直线与圆锥曲线的交点36页PPT
- 格式:ppt
- 大小:3.39 MB
- 文档页数:36
§4.3直线与圆锥曲线的交点问题:1. 直线与圆有哪些位置关系?其判定方法是怎样的?2.如何求直线与圆的交点坐标?直线与圆锥曲线的交点一、求直线与圆锥曲线的公共点的坐标问题例1已知过点(0,1)且斜率为1的直线与椭圆2244x y += 相交于A 、B 两点,求A 、B 两点的坐标.问题1如何求弦长AB ?小结:(1)求直线与圆锥曲线的交点一般是把直线方程和圆锥曲线方程联立解方程组即可;(2)求直线被圆锥曲线所截得的弦长,方法一:求出交点,再利用两点间的距离公式求;方法二:利用弦长公式.练习:过双曲线22136x y-=的右焦点2F,倾斜角为30 的直线交双曲线于A、B两点,求弦长AB.二、直线与圆锥曲线的公共点的个数问题例2 已知直线l:2y x m=+,椭圆C:22142x y+=,试问当m取何值时,直线l与椭圆C:(1)有两个不同的公共点?(2)有且只有一个公共点?(3)没有公共点?小结:直线与圆锥曲线交点个数的判定问题:判断直线l与圆锥曲线C的交点个数时,通常将直线l的方程Ax+By+C=0(A、B不同时为0)代入圆锥曲线C的方程f(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元二次方程.即(,)0A xB y Cf x y++=⎧⎨=⎩,消去y后,得ax2+bx+c=0.(注意:若f(x,y)=0表示椭圆,则方程中a≠0),为此有:(1)若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是拋物线时,直线l与拋物线的对称轴平行(或重合).此时直线与圆锥曲线只有一个交点(注意:当直线l与双曲线的渐近线重合时,没有交点).(2)若a≠0,Δ=b2-4ac,①Δ>0时,直线与圆锥曲线有两个交点;②Δ=0时,直线与圆锥曲线只有一个交点;③Δ<0时,直线与圆锥曲线没有交点.练习:已知抛物线的方程为24y x =,直线l 过定点(2,1)P -,斜率为k ,问当k 为何值时,直线l 与抛物线(1)只有一个公共点?(2)有两个公共点?(3)没有公共点?三、直线与圆锥曲线恒有公共点问题例3 若直线1y kx =+与交点在x 轴上的椭圆2215x y m +=总有公共点,求m 的取值范围.练习:直线3y x =+与曲线2||194y x x -=( )A.没有交点B.只有一个交点C.有两个交点D.有三个交点。