异方差与自相关问题
- 格式:ppt
- 大小:516.00 KB
- 文档页数:31
自相关和异方差处理顺序引言自相关和异方差是时间序列分析中常见的两种问题,它们影响了模型的准确性和可靠性。
在进行时间序列建模时,需要处理这些问题,以确保模型的有效性。
本文将深入探讨自相关和异方差处理的顺序,并讨论不同处理顺序的影响。
什么是自相关和异方差自相关自相关是指时间序列中当前观测值与之前观测值之间的相关性。
它衡量的是时间序列中各个观测值之间的依赖关系。
自相关可以用自相关函数(ACF)图来表示,通过观察ACF图,可以判断时间序列是否存在自相关。
异方差异方差是指时间序列中方差不稳定的特征。
在时间序列中,方差可能随着时间的推移发生变化,这会导致模型的拟合不准确。
异方差可以用方差函数(VCF)图来表示,通过观察VCF图,可以判断时间序列是否存在异方差。
自相关和异方差处理的重要性自相关和异方差对时间序列建模的准确性和可靠性有重要影响,它们需要被处理以获得可靠的模型结果。
•自相关的存在会导致参数估计不准确,预测结果失真。
如果存在自相关,模型会无法捕捉到序列的真实动态,导致预测结果不准确。
•异方差使得模型的残差不符合正态分布,违背了建模的基本假设。
这会使得模型的显著性检验和置信区间估计不可靠,影响模型的有效性。
因此,为了获得可靠的模型结果,需要对自相关和异方差进行处理。
自相关和异方差处理顺序的影响自相关和异方差的处理顺序会对最终的模型结果产生影响。
不同的处理顺序可能导致不同的模型结构和参数估计。
先处理自相关后处理异方差如果先处理自相关再处理异方差,可能会导致如下影响:1.自相关处理可能会改变时间序列的动态特征。
当我们去除自相关时,可能会削弱序列中的一些重要信息,导致模型无法准确捕捉到序列的动态变化。
2.异方差处理可能会影响自相关的结构。
当我们对残差进行异方差处理时,可能会改变残差序列的结构,从而使得自相关的估计失真。
先处理异方差后处理自相关如果先处理异方差再处理自相关,可能会产生如下影响:1.异方差处理可能改变原始序列的动态特征。
七、 异方差与自相关一、背景我们讨论如果古典假定中的同方差和无自相关假定不能得到满足,会引起什么样的估计问题呢?另一方面,如何发现问题,也就是发现和检验异方差以及自相关的存在性也是一个重要的方面,这个部分就是就这个问题进行讨论。
二、知识要点1、引起异方差的原因及其对参数估计的影响2、异方差的检验(发现异方差)3、异方差问题的解决办法4、引起自相关的原因及其对参数估计的影响5、自相关的检验(发现自相关)6、自相关问题的解决办法 (时间序列部分讲解) 三、要点细纲1、引起异方差的原因及其对参数估计的影响原因:引起异方差的众多原因中,我们讨论两个主要的原因,一是模型的设定偏误,主要指的是遗漏变量的影响。
这样,遗漏的变量就进入了模型的残差项中。
当省略的变量与回归方程中的变量有相关关系的时候,不仅会引起内生性问题,还会引起异方差。
二是截面数据中总体各单位的差异。
后果:异方差对参数估计的影响主要是对参数估计有效性的影响。
在存在异方差的情况下,OLS 方法得到的参数估计仍然是无偏的,但是已经不具备最小方差性质。
一般而言,异方差会引起真实方差的低估,从而夸大参数估计的显著性,即是参数估计的t 统计量偏大,使得本应该被接受的原假设被错误的拒绝。
2、异方差的检验 (1)图示检验法由于异方差通常被认为是由于残差的大小随自变量的大小而变化,因此,可以通过散点图的方式来简单的判断是否存在异方差。
具体的做法是,以回归的残差的平方2i e 为纵坐标,回归式中的某个解释变量i x 为横坐标,画散点图。
如果散点图表现出一定的趋势,则可以判断存在异方差。
(2)Goldfeld-Quandt 检验Goldfeld-Quandt 检验又称为样本分段法、集团法,由Goldfeld 和Quandt 1965年提出。
这种检验的思想是以引起异方差的解释变量的大小为顺序,去掉中间若干个值,从而把整个样本分为两个子样本。
用两个子样本分别进行回归,并计算残差平方和。
eviews异方差、自相关检验与解决办法一、异方差检验:1.相关图检验法LS Y C X 对模型进行参数估计GENR E=RESID 求出残差序列GENR E2=E^2 求出残差的平方序列SORT X 对解释变量X排序SCAT X E2 画出残差平方与解释变量X的相关图2.戈德菲尔德——匡特检验已知样本容量n=26,去掉中间6个样本点(即约n/4),形成两个样本容量均为10的子样本。
SORT X 将样本数据关于X排序SMPL 1 10 确定子样本1LS Y C X 求出子样本1的回归平方和RSS1SMPL 17 26 确定子样本2LS Y C X 求出子样本2的回归平方和RSS2计算F统计量并做出判断。
解决办法3.加权最小二乘法LS Y C X 最小二乘法估计,得到残差序列GRNR E1=ABS(RESID) 生成残差绝对值序列LS(W=1/E1) Y C X 以E1为权数进行加权最小二成估计二、自相关1.图示法检验LS Y C X 最小二乘法估计,得到残差序列GENR E=RESID 生成残差序列SCAT E(-1) E et—et-1的散点图PLOT E 还可绘制et的趋势图2.广义差分法LS Y C X AR(1) AR(2)首先,你要对广义差分法熟悉,不是了解,如果你是外行,我奉劝你还是用eviews来做就行了,其实我想老师要你用spss无非是想看你是否掌握广义差分,好了,废话不多说了。
接着,使用spss16来解决自相关。
第一步,输入变量,做线性回归,注意在Liner Regression 中的Statistics中勾上DW,在save中勾Standardized,查看结果,显然肯定是有自相关的(看dw值)。
