,可见排列组合、二项式定理及概率间存在着密切的联系六、课后作业:课本58页 练习1、2、3、4第60页 习题 2. 2 B 组2、3七、板书设计(略)八、课后记:教学反思:1. 理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
高二数学独立重复试验与二项分布教案教学目标:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
德育目标:承前启后,感悟数学与生活的和谐之美 ,表达数学的文化功能与人文价值教学重点:独立重复试验的概念形成及二项分布公式的发现与应用教学难点:概率模型的识别与应用教学过程:一、引入课本P63引例:掷一枚图钉,针尖向上的概率为0.6,那么针尖向下的概率为 1-0.6=0.4 问题〔1〕第1次、第2次、第3次…第n 次针尖向上的概率是多少?第1次、第2次、第3次…第n 次针尖向上的概率都是0.6二、新课1、形成概念“独立重复试验〞的概念:在同样条件下进行的,各次之间相互独立的一种试验。
特点:⑴在同样条件下重复地进行的一种试验;⑵各次试验之间相互独立,互相之间没有影响;⑶每一次试验只有两种结果,即某事要么发生,要么不发生,并且任意一次试验中发生的概率都是一样的。
问题〔2〕:掷一枚图钉,针尖向上的概率为0.6,那么针尖向下的概率为1-0.6=0.4,那么连续掷3次,恰有1次针尖向上的概率是多少?分解问题〔2〕问题a 3次中恰有1次针尖向上,有几种情况?问题b 它们的概率分别是多少?问题c 3次中恰有1次针尖向上的概率是多少?引申推广:连续掷n 次,恰有k 次针尖向上的概率是2定义:在n 次独立重复试验中,事件A 发生的次数为X ,在每次试验中事件A 发生的概率为P ,那么在在n 次独立重复试验中事件A 恰好发生k 次的概率是共有3种情况: , , 123A A A 123A A A 123A A A 120.6(10.6)⨯-概率都是 即 13C 11230.6(10.6)P C =⨯⨯-0.6(10.6)k k n kn P C -=⨯⨯-()(1)k k n kn P X k C P P -==-K=0,1,2,3,……n此时称随机变量X 服从二项分布,记作X ~B(n,p)。
并称P 为成功概率。
2.2.3 独立重复试验与二项分布[对应学生用书P31]要研究抛掷硬币的规律,需做大量的掷硬币试验.试想每次试验的前提是什么?提示:条件相同.1.在相同条件下重复地做n次试验,各次实验的结果相互独立,则称它们为n次独立重复试验.2.一般地,如果在一次试验中事件A发生的概率是p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P n(k)=C k n p k(1-p)n-k(k=0,1,2,…,n).在体育课上,某同学做投篮训练,他连续投篮3次,每次投篮的命中率都是0.8.用A i(i=1,2,3)表示第i次投篮命中这件事,用B1表示仅投中1次这件事.问题1:试用A i表示B1.提示:B1=(A1∩A2∩A3)∪(A1∩A2∩A3)∪(A1∩A2∩A3).问题2:试求P(B1).提示:因为P(A1)=P(A2)=P(A3)=0.8,且A1∩A2∩A3,A1∩A2∩A3,A1∩A2∩A3两两互斥,故P(B1)=P(A1∩A2∩A3)+P(A1∩A2∩A3)+P(A1∩A2∩A3)=0.8×0.22+0.8×0.22+0.8×0.22=3×0.8×0.22.问题3:用B k表示投中k次这件事,试求P(B2)和P(B3).提示:P(B2)=3×0.2×0.82,P(B3)=0.83.问题4:由以上结果你能得出什么结论?提示:P(B k)=C k30.8k0.23-k,k=0,1,2,3.若将事件A发生的次数记为X,事件A不发生的概率为q=1-p,那么在n次独立重复试验中,事件A恰好发生k次的概率是P(X=k)=C k n p k q n-k,其中k=0,1,2,…,n.于是得到X的分布列由于表中的第二行恰好是二项式展开式(q+p)n=C0n p0q n+C1n p1q n-1+…+C k n p k q n-k+…+C n p n q0各对应项的值,所以称这样的离散型随机变量X服从参数为n,p的二项分布,记作X~B(n,p).1.独立重复试验满足的条件:(1)每次试验是在相同的条件下进行的;(2)各次试验的结果互不影响,即每次试验是相互独立的;(3)每次试验都只有两种结果,即事件要么发生,要么不发生.2.二项分布中各个参数的意义:n表示试验的总次数;k表示在n次独立重复试验中成功的次数;p表示试验成功的概率;1-p表示试验不成功的概率.3.二项分布的特点:(1)对立性:即一次试验中只有两种结果——“成功”和“不成功”,而且有且仅有一个发生;(2)重复性:试验在相同条件下独立重复地进行n次,保证每一次试验中“成功”的概率和“不成功”的概率都保持不变.[对应学生用书P32][例1] 2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.[思路点拨]由于5次预报是相互独立的,且结果只有两种(或准确,或不准确),符合独立重复试验模型.[精解详析](1)记“预报1次准确”为事件A,则P(A)=0.8.5次预报相当于5次独立重复试验,2次准确的概率为P=C250.82×0.23=0.051 2≈0.05.因此5次预报中恰有2次准确的概率为0.05.(2)“5次预报中至少有2次准确”的对立事件为“5次预报全部不准确或只有1次准确”,其概率为P=C05(0.2)5+C15×0.8×0.24=0.006 72≈0.01.所求概率为1-P=1-0.01=0.99.(3)由题意知第1,2,4,5次预报中恰有1次准确.所以概率P=C140.8×0.23×0.8=0.020 48≈0.02.即恰有2次准确,且其中第3次预报准确的概率约为0.02.[一点通]1.运用独立重复试验的概率公式求概率时,首先判断问题中涉及的试验是否为n次独立重复试验,判断时注意各次试验之间是相互独立的,并且每次试验的结果只有两种(即要么发生,要么不发生),在任何一次试验中某一事件发生的概率都相等,然后用相关公式求概率.2.解此类题常用到互斥事件概率加法公式,相互独立事件概率乘法公式及对立事件的概率公式.1.打靶时,甲每打10发可中靶8次,则他打100发子弹有4发中靶的概率为( ) A .C 41000.84×0.296 B .0.84 C .0.84×0.296D .0.24×0.296解析:设X 为中靶的次数,则X ~B (100,0.8), ∴P (X =4)=C 41000.84×0.296. 答案:A2.在4次独立重复试验中,事件A 至少发生1次的概率为6581,则事件A 在1次试验中出现的概率为( )A.13B.25C.56D.34解析:由题意知,C 04p 0(1-p )4=1-6581,p =13.答案:A3.甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23,求:(1)甲恰好击中目标2次的概率; (2)乙至少击中目标2次的概率; (3)乙恰好比甲多击中目标2次的概率.解:(1)甲恰好击中目标2次的概率为C 23⎝ ⎛⎭⎪⎫123=38.(2)乙至少击中目标2次的概率为C 23⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫13+C 3⎝ ⎛⎭⎪⎫233=2027. (3)设乙恰好比甲多击中目标2次为事件A ,乙恰好击中目标2次且甲恰好击中目标0次为事件B 1,乙恰好击中目标3次且甲恰好击中目标1次为事件B 2,则A =B 1∪B 2,B 1,B 2为互斥事件.P (A )=P (B 1)+P (B 2)=C 23⎝ ⎛⎭⎪⎫232×13×C 03⎝ ⎛⎭⎪⎫123+C 3⎝ ⎛⎭⎪⎫233×C 13⎝ ⎛⎭⎪⎫123=118+19=16.