第三章:自相关问题
- 格式:ppt
- 大小:794.50 KB
- 文档页数:79
计量经济学习题第⼀章练习题⼀、单项选择题1.经济计量学⼀词的提出者为()A.弗⾥德曼B.丁伯根C.费瑞希D.萨缪尔森2.下列说法中正确的是()A.经济计量学是经济学、统计学和数学合流⽽构成的⼀门交叉学科。
B.经济计量学是经济学、数理统计学和政治经济学合流⽽构成的⼀门交叉学科。
C.经济计量学是数理经济学和政治经济学合流⽽构成的⼀门交叉学科。
D.经济计量学就是数理经济学。
3.理论经济计量学的主要⽬的为()A.研究经济变量之间的依存关系;B.研究经济规律;C.测度由经济计量学模型设定的经济关系式;D.进⾏经济预测。
4.下列说法中不是应⽤经济计量学的研究⽬的为()A.测度经济系统的发展⽔平;B.经济系统结构分析;C.经济指标预测;D.经济政策评价。
5.经济计量学的建模依据为()A.统计理论B.预测理论C.经济理论D.数学理论6.随机⽅程式构造依据为()A.经济恒等式B.政策法规C.变量间的技术关系D.经济⾏为7.经济计量学模型的被解释变量⼀定是()A.控制变量B.政策变量C.内⽣变量D.外⽣变量8.在同⼀时点或时期上,不同统计单位的相同统计指标组成的数据是()A.时期数据B.时点数据C.时序数据D.截⾯数据⼆、多项选择题1.在⼀个经济计量模型中,可作为解释变量的有()A.内⽣变量B.外⽣变量C.控制变量D.政策变量E.滞后变量2.对经济计量模型验证的准则有()A.最⼩⼆乘准则B.经济理论准则C.统计准则D.数学准则E.经济计量准则3.经济计量模型的应⽤在于()A.设定模型B.检验模型C.结构分析D.经济预测E.规划政策第⼆章练习题⼀、单项选择题1.回归分析的⽬的为()A .研究解释变量对被解释变量的依赖关系;B .研究解释变量和被解释变量的相关关系;C .研究被解释变量对解释变量的依赖关系;D .以上说法都不对。
2.在回归分析中,有关被解释变量Y 和解释变量X 的说法正确的为()A .Y 为随机变量,X 为⾮随机变量;B .Y 为⾮随机变量,X 为随机变量;C .X 、Y 均为随机变量;D .X 、Y 均为⾮随机变量。
17.(1)判断该序列的平稳性与纯随机性。
首先画出该序列的时序图如图1-1所示:图1-1从时序图可以看出,该序列基本上在一个数值上随机波动,故可认为该序列平稳。
再绘制序列自相关图如图1-2所示:图1-2从图1-2的序列自相关图可以看出,该序列的自相关系数一直都比较小,始终在2倍标准差范围以内,可以认为该序列自始至终都在零轴附近波动,所以认为该序列平稳。
原假设为延迟期小于或等于m期的序列值之间相互独立;备择假设为序列值之间有相关性。
当延迟期小于等于6时,p值都小于0.05,所以拒绝原假设,认为该序列为非白噪声序列。
故可以利用ARMA模型对该序列建模。
(2)如果序列平稳且非白噪声,选择适当模型拟合该序列的发展。
从图1-2可见,除了延迟1阶的偏自相关系数在2倍标准差范围之外,其他阶数的偏自相关系数都在2倍标准差范围内波动,故可以认为该序列偏自相关系数1阶截尾。
自相关图显示出非截尾的性质。
综合该序列自相关系数和偏自相关系数的性质,为拟合模型定阶为AR(1)模型。
A.A R(1)模型对于AR(1)模型,AIC=9.434581,SBC=9.468890。
对残差序列进行白噪声检验:Q统计量的P值没有大于0.05,因此认为残差序列为非白噪声序列,拒绝原假设,说明残差序列中还残留着相关信息,拟合模型不显著。
B.ARMA(1,1)模型对于ARMA(1,1)模型,AIC=9.083333,SBC=9.151950。
对残差序列进行白噪声检验:图1-3列为白噪声序列,模型信息提取比较充分。
C.AR(2)模型对于AR(2)模型,AIC=9.198930,SBC=9.268139。
对残差序列进行白噪声检验:图1-4列为白噪声序列,模型信息提取比较充分。
比较上述三个模型,见下表1:(3)利用拟合模型,预测该城市未来5年的降雪量。
用ARMA(1,1)模型可预测该城市未来5年的降雪量如下表2所示:18.(1)判断该序列的平稳性与纯随机性。
3.1 随机电压信号()U t 在各不同时刻上是统计独立的,而且,一阶概率密度函数是高斯的、均值为0,方差为2,试求:(1)密度函数();f u t 、()1212,;,f u u t t 和()1212,,...,;,,...,k k f u u u t t t ,k 为任意整数;(2)()U t 的平稳性。
3.1解:(1)2(;)}4x f u t =-22121,2121,12,21(;,)()()exp{}44u u f u u t t f u t f u t π+==-211,212,1(,,;,,)()}4kiki k k i i i uf u u u t t t f u t ====-∑∏(2)由于任意k 阶概率密度函数与t 无关,因此它是严平稳的。
3.23.33.4 已知随机信号()X t 和()Y t 相互独立且各自平稳,证明新的随机信号()()()Z t X t Y t =也是平稳的。