[2](12分)已知某种从太空飞船中带回来的植物种子每粒成功发芽的概率都为13,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一粒种子,如果某次没有发芽,则称该次试验是失败的.(1)第一小组做了3次试验,记该小组试验成功的次数为X ,求X 的概率分布列; (2)第二小组进行试验,到成功了4次为止,求在第4次成功之前共有3次失败的概率.[思路点拨] (1)X 服从二项分布;(2)共7次试验,前6次试验有3次失败.[精解详析] (1)由题意,随机变量X 可能取值为0,1,2,3,则X ~B ⎝ ⎛⎭⎪⎫3,13.(2分)即P (X =0)=C 03⎝ ⎛⎭⎪⎫130⎝ ⎛⎭⎪⎫1-133=827,(4分)P (X =1)=C 13⎝ ⎛⎭⎪⎫131⎝ ⎛⎭⎪⎫1-132=49,(5分) P (X =2)=C 23⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫1-131=29,(6分)P (X =3)=C 3⎝ ⎛⎭⎪⎫133=127.(7分)所以X 的概率分布列为(8分)(2)第二小组第7次试验成功,前面6次试验中有3次失败,3次成功,每次试验又是相互独立的,因此所求概率为P =C 36⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫1-133×13=1602 187.(12分)[一点通]解决此类问题的步骤:(1)判断随机变量X 服从二项分布; (2)建立二项分布模型;(3)确定X 的取值并求出相应的概率; (4)写出分布列.4.已知X ~B ⎝ ⎛⎭⎪⎫6,13,则P (X =2)等于( ) A.316 B.4243 C.13243D.80243解析:P (X =2)=C 26⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫234=80243.答案:D5.某射手每次射击击中目标的概率是0.8,现连续射击4次,求击中目标次数X 的分布列. 解:击中目标的次数X 服从二项分布X ~B (4,0.8), ∴P (X =k )=C k 4(0.8)k (0.2)4-k (k =0,1,2,3,4),即X 的分布列为6.4名考生选做这两题的可能性均为12.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的学生数为X ,求X 的分布列.解:(1)设事件A 表示“甲选做第14题”,事件B 表示“乙选做第14题”,则甲、乙2名学生选做同一道题的事件为“(A ∩B )∪(A ∩B )”,且事件A ,B 相互独立.∴P ((A ∩B )∪(A ∩B )) =P (A )P (B )+P (A )P (B ) =12×12+⎝ ⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-12=12.(2)随机变量X 的可能取值为0,1,2,3,4,且X ~B ⎝ ⎛⎭⎪⎫4,12.∴P (X =k )=C k 4⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫1-124-k=C k 4⎝ ⎛⎭⎪⎫124(k =0,1,2,3,4). 所以变量X 的分布列为1.独立重复试验概率求解的关注点:(1)运用独立重复试验的概率公式求概率时,要判断问题中涉及的试验是否为n 次独立重复试验,判断时可依据n 次独立重复试验的特征.(2)解此类题常用到互斥事件概率加法公式、相互独立事件概率乘法公式及对立事件的概率公式. 2.二项式(q +p )n (p +q =1)的展开式中,第k +1项为T k +1=Ckn q n -k p k ,可见P (X =k )就是二项式(q +p )n 的展开式中的第k +1项,故此公式称为二项分布公式.错误!1.某地人群中高血压的患病率为p ,由该地区随机抽查n 人,则( )A .样本患病率X /n 服从B (n ,p ) B .n 人中患高血压的人数X 服从B (n ,p )C .患病人数与样本患病率均不服从B (n ,p )D .患病人数与样本患病率均服从B (n ,p ) 解析:由二项分布的定义知B 正确. 答案:B2.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为35,若40分为最低分数线,则该生被选中的概率是( )A .C 45⎝ ⎛⎭⎪⎫354×25B .C 5⎝ ⎛⎭⎪⎫355C .C 45⎝ ⎛⎭⎪⎫354×25+C 5⎝ ⎛⎭⎪⎫355 D .1-C 35⎝ ⎛⎭⎪⎫353×⎝ ⎛⎭⎪⎫252 解析:该生被选中包括“该生做对4道题”和“该生做对5道题”两种情形,故所求概率为P =C 45⎝ ⎛⎭⎪⎫354×25+C 5⎝ ⎛⎭⎪⎫355. 答案:C3.甲、乙两队参加乒乓球团体比赛,甲队与乙队的实力之比为3∶2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )A .C 23⎝ ⎛⎭⎪⎫353×25B .C 23⎝ ⎛⎭⎪⎫352×25C .C 34⎝ ⎛⎭⎪⎫353×25D .C 34⎝ ⎛⎭⎪⎫233×13解析:甲打完4局才胜,说明在前三局中甲胜两局,且在第4局中获胜,其概率为P =C 23⎝ ⎛⎭⎪⎫352×25×35=C 23⎝ ⎛⎭⎪⎫353×25. 答案:A4.位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动5次后位于点(2,3)的概率是( )A.⎝ ⎛⎭⎪⎫123 B .C 25⎝ ⎛⎭⎪⎫125 C .C 35⎝ ⎛⎭⎪⎫123 D .C 25C 35⎝ ⎛⎭⎪⎫125 解析:质点由原点移动到(2,3)需要移动5次,且必须有2次向右,3次向上,所以质点的移动方法有C 25种.而每一次向右移动的概率都是12,所以向右移动的次数X ~B ⎝ ⎛⎭⎪⎫5,12,所求的概率等于P (X =2)=C 25⎝ ⎛⎭⎪⎫125.答案:B5.下列说法正确的是________.①某同学投篮的命中率为0.6,他10次投篮中命中的次数X 是一个随机变量,且X ~B (10,0.6); ②某福彩的中奖概率为P ,某人一次买了8张,中奖张数X 是一个随机变量,且X ~B (8,P ); ③从装有5个红球、5个白球的袋中,有放回地摸球,直到摸出白球为止,则摸球次数X 是随机变量,且X ~B⎝ ⎛⎭⎪⎫n ,12. 解析:①②显然满足独立重复试验的条件,而③虽然是有放回地摸球,但随机变量X 的定义是直到摸出白球为止,也就是说前面摸出的一定是红球,最后一次是白球,不符合二项分布的定义.答案:①②6.设X ~B (2,p ),若P (X ≥1)=59,则p =________.解析:∵X ~B (2,p ),∴P (X =k )=C k 2p k (1-p )2-k ,k =0,1,2.∴P (X ≥1)=1-P (X <1)=1-P (X =0) =1-C 02p 0(1-p )2=1-(1-p )2, ∴1-(1-p )2=59.结合0≤p ≤1,解之得p =13.答案:137.在资料室存放着书籍和杂志,任一读者借书的概率为0.2,而借杂志的概率为0.8,设每人只借一本,现有5位读者依次借阅.(1)求5人中有两人借杂志的概率;(2)求5人中至多有2人借杂志的概率.(保留到0.000 1)解:记“一位读者借杂志”这为事件A ,则“此人借书”为事件A -,5位读者借几次可看作几次独立重复事件.