3.4解:()X t 与()Y t 各自平稳,设X m =[()]E X t ,Y m =[()]E Y t ,()[X()X()]X R E t t ττ=+,()[Y()Y()]Y R E t t ττ=+Z ()[Z()][()Y()][()][()]X Y m t E t E X t t E X t E Y t m m ===⨯=,为常数(,)[Z()Z()][()Y()()Y()][X()()][Y()()]()()()Z X Y Z R t t E t t E X t t X t t E t X t E t Y t R R R τττττττττ+=+=++=+⨯+=⨯=∴()Z R τ仅与τ有关,故Z()t =()Y()X t t 也是平稳过程。
3.5 随机信号()()010sin X t t ω=+Θ,0ω为确定常数,Θ在[],ππ-上均匀分布的随机变量。
若()X t 通过平方律器件,得到2()()Y t X t =,试求:(1)()Y t 的均值; (2)()Y t 的相关函数;(3)()Y t 的广义平稳性。
《概率论与随机过程》第三章习题答案3.2 随机过程()t X 为()()ΦωX +=t cos A t 0式中,A 具有瑞利分布,其概率密度为()02222>=-a eaa P a A ,σσ,()πΦ20,在上均匀分布,A Φ与是两个相互独立的随机变量,0ω为常数,试问X(t)是否为平稳过程。
解:由题意可得:()[]()()002121020022222002222=⇒+=*+=⎰⎰⎰⎰∞--∞φφωπσφπσφωX E πσσπd t cos da e a a dad eat cos a t a a ()()()[]()()()()()()[]()()()()()12021202120202120202221202022021012022022202010022222200201021212122112210212212121221212222222222222t t cos t t cos t t cos det t cos da e e a t t cos dea d t t cos t t cos a d ea d t cos t cos da eaadad e at cos a t cos a t t t t R a a a a a a a -=-⨯=-⨯-=-⨯⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-∞+-=-⨯-=⎩⎨⎧⎭⎬⎫+++---=++=++==-∞∞---∞∞-∞--∞⎰⎰⎰⎰⎰⎰⎰⎰⎰ωσωσωσωωφφωωπσφπφωφωσφσπφωφωX X E σσσσπσπσσπXX )(,可见()[]t X E 与t 无关,()21t t R ,XX 与t 无关,只与()12t t -有关。
∴()t X 是平稳过程另解:()[][]0022000000[cos()][cos()][];(,)cos()cos(())cos()cos(())t E A t E A E t E A R t t E A t t E A E t t E X ωΦωΦτωΦωτΦωΦωτΦ⎡⎤=+=+=⨯=⎣⎦⎡⎤⎡⎤+=+++=+++⎣⎦⎣⎦[][][])cos()cos())cos((τωτωτωω0200022222A E t E A E =+Φ++= ∴()t X 是平稳过程3.3 设S(t) 是一个周期为T 的函数,随机变量Φ在(0,T )上均匀分布,称X(t)=S (t+Φ),为随相周期过程,试讨论其平稳性及各态遍历性。
自相关性一、名词解释1 序列相关性2 虚假序列相关3 差分法4 广义差分法5 自回归模型6 广义最小二乘法7 DW 检验8 科克伦-奥克特跌代法9 Durbin 两步法 10 相关系数二、单项选择题 ~1、如果模型y t =b 0+b 1x t +u t 存在序列相关,则()(x t , u t )=0 (u t , u s )=0(t ≠s) C. cov(x t , u t )≠0 D. cov(u t , u s ) ≠0(t ≠s) 2、DW 检验的零假设是(ρ为随机误差项的一阶相关系数) A 、DW =0 B 、ρ=0 C 、DW =1 D 、ρ=13、下列哪个序列相关可用DW 检验(v t 为具有零均值,常数方差且不存在序列相关的随机变量)A .u t =ρu t -1+v tB .u t =ρu t -1+ρ2u t -2+…+v tC .u t =ρv tD .u t =ρv t +ρ2 v t-1 +… 4、DW 的取值范围是()A 、-1≤DW ≤0B 、-1≤DW ≤1C 、-2≤DW ≤2D 、0≤DW ≤4 5、当DW =4时,说明() [A 、不存在序列相关B 、不能判断是否存在一阶自相关C 、存在完全的正的一阶自相关D 、存在完全的负的一阶自相关6、根据20个观测值估计的结果,一元线性回归模型的DW =。
在样本容量n=20,解释变量k=1,显著性水平为时,查得dl=1,du=,则可以决断() A 、不存在一阶自相关 B 、存在正的一阶自相关 C 、存在负的一阶自 D 、无法确定7、当模型存在序列相关现象时,适宜的参数估计方法是()A 、加权最小二乘法B 、间接最小二乘法C 、广义差分法D 、工具变量法 8、对于原模型y t =b 0+b 1x t +u t ,广义差分模型是指()0t 1t t t 01t t t t-101t t-1t t-1b B. y =b x u C. y =b +b x uD. y y =b (1-)+b (x x )(u u )ρρρρ++++--+-9、采用一阶差分模型一阶线性自相关问题适用于下列哪种情况() 。