(1)5人中有2人借杂志的概率为P =C 25(0.8)2(0.2)3=0.051 2.(2)5人中至多有2人借杂志,包括三种情况:5人都不借杂志;5人中恰有1人借杂志;5人中恰有2人借杂志.所以求概率为P =C 05(0.8)0(0.2)5+C 15(0.8)1(0.2)4+C 25(0.8)2(0.2)3≈0.057 9.8.在一次抗洪抢险中,准备用射击的办法引爆从桥上游漂流而下的一个巨大汽油灌,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23.(1)求油灌被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为X ,求X 不小于4的概率.解:(1)油灌被引爆的对立事件为油灌没有被引爆,没有引爆的可能情况是射击5次只击中一次或一次也没有击中,故该事件的概率为C 15·23·⎝ ⎛⎭⎪⎫134+⎝ ⎛⎭⎪⎫135=11243, 所以所求的概率为 1-11243=232243. (2)当X =4表示前3次中只有一次击中,第四次击中,则 P (X =4)=C 13·23·⎝ ⎛⎭⎪⎫132·23=427.当X =5时,表示前4次射击只击中一次或一次也未击中,第5次可以击中,也可以不击中, 则P (X =5)=C 14·23·⎝ ⎛⎭⎪⎫133+⎝ ⎛⎭⎪⎫134=19,所以所求概率为P (X ≥4)=P (X =4)+P (X =5)=427+19=727.。
二项分布和超几何分布(含答案)超几何分布和二项分布一、两者的定义是不同的1超几何分布的定义2独立重复试验与二项分布的定义(1)独立重复试验.(2)二项分布.本质区别(1)超几何分布描述的是不放回抽样问题,而二项分布描述的是放回抽样问题.(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题.二、两者之间是有联系的人教版新课标选修2-3第59页习题2.2B组第3题:例1某批n件产品的次品率为2%,现从中任意地依次抽出3件进行检验,问:(1)当n=500,5000,500000时,分别以放回和不放回的方式抽取,恰好抽到1件产品的概率各是多少?(2)根据(1)你对超几何分布与二项分布的关系有何认识?【说明】由于数字比较大,可以利用计算机或计算器进行数值计算.另外,本题目也可以帮助学生了解超几何分布和二项分布之间的关系:第一,n次试验中,某一事件A出现的次数X可能服从超几何分布或二项分布.当这n次试验是独立重复试验时,X服从二项分布;当这n次试验是不放回摸球问题,事件A为摸到某种特性(如某种颜色)的球时,X服从超几何分布第二,在不放回n次摸球试验中,摸到某种颜色的次数X服从超几何分布,但是当袋子中的球的数目N 很大时,X的分布列近似于二项分布,并且随着N的增加,这种近似的精度也增加.从以上分析可以看出两者之间的联系:当调查研究的样本容量非常大时,在有放回地抽取与无放回地抽取条件下,计算得到的概率非常接近,可以近似把超几何分布认为是二项分布.例2袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取一个球,求(1)又放回抽样时,取到黑球的个数X的分布列;(2)无放回地抽样时,取到黑球的个数Y的分布列.[错解分析]第二问的选人问题是不放回抽样问题,按照定义先考虑超几何分布,但是题目中又明确给出:“以这16人的样本数据来估计整个社区的总体数据,从该社区(人数很多)任选3人”,说明不是从16人中任选3人,而是从该社区(人数很多)任选3人,所以可以近似看作是3次独立重复试验,应该按照二项分布去求解,而不能按照超几何分布去处理.【正解】(1)同上;从以上解题过程中我们还发现,错解中的期望值与正解中的期望值相等,好多学生都觉得不可思议,怎么会出现相同的结果呢?其实这还是由于前面解释过的原因,超几何分布与二项分布是有联系的,看它们的期望公式:综上可知,当提问中涉及“用样本数据来估计总体数据”字样的为二项分布。
独立重复试验与二项分布教案一、教学目标●知识与技能:理解n次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布,培养学生的自主学习能力、数学建摸能力,并能解决相应的实际问题。
●过程与方法:通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,使学生充分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象的数学思想方法。
●情感态度与价值观:使学生体会数学的理性与严谨,了解数学于实际,应用于实际的唯物主义思想,培养学生对新知识的科学态度,勇于探索和敢于创新的精神。
二、教学重点、难点重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。
难点:二项分布模型的构建。
三、教学方法与手段教学方法:诱思探究教学法学习方法:自主探究、观察发现、合作交流、归纳总结。
教学手段:多媒体辅助教学四、教学过程环节教学设计设计说明创设情景,导入新课猜数游戏:游戏:有八组数字,每组数字仅由01或10构成,同学们至少猜对四组才为胜利问题1:前一次猜测的结果是否影响后一次的猜测?也就是每次猜测是否相互独立?问题2:游戏对双方是否公平?能否从概率角度解释?活跃课堂气氛,学生的热情被充分地调动,从而也引起学生的无意注意,在不知不觉中进入教师设计的教学情景中,为本节课的学习做有利的准备学生回答这个问题的同时,可以初步体验独立重复试验模型,为定义的提出作好铺垫。
引起学生的好奇,激发学习和探究知识的兴趣。
师生互动,探究新知在满足学生的好奇之前让学生对这两个例子进行对比分析,目的是让学生进一步体验独立重复试验模型,并得出其特征,使定义的提出水到渠成,从探究游戏中的第二个问题入手,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。
同时突出本节课重点,也突破了难点。
4.2.3二项分布与超几何分布第1课时n次独立重复试验与二项分布学习目标核心素养1.理解n次独立重复试验的模型.(重点)2.理解二项分布.(难点)3.能利用n次独立重复试验的模型及二项分布解决一些简单的实际问题.1.通过学习n次独立重复试验及二项分布,体会数学抽象的素养.2.借助二项分布解题,提高数学运算的素养.在学校组织的高二篮球比赛中,通过小组循环,甲、乙两班顺利进入最后的决赛.在每一场比赛中,甲班取胜的概率为0.6,乙班取胜的概率是0.4,比赛既可以采用三局两胜制,又可以采用五局三胜制.问题:如果你是甲班的一名同学,你认为采用哪种赛制对你班更有利?1.n次独立重复试验在相同条件下重复n次伯努利试验时,人们总是约定这n次试验是相互独立的,此时这n次伯努利试验也常称为n次独立重复试验.思考:独立重复试验必须具备哪些条件?[提示](1)每次试验的条件完全相同,相同事件的概率不变;(2)各次试验结果互不影响;(3)每次试验结果只有两种,这两种结果是对立的.2.二项分布一般地,如果一次伯努利试验中,出现“成功”的概率为p,记q=1-p,且n次独立重复试验中出现“成功”的次数为X,则X的取值范围是{0,1,…,k,…,n},而且P(X=k)=C k n p k q n-k,k=0,1,…,n,因此X 的分布列如下表所示.X1… k… nP C 0n p 0q nC 1n p 1qn -1 …C k n p k qn -k… C n n p n q 0)n =C 0n p 0q n+C 1n p 1q n -1+…+C k n p k qn -k +…+C n n p n q 0中对应项的值,因此称X 服从参数为n ,p 的二项分布,记作X ~B (n ,p ).1.思考辨析(正确的打“√”,错误的打“×”) (1)n 次独立重复试验的每次试验结果可以有多种. ( ) (2)两点分布是特殊的二项分布. ( ) (3)二项分布可以看作是有放回抽样.( ) (4)n 次独立重复试验中,每次试验的条件可以略有不同. ( )[答案] (1)× (2)√ (3)√ (4)× 2.若X ~B (10,0.8),则P (X =8)等于( )A .C 810×0.88×0.22B .C 810×0.82×0.28C .0.88×0.22D .0.82×0.28A [∵X ~B (10,0.8),∴P (X =8)=C 810×0.88×0.22,故选A.]3.一枚硬币连掷三次,只有一次出现正面的概率为________.38 [抛掷一枚硬币出现正面的概率为12,由于每次试验的结果不受影响,故由n 次独立重复试验可知,所求概率为P =C 13⎝⎛⎭⎪⎫12⎝ ⎛⎭⎪⎫122=38.] 4.下列说法正确的是________.(填序号)①某同学投篮的命中率为0.6,他10次投篮中命中的次数X 是一个随机变量,且X ~B (10,0.6);②某福彩的中奖概率为p ,某人一次买了8张,中奖张数X 是一个随机变量,且X ~B (8,p );③从装有5个红球、5个白球的袋中,有放回地摸球,直到摸出白球为止,则摸球次数X 是随机变量,且X ~B ⎝ ⎛⎭⎪⎫n ,12. ①② [①②显然满足独立重复试验的条件,而③虽然是有放回地摸球,但随机变量X 的定义是直到摸出白球为止,也就是说前面摸出的一定是红球,最后一次是白球,不符合二项分布的定义.]独立重复试验的概率【例1】 甲、乙两人各射击一次,击中目标的概率分别是23和34,假设每次射击是否击中目标,相互之间没有影响.(1)求甲射击3次,至少1次未击中目标的概率;(2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率. [解] (1)记“甲射击3次至少有1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验.故P (A 1)=1-P (A 1)=1-⎝ ⎛⎭⎪⎫233=1927.(2)记“甲射击2次,恰有2次击中目标”为事件A 2,“乙射击2次,恰有1次击中目标”为事件B 2,则P (A 2)=C 22×⎝⎛⎭⎪⎫232=49,P (B 2)=C 12×⎝ ⎛⎭⎪⎫341×⎝⎛⎭⎪⎫1-34=38. 由于甲、乙射击相互独立,故 P (A 2B 2)=49×38=16.1.(变结论)在本例(2)的条件下,求甲、乙均击中目标1次的概率. [解] 记“甲击中目标1次”为事件A 3,“乙击中目标1次”为事件B 3,则 P (A 3)=C 12×23×13=49,P (B 3)=38, 所以甲、乙均击中目标1次的概率为 P (A 3B 3)=49×38=16.2.(变结论)在本例(2)的条件下,求甲未击中、乙击中2次的概率. [解] 记“甲未击中目标”为事件A 4,“乙击中2次”为事件B 4,则P (A 4)=C 02⎝ ⎛⎭⎪⎫1-232=19,P (B 4)=C 22⎝ ⎛⎭⎪⎫342=916,所以甲未击中、乙击中2次的概率为P (A 4B 4)=19×916=116.独立重复试验概率求法的三个步骤二项分布设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列. [思路点拨] (1)首先判断ξ是否服从二项分布,再求分布列.(2)注意“首次遇到”“或到达”的含义,并明确η的取值,再求η取各值的概率.[解] (1)ξ~B ⎝ ⎛⎭⎪⎫5,13,ξ的分布列为P (ξ=k )=C k 5⎝⎛⎭⎪⎫13k ⎝ ⎛⎭⎪⎫235-k,k =0,1,2,3,4,5. 故ξ的分布列为ξ 012345P32243 80243 80243 40243 102431243(2)η的分布列为P (η=k )=P (前k 个是绿灯,第k +1个是红灯)=⎝ ⎛⎭⎪⎫23k ·13,k =0,1,2,3,4;P (η=5)=P (5个均为绿灯)=⎝ ⎛⎭⎪⎫235.故η的分布列为η 0 12345P13 29 427 881 16243322431.本例属于二项分布,当X 服从二项分布时,应弄清X ~B (n ,p )中的试验次数n 与成功概率p .2.解决二项分布问题的两个关注点(1)对于公式P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n )必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验是独立重复地进行了n 次.[跟进训练]1.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做每道题的可能性均为12,且各人的选择相互之间没有影响.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的人数为ξ名,求ξ的分布列.[解] (1)设事件A 表示“甲选做14题”,事件B 表示“乙选做14题”,则甲、乙2名考生选做同一道题的事件为“A ∩B +A ∩B ”,且事件A ,B 相互独立.∴P (A ∩B +A ∩B )=P (A )P (B )+P (A )P (B ) =12×12+⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-12=12.(2)随机变量ξ的可能取值为0,1,2,3,4,且ξ~B ⎝ ⎛⎭⎪⎫4,12.∴P (ξ=k )=C k 4⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫1-124-k=C k 4⎝⎛⎭⎪⎫124(k =0,1,2,3,4). ∴随机变量ξ的分布列为ξ 0 1 2 3 4P116 14 38 14 116独立重复试验与二项分布的综合应用1.王明做5道单选题,每道题都随机选一个答案,那么他做对的道数服从二项分布吗?为什么?[提示] 服从二项分布.因为每道题都是随机选一个答案,结果只有两个:对与错,并且每道题做对的概率均相等,故做5道题可以看成“一道题”重复做了5次,做对的道数就是5次试验中“做对”这一事件发生的次数,故他做对的“道数”服从二项分布.2.王明做5道单选题,其中2道会做,其余3道均随机选一个答案,他做对的道数服从二项分布吗?如何判断一随机变量是否服从二项分布?[提示] 不服从二项分布.因为会做的两道题做对的概率与随机选取一个答案做对的概率不同,不符合二项分布的特点.判断一个随机变量是否服从二项分布关键是看它是不是n 次独立重复试验,随机变量是否为在这n 次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布.【例3】 甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为23,23,12,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.(1)求随机变量ξ的分布列;(2)用A 表示“甲、乙两个队总得分之和等于3”这一事件,用B 表示“甲队总得分大于乙队总得分”这一事件,求P (AB ).[思路点拨] (1)由于甲队中每人答对的概率相同,且正确与否没有影响,所以ξ服从二项分布,其中n =3,p =23.(2)AB 表示事件A ,B 同时发生,即甲、乙两队总得分之和为3且甲队总得分大于乙队总得分.[解] (1)由题意知,ξ的可能取值为0,1,2,3,且 p (ξ=0)=C 03⎝⎛⎭⎪⎫1-233=127, P (ξ=1)=C 1323⎝⎛⎭⎪⎫1-232=29, P (ξ=2)=C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23=49, P (ξ=3)=C 33⎝ ⎛⎭⎪⎫233=827. 所以ξ的分布列为ξ 01 23P127 29 49 827(2)用C 表示“甲得2D 表示“甲得3分乙得0分”这一事件,所以AB =C ∪D ,且C ,D 互斥,又P (C )=C 23⎝⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23⎣⎢⎡ 23×13×12+13×23×⎦⎥⎤12+13×13×12=1034, P (D )=C 33⎝⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫13×13×12=435, 由互斥事件的概率公式得 P (AB )=P (C )+P (D ) =1034+435=3435=34243.对于概率问题的综合题,首先,要准确地确定事件的性质,把问题化归为古典概型、互斥事件、独立事件、独立重复试验四类事件中的某一种;其次,要判断事件是A +B 还是AB ,确定事件至少有一个发生,还是同时发生,分别运用相加或相乘事件公式;最后,选用相应的求古典概型、互斥事件、条件概率、独立事件、n 次独立重复试验的概率公式求解.[跟进训练]2.9粒种子分种在3个坑内,每坑放3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,求需要补种坑数的分布列.[解] 因为单个坑内的3粒种子都不发芽的概率为⎝ ⎛⎭⎪⎫123=18,所以单个坑不需要补种的概率为1-18=78.设需要补种的坑数为X ,则X 的可能取值为0,1,2,3,这是3次独立重复试验,P (X =0)=C 03×⎝ ⎛⎭⎪⎫180×⎝ ⎛⎭⎪⎫783=343512, P (X =1)=C 13×⎝ ⎛⎭⎪⎫181×⎝ ⎛⎭⎪⎫782=147512, P (X =2)=C 23×⎝ ⎛⎭⎪⎫182×⎝ ⎛⎭⎪⎫781=21512, P (X =3)=C 33×⎝⎛⎭⎪⎫183×⎝ ⎛⎭⎪⎫780=1512, 所以需要补种坑数的分布列为X 0123P343512 147512 2151215121.独立重复试验的基本特征 (1)每次试验都在同样条件下进行.(2)每次试验都只有两种结果:发生与不发生. (3)各次试验之间相互独立.(4)每次试验,某事件发生的概率都是一样的. 2.n 次独立重复试验的概率公式中各字母的含义1.某学生通过英语听力测试的概率为13,他连续测试3次,那么其中恰有1次获得通过的概率是( )A.49 B.29 C.427D.227A [记“恰有1次获得通过”为事件A , 则P (A )=C 13⎝ ⎛⎭⎪⎫13·⎝ ⎛⎭⎪⎫1-132=49.故选A.] 2.某电子管正品率为34,次品率为14,现对该批电子管进行测试,设第ξ次首次测到正品,则P (ξ=3)=( )A .C 23⎝⎛⎭⎪⎫142×34B .C 23⎝ ⎛⎭⎪⎫342×14C.⎝ ⎛⎭⎪⎫142×34D.⎝ ⎛⎭⎪⎫342×14 C [ξ=3表示第3次首次测到正品,而前两次都没有测到正品,故其概率是⎝ ⎛⎭⎪⎫142×34.]3.有4位同学参加某项选拔测试,每位同学能通过测试的概率都是12,假设每位同学能否通过测试是相互独立的,则至少有一位同学通过测试的概率为________.1516 [所有同学都不通过的概率为⎝ ⎛⎭⎪⎫1-124,故至少有一位同学通过的概率为1-⎝ ⎛⎭⎪⎫1-124=1516.] 4.设X ~B (4,p ),且P (X =2)=827,那么一次试验成功的概率p 等于________. 13或23 [P (X =2)=C 24p 2(1-p )2=827, 即p 2(1-p )2=⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫232,解得p =13或p =23.]5.(教材P79练习BT1改编)某气象站天气预报的准确率为80%,计算(结果保留两位小数):(1)“5次预报中恰有2次准确”的概率;(2)“5次预报中至少有2次准确”的概率.[解](1)记“预报1次准确”为事件A,则P(A)=0.8.5次预报相当于5次独立重复试验.“恰有2次准确”的概率为P=C25×0.82×0.23=0.051 2≈0.05,因此5次预报中恰有2次准确的概率约为0.05.(2)“5次预报中至少有2次准确”的对立事件为“5次预报全部不准确或只有1次准确”,其概率为P=C05×0.25+C15×0.8×0.24=0.006 72.所以所求概率为1-P=1-0.006 72≈0.99.所以“5次预报中至少有2次准确”的概率约为0.99.。
课题:独立重复试验与二项分布青州第六中学冯波教材:人民教育出版社B版课型:新授课一.教材分析1.教材内容“二项分布”是普通高中课程标准实验教科书选修2-3第二章《概率》的内容,《概率》是组合数学的最初步的知识,以“计数问题”为主要特征,是学生学习概率理论与统计数学的基础知识,也是学生学习高等数学的预备知识。
其中所蕴涵的数学思想方法独特灵活,是发展学生的抽象、概括能力、培养学生逻辑推理能力、凸现数学的应用价值的好素材。
“二项分布”研究的对象是次独立重复事件的试验,是瑞士数学家雅伯努利首先研究的,故又称伯努利概型,由于学生已经学习了独立事件,又有二项式定理作为基础,再学习“二项分布”相对而言认知起来要容易一点。
本节计划两课时,今天是第一课时:2.地位与作用“二项分布”是概率理论中的三大概率分布之一,同时也是自成体系的知识块,也是后继课程某些内容的一个铺垫。
运用“二项分布”可以解决一些比较典型的数学问题,通过本课的教学,进一步提高学生的归纳演绎能力,让学生感受数学来源于生活,最终也将服务于生活,充分展示数学的应用价值。
二.学情分析认知分析:学生的认知结构中已经有了独立事件, 二项式定理等有关知识,对于概率的类型和概率分布已经有了初步的认识。
能力分析:学生能够运用所学知识区分概率的类型、判断事件之间是否独立,会求一些简单的概率分布,但归纳演绎能力、探索提炼的能力有待于进一步提高。
三.教学目标与重点、难点教学目标:知识目标:(1)使学生参与并探讨“二项分布”的形成过程,掌握“二项分布”中的字母意义和数学本质(2)准确认知伯努利试验,能正确应用“二项分布”解决实际问题能力目标:培养学生分析、归纳、演绎能力,发现问题,探求问题的能力,逻辑推理能力,以及由特殊到一般,又由一般到特殊的数学思想。
感情目标:通过对“二项分布”的教学,丰富学生数学认知的水平,提高学生数学建模的能力;通过对“二项分布”的教学,使学生感受和体验公式的简洁美、和谐美。
二项分布及其应用教学目标1、知识目标:了解条件概率和两个事件互相独立的概念,理解次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。
2、能力目标:在探究的过程中,培养学生使用概率知识分析和解决实际问题的能力,体会分类讨论,转化等数学思想,增强数学的应用意识,提高学习数学的兴趣。
3、情感目标:通过学生的讨论探究,主动学习,培养他们勇于探索的治学精神。
重点难点教学重点:理解次独立重复试验及二项分布模型。
教学难点:利用互相独立事件和二项分布模型解决实际问题。
教学过程:例1.在一个盒中有大小相同的6个红球、4个白球,现在不放回地从盒中摸出两个球,求下面事件的概率:(1)两次摸球中第一次摸到白球的概率;(2)两次摸球中都摸到白球的概率;(3)在“第一次摸到白球”的前提下,求第二次也摸到白球的概率.引入条件概率的概念:条件概率:设,为两个事件,且,称为事件发生的条件下,事件发生的条件概率.问题一:在条件概率中,如果事件是否发生对事件发生的概率没有影响.可以得到什么关系式?推导互相独立的概率关系式:独立概率:设,为两个事件,如果,则称事件与事件互相独立.例2.甲、乙、丙三人将独立地参加游泳测试,他们能达标的概率分别是0.8,0.6,0.5,(1如果乙没能通过测试,求甲能通过测试的概率;(2)则三人都能达标的概率;(3)三人中至少有一人达标的概率.问题二:根据例2,谈谈互斥事件与相互独立事件有何区别?两事件互斥是指两个事件不可能同时发生,计算公式为;两事件相互独立是指一个事件的发生与否对另一事件发生的概率没有影响,计算公式为.一般地,两个事件不可能既互斥又相互独立,因为相互独立事件是以它们能够同时发生(如果其中没有不可能事件)为前提的.例3:(1姚明在某一赛季罚球命中率为0.8,如果他在某场比赛中得到四个罚球机会,假设每次罚球都互不影响,那么他投中三次的概率是多少?(2某人射击一次,每次击中目标的概率是0.7,他射击了10次,求恰好击中9次的概率?(3)某机器生产一种零件,出现次品的概率是0.04,生产这种零件4件,求恰有一个次品的概率?请问画线部分有什么共同点?归纳出次独立重复试验的特点:独立重复试验:在相同条件下重复做的次试验称为次独立重复试验,若用表示第次试验结果,则例3的概率怎么求?这些求法又什么共同点?二项分布:在次独立重复试验中,事件在每次试验中发生的概率为,事件发生的次数为随机变量,那么恰好发生次的概率为,此时称服从二项分布,记为,称为成功概率.问题:二项分布与二项式定理有联系吗?二项分布概率公式就是二项式展开式的第项.例4. 某城市的发电厂有5台发电机组,每台机组在一个季度里停机维修率为.已知两台以上(不含)机组停机维修,将造成城市缺电.计算:(1)该城市在一个季度里停机维修的台数的分布列;(2)该城市在一个季度里停电的概率;(3)该城市在一个季度里缺电的概率.问题:二项分布要满足什么条件?总结出适应二项分布的条件:①每次试验中,事件发生的概率是相同的;②各次试验中的事件是相互独立的;③每次试验只有两种结果,事件要么发生,要么不发生;④随机变量是这次独立重复试验中事件发生的次数.例5.(2011年天津改编)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同。
专题13 概率及其应用(2)【高考趋势】两点分布、超几何分布、二项分布等是概率中最重要的几种分布,在实际应用和理论分析中都有重要的地位。
高考对这部分概率知识的考查以运用概率的有关知识分析和解决实际问题主,考题的立意比较鲜明,综合性较强,复习时应将事件关系的理解放在重要位置,只有理清事件的关系,才能使用相应的公式解题。
本章含有分类讨论的思想、数形结合的思想、转化与化归的思想,用到模型化方法,验证法的数学方法,正难则反的思想。
【考点展示】1、 将一骰子连续抛掷三次,它落地时向上的点数之和等于5的概率为2、甲射击命中目标的概率是21,乙命中目标的概率是31,丙命中目标的概率是41,现在三人同时射击目标,则目标被击中的概率为3、口袋里放有大小相等的2个红球和1个白球,有放回地每次摸取一个球,定义数列{a n };⎩⎨⎧-。
n ,,n 次摸取白球第次摸取红球第1,1如果S n 为数列{a n }的前n 项和,那么S n =1的概率为4、接种某疫苗后,出现发热反应的概率是0.80。
现有5人接种该疫苗,至少有3人出现发热反应的概率为 。
(精确到0.01)5、甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球。
现分别从甲、乙两袋中各随机抽取1个球,则取出的两球都是红球的概率为 (答案用分数表示)。
【样题剖析】例1 一批玉米种子,共发芽率是0.8。
(1)问每穴至少种几粒种子,才能保证每穴至少有一粒发芽的概率大于98%? (2)若每穴种3粒,求恰好两粒发芽的概率(lg2=0.3010)。
例2 实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛)。
(1)试分别求甲打完3局、4局、5局才能取胜的概率; (2)按比赛规则甲获胜的概率。
例3、在一段线路中并联着3个自动控制的开关,只要其中有1个并能够闭合,线路就能正常工作。
2.2.3独立重复试验与二项分布整体设计教材分析本节内容是新课标教材选修2—3第二章《随机变量及其分布》的第二节《二项分布及其应用》的第三小节.通过前面的学习,学生已经学习掌握了有关概率和统计的基础知识:古典概率、互斥事件概率、条件概率、相互独立事件概率的求法以及分布列的有关内容.独立重复试验是研究随机现象的重要途径之一,很多概率模型的建立都以独立重复试验为背景,二项分布就是来自于独立重复试验的一个概率模型.二项分布是继超几何分布后的又一应用广泛的概率模型,而超几何分布在产品数量n相当大时可以近似地看成二项分布.在自然现象和社会现象中,大量的随机变量都服从或近似地服从二项分布,实际应用广泛,理论上也非常重要.可以说本节内容是对前面所学知识的综合应用,是一种模型的构建,是从实际入手,通过抽象思维,建立数学模型,进而认知数学理论,应用于实际的过程.会对今后数学及相关学科的学习产生深远的影响.课时分配1课时教学目标知识与技能理解n次独立重复试验的模型及二项分布,能解答简单实际问题;能进行与n次独立重复试验的模型及二项分布有关的概率的计算.过程与方法通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,使学生充分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象的数学思想方法.情感、态度与价值观感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,养成实事求是的科学态度和锲而不舍的钻研精神.重点难点教学重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题.教学难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算.教学过程复习旧知互斥事件:不可能同时发生的两个事件.P(A+B)=P(A)+P(B).一般地,如果事件A1,A2,…,A n彼此互斥,那么P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n).相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件.相互独立事件同时发生的概率:P(AB)=P(A)P(B)一般地,如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积,P(A1A2…A n)=P(A1)P(A2)…P(A n).探究新知提出问题:分析下面的试验,它们有什么共同特点?(1)某人射击1次,击中目标的概率是0.8,他连续射击3次;(2)实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即先赢3局就胜出);(3)连续投掷一个骰子5次.活动结果:在同一条件下多次重复地做某个试验.(由学生归纳后给出定义)1.n次独立重复试验的定义:一般地,在相同条件下重复做的n次试验称为n次独立重复试验.在n次独立重复试验中,记A i(i=1,2,…,n)是“第i次试验的结果”.显然,P(A1A2…A n)=P(A1)P(A2)…P(A n)提出问题:在前面问题(1)基础上,求:①第一次命中,后面两次不中的概率;②恰有一次命中的概率;③恰有两次命中的概率.活动设计:由浅入深,增加梯度,旨在引导学生归纳独立重复试验的概率公式.活动结果:记事件“第i次击中目标”为A i(i=1,2,3),则A1、A2、A3相互独立,且P(A1)=P(A2)=P(A3)=0.8.①第一次命中,后面两次不中的事件即A1A2A3,∴P(A1A2A3)=P(A1)[1-P(A2)][1-P(A3)]=0.032.②三次射击恰有一次命中的事件即A1A2A3+A1A2A3+A1A2A3,∴三次射击恰有一次命中的事件的概率为P3(1)=3×0.8×0.2×0.2=0.096.③三次射击恰有两次命中的事件即A1A2A3+A1A2A3+A1A2A3,∴三次射击恰有两次命中的事件的概率为P3(2)=3×0.8×0.8×0.2=0.384.教师指出:由刚才的问题不难发现这样一个事实:P3(1)=3×0.8×0.2×0.2=C13×0.8×(1-0.8)2=0.096,P3(2)=3×0.8×0.8×0.2=C23×0.82×(1-0.8)=0.384,推广到一般形式:n次射击试验,命中k次的概率P n(k)=C k n0.8k(1-0.8)n-k.理解新知2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率P n(k)=C k n p k(1-p)n-k,它是二项式[(1-p)+p]n展开式的第k+1项.设计意图:理所当然引出二项分布概念.3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数X是一个随机变量.如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(X=k)=C k n p k q n-k(k=0,1,2,…,n,q=1-p).由于C k n p k q n k恰好是二项展开式:(q+p)n=C0n p0q n+C1n p1q n1+…+C k n p k q n k+…+C n n p n q0中的第k+1项的值,所以称这样的随机变量X服从二项分布,记作X~B(n,p),其中p称为成功概率.运用新知例1实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)求按比赛规则甲获胜的概率.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12. (1)记事件A =“甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”,记事件C =“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜.∴甲打完3局取胜的概率为P(A)=C 33(12)3=18. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负.∴甲打完4局才能取胜的概率为P(B)=C 23×(12)2×12×12=316. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负.∴甲打完5局才能取胜的概率为P(C)=C 24×(12)2×(12)2×12=316. (2)记事件D =“按比赛规则甲获胜”,则D =A +B +C ,又因为事件A 、B 、C 彼此互斥,故P(D)=P(A +B +C)=P(A)+P(B)+P(C)=18+316+316=12. 答:按比赛规则甲获胜的概率为12. 例2重复抛掷一枚骰子5次得到点数为6的次数记为ξ,求P(ξ>3).解:依题意,随机变量ξ~B(5,16). ∴P(ξ=4)=C 45(16)4·56=257 776,P(ξ=5)=C 55(16)5=17 776. ∴P(ξ>3)=P(ξ=4)+P(ξ=5)=133 888. 【变练演编】甲乙两选手比赛,假设每局比赛甲胜的概率为0.6,乙胜的概率为0.4,那么采取三局两胜制还是五局三胜制对甲更有利?你对局制长短的设置有何认识?设计意图:此题设计新颖,贴近生活,贴近高考,一下子把学生带到了全新的知识场景中,强大的诱惑力促使每个学生积极思考.此题是开放性试题,不是直接要你求什么、证什么,培养学生的发散性思维和创造性思维.解:三局两胜制中,甲获胜分三种情形:甲连胜两局;甲前两局中胜一局,第三局胜. 故P(甲获胜)=0.62+C 12×0.62×0.4=0.648. 五局三胜制中,甲获胜分三种情形:甲连胜三局;甲前三局中胜两局,第四局胜;甲前四局中胜两局,第五局胜.故P(甲获胜)=0.63+C 23×0.63×0.4+C 24×0.63×0.42≈0.683. 可以看出五局三胜制对甲有利,并由此可以猜测比赛的总局数越多甲获胜的概率越大.因此,为使比赛公平,比赛的局数不能太少.变式:如果要求在这两种赛制比赛中必须打完全部比赛,结论会有变化吗?解:设甲获胜的局数为随机变量X ,在三局两胜制中,X ~B(3,0.6),因此甲获胜的概率为P(X≥2)=P(X =2)+P(X =3)=C 23×0.62×0.4+0.63=0.648. 在五局三胜制中,X ~B(5,0.6),因此甲获胜的概率为P(X≥3)=P(X =3)+P(X =4)+P(X =5)=C 35×0.63×0.42+C 45×0.64×0.4+0.65≈0.683. 【达标检测】1.每次试验的成功率为p(0<p<1),重复进行10次试验,其中前7次都未成功,后3次都成功的概率为( )A .C 310p 3(1-p)7B .C 310p 3(1-p)3C .p 3(1-p)7D .p 7(1-p)32.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )A .C 310×0.72×0.3B .C 13×0.72×0.3 C.310 D.3A 27·A 13A 310答案:1.C 2.B课堂小结1.独立重复试验要从三方面考虑.第一:每次试验是在相同条件下进行.第二:各次试验中的事件是相互独立的.第三,每次试验都只有两种结果,即事件要么发生,要么不发生.2.如果1次试验中某事件发生的概率是p ,那么n 次独立重复试验中这个事件恰好发生k 次的概率为P n (k)=C k n p k (1-p)n -k .对于此式可以这么理解:由于1次试验中事件A 要么发生,要么不发生,所以在n 次独立重复试验中A 恰好发生k 次,则在另外的n -k 次中A 没有发生,即A 发生,由P(A)=p ,P(A )=1-p ,所以上面的公式恰为[(1-p)+p]n 展开式中的第k +1项,可见排列组合、二项式定理及概率间存在着密切的联系.补充练习【基础练习】1.将一枚硬币连续抛掷5次,则正面向上的次数X 的分布为( )A .X ~B(5,0.5)B .X ~B(0.5,5)C .X ~B(2,0.5)D .X ~B(5,1)2.随机变量X ~B(3,0.6),则P(X =1)等于( )A .0.192B .0.288C .0.648D .0.2543.某人考试,共有5题,解对4题为及格,若他解一道题的正确率为0.6,则他及格的概率为( )A.81125B.81625C.1 0533 125D.243625答案:1.A 2.B 3.C【拓展练习】有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂.已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2.(1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部检验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字).解:(1)这批食品不能出厂的概率是:P=1-0.85-C15×0.84×0.2≈0.263.(2)五项指标全部检验完毕,这批食品可以出厂的概率是:P1=C14×0.2×0.83×0.8,五项指标全部检验完毕,这批食品不能出厂的概率是:P2=C14×0.2×0.83×0.2,由互斥事件只能有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:P=P1+P2=C14×0.2×0.83=0.409 6≈0.410.设计说明在整个教学过程中,主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线,思维为主攻”的“四为主”原则.教师不是抛售现成的结论,而是充分利用学生的思维,展示“发现”的过程,突出“师生互动”的教学,这种设计充分体现了教师的主导作用.学生在一系列的思考、探究中逐步完成了本节的学习任务,充分实现了学生的主体性地位,在整个教学过程中,始终着眼于培养学生的思维能力,这种设计符合现代教学观和学习观的精神,体现了素质教育的要求.备课资料备选例题:1.某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的使用寿命有关,该型号的灯泡的使用寿命为1年以上的概率为p1,使用寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作中,至少需要更换4只灯泡的概率(结果保留两位有效数字).分析:对于(Ⅰ),不需要换灯泡,则说明这5只灯泡的使用寿命都在1年以上,每只发生的概率均为p1;更换2只灯泡,则说明这5只灯泡中有且仅有2只灯泡的使用寿命均不超过1年,其发生的概率均为(1-p1),但是哪两只不确定;而对于(Ⅱ),一是这盏灯是确定的;二是这盏灯有两种可能,一种是第一、二次均更换;另一种是第一次未换,但第二次需要更换;对于(Ⅲ),包括换4只和换5只两种情况.解:(Ⅰ)在第一次更换灯泡工作中,不需要换灯泡的概率为p51;需要更换2只灯泡的概率为C25p31(1-p1)2;(Ⅱ)对该盏灯来说,在第一、二次都更换了灯泡的概率为(1-p1)2;在第一次未更换灯泡,而在第二次需要更换灯泡的概率为p1(1-p2),故所求的概率为p=(1-p1)2+p1(1-p2);(Ⅲ)在第二次灯泡更换工作中,至少换4只灯泡包括换4只和换5只两种情况,换5只的概率为p5(其中p为(Ⅱ)中所求,下同),换4只的概率为C15p4(1-p),故至少换4只灯泡的概率为p3=p5+C15p4(1-p).又当p1=0.8,p2=0.3时,p=0.22+0.8×0.7=0.6,∴p3=0.65+5×0.64×0.4=0.34.即满2年至少需要换4只灯泡的概率为0.34.点评:分情况进行讨论,一定要注意不重不漏地全部考虑到.2.某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).(Ⅰ)求至少3人同时上网的概率;(Ⅱ)至少几人同时上网的概率小于0.3?解:(Ⅰ)方法1:利用分类讨论的思想解决.将“至少3人同时上网的概率”转化为“恰有3人同时上网,恰有4人同时上网,恰有5人同时上网,恰有6人同时上网”四种情形,即C 36(0.5)6+C 46(0.5)6+C 56(0.5)6+C 66(0.5)6=2132. 方法2:利用正难则反的思想解决.将“至少3人同时上网的概率”转化为“1减去至多2人同时上网的概率”,即1-C 06(0.5)6-C 16(0.5)6-C 26(0.5)6=1-1132=2132. (Ⅱ)至少4人同时上网的概率为C 46(0.5)6+C 56(0.5)6+C 66(0.5)6=1132>0.3, 至少5人同时上网的概率为(C 56+C 66)(0.5)6=764<0.3,因此,至少5人同时上网的概率小于0.3.(设计者:王宏东 李王梅)。
高中生物中的重复实验教案
目标:通过观察酵母菌在不同条件下的呼吸作用,探究其对环境的影响,并学习到呼吸作用对生物生存的重要性。
材料:酵母菌悬浊液、热水浴、冰水浴、试管、试管架、玻璃棒、温度计、糖水溶液、氧气气体发生器。
实验步骤:
1. 将一定量的酵母菌悬浊液放入试管中,设置在试管架上。
2. 将一个试管加热到40摄氏度的温度,另一个试管放在冰水浴中,使其温度降低到5摄氏度。
3. 将两种试管中的酵母菌悬浊液均加入一定量的糖水溶液。
4. 分别搅拌两种试管中的液体,观察是否产生气泡。
5. 如果气泡产生,记录下气泡产生的时间和数量,并比较两种试管中的气泡数量。
6. 将氧气气体发生器连接到试管中,观察氧气对酵母菌呼吸作用的影响。
7. 结果分析:通过实验数据的比较,探讨温度对酵母菌呼吸作用的影响,以及氧气对呼吸作用的重要性。
延伸:可以探究不同温度、不同食物含量对酵母菌呼吸作用的影响,或者与同学们讨论呼吸作用与其他生物生命活动之间的关系。
评估:学生能够独立完成实验步骤,观察并记录实验结果,并通过数据比较得出结论。
注意事项:实验过程中要小心操作,注意试管中的液体加热时的温度,避免发生烫伤。
实验结束后,及时清理实验器材和试管,并遵守实验室安全规定。
独立重复试验教案
教学目的
使学生了解独立重复试验的实际背景和能利用其法则进行实际计算.
教学重点和难点
独立重复试验的概念及其公式推导.
(教学方法:讲练结合)
教学过程
1.独立重复试验的意义
独立重复试验,又叫做贝努里试验,是在同样的条件下重复地、各次之间相互独立地进行的一种试验,这种试验在概率论中占有相当重要的地位,因为随机现象的统计规律只有在大量独立重复试验中才能显示出来.
在这种试验中,每一次试验只有两种结果,即某事件要么发生;要么不发生.在一定条件下,种子要么发芽;要么不发芽.在产品抽样检查中,要么抽到合格品;要么抽不到合格品.所以在n次独立重复试验中某事件恰好发生k(k=0,1,2,…,n)次,另外(n-k)次就是某事件不发生.
2.n次独立重复试验中事件恰好发生k次的概率公式.
的展开式中x m的系数.因此,我们可将概率P n(m)的分布叫做二项式分布.
3.举例
(1)某批产品中有20%的次品,进行重复抽样检查,共取5个样品,求其中次品数等于0、1、2、3、4、5的概率.
解:已知n=5 P=0.2,
(2)一批产品中有30%的一等品,进行重复抽样检查,共取5个样品,求:
(i)取出的5个样品中恰有2个一等品的概率是多少?
(ii)取出的5个样品中至少有2个一等品概率是多少?
=1-[P5(0)+P5(1)]
=1-0.52822
=0.47178≈0.472
(3)某厂大量生产的某种小零件,经抽查检验知道其次品率
为0.3%,现把这种零件每100件装成一盒.试分别计算每盒中不含次品、恰好含1件次品、含2件次品、含3件次品、含4件次品的概率.并求一盒中至少含有3件次品的概率是多少?
解:将100个零件装进盒内,可以看成是进行了100次检验零件的随机试验.
在一盒中不含次品的概率
同理,可算得
P100(1)≈0.2228≈22%
P100(2)≈0.0332≈3.3%
P100(3)≈0.0033≈0.3%
P100(4)≈0.0002≈0.02%.
一盒中含有至少3件次品的概率为
1-P100(0)-P100(1)-P100(2)
≈1-0.74-0.22-0.033
=0.007=0.7%.
4.小结
因为随机现象的统计规律一般是在大量独立重复试验中表现出来,因此利用独立重复试验公式解决应用问题具有一定的现实意义.
5.布置作业
(1)某一批黄豆种籽,如果每一粒发芽的概率为90%,播下5粒种籽,计算:
(i)其中恰有3粒发芽的概率;
(ii)其中恰有4粒发芽的概率;
(iii)其中5粒都发芽的概率;
(iv)其中恰有2粒未发芽的概率.
(2)某仪表内装有m个同样的电子元件,其中任一个电子元件损坏时,这个仪表就不能工作.如果在某段时间内每个电子元件损坏的概率是P,计算在这段时间内,这个仪表不能工作的概率.
(3)两个蓝球运动员在罚球线投球的命中率分别是0.7与0.6,每人投球3次,计算两人都恰好投进2球的概率,又计算两人都至少投进1球的概率.。