第二步,做滞后一期的残差,直接COPY数据(别告诉我不会啊),然后将残差和滞后一期的残差做回归,记下它们之间的B指(就是斜率)。
第三步,再做滞后一期的X1和Y1,即自变量和因变量的滞后一期的值,也是直接COPY。
异方差:(Heteroscedasticity)一如何检测?①假设我们做一个回归,求出β1、β2、β3,然后返回求出序列{Ut},现在要检测{Ut}是不是异方差的。
②设立辅助方程:既然假设是异方差,那么我们就假设{Ut}与X存在某种关系,这种关系比较复杂,只要我们证明α1、α2、α3……不为0,即可③构建新的统计量:T·R2,先人曾经证明过其服从 卡方(m)分布。
④最后将算出来的T·R2值与卡方分布的临界值比较,……。
二、如何应对?①如果异方差的形式已知,我们可以通过GLS(广义二乘法)来处理:举例说明:②如果异方差的形式未知自相关:(Autocorrelation)一如何检测?我们直接可以看DW值,注意这个ρ值is the残差项之间的estimated correlation coefficient.也可以用另外一种方法:二如何应对?①如果自相关的形式已知•If the form of the autocorrelation is known, we could use a GLS procedureBut such procedures that “correct” for autocorrelation require assumptions about the form of the autocorrelation.②未知:构建动态模型,如:三多重共线性:(Multicollinearity)①如何检测:look at the matrix of correlations between the individual variables.另外:R2 will be high but the individual coefficients will have high standard errors也可能存在多重共线性。
②如何解决:。
《计量经济学》中多重共线性、异方差性、自相关三者之间的联系与区别首先我们先来回顾一下经典线性回归模型的基本假设:1、为什么会出现异方差性我们可以从一下两方面来分析:第一,因为随即误差项包括了测量误差和模型中被省略的一些因素对因变量的影响;第二,来自不同抽样单元的因变量观察值之间可能差别很大。
因此,异方差性多出现在截面样本之中。
至于时间序列,则由于因变量观察值来自不同时期的同一样本单元,通常因变量的不同观察值之间的差别不是很大,所以异方差性一般不明显。
含义及影响:y=X β+ε,var(εi )var(εj ), ij ,E(ε)=0,或者记为212200['|]0000n E X σεεσσ⎛⎫⎪=Ω= ⎪ ⎪⎝⎭即违背假设3。
用OLS 估计,所得b 是无偏的,但不是有效的。
111(')'(')'()(')'b X X X y X X X X X X X βεβε---==+=+由于E(ε)=0,所以有E(b )=β。
即满足无偏性。
但是,b 的方差为1111121var(|)[()()'][(')''(')|] (')'['|](') (')'()(')b X E b b E X X X X X X X X X X E X X X X X X X X X X ββεεεεσ------=--===Ω其中212200['|]0000n E X σεεσσ⎛⎫⎪=Ω= ⎪ ⎪⎝⎭2、自相关产生的原因:(1)、经济数据的固有的惯性带来的相关 (2)、模型设定误差带来的相关 (3)、数据的加工带来的相关 含义及影响:cov(,)0,i j i j εε≠≠影响:和异方差一样,系数的ls 估计是无偏的,但不是有效的。
D -W 检验(Durbin -Watson )221212222121212222112112122211221122121()()()2()()222222(1)n i i i n i i n n n i i i i i i i n i i n n n i i i i i i i n n i i n i i i nn n i i i i nn i ie e d e e e e e e e e e e e e e e e e e e e e e e ρρ=-===-=-====-==-===∑-=∑∑+∑-∑=∑∑+∑-∑--=∑∑+=--∑∑+=--∑≈-其中2121n i i i n i ie e e ρ=-=∑=∑是样本一阶自相关函数。
自相关和异方差处理顺序在统计学和计量经济学中,自相关和异方差是两个常见的问题,需要进行相应的处理才能保证模型的准确性和可靠性。
本文将以人类的视角,采用准确的中文进行描述,详细介绍自相关和异方差的处理顺序及其重要性。
一、自相关处理自相关是指时间序列数据中观测值之间存在的相关性。
当序列中的观测值之间存在一定的相关性时,会导致统计模型的参数估计不准确,假设检验无效,预测结果不可靠。
因此,需要进行自相关的处理。
自相关处理的一种常见方法是使用自相关函数(ACF)和偏自相关函数(PACF)进行分析。
ACF表示观测值与不同滞后期的观测值之间的相关性,PACF表示观测值与滞后期观测值之间的相关性,探究观测值之间的相关性结构。
在进行自相关处理时,可以采取以下步骤:1. 绘制时间序列图,观察序列的趋势和波动性。
2. 进行序列的平稳性检验,确保序列满足平稳性的要求。
3. 绘制ACF和PACF图,分析观测值之间的相关性结构。
4. 根据ACF和PACF的图形特征,选择合适的自回归移动平均模型(ARMA模型)。
5. 估计模型参数,进行模型拟合。
6. 检验模型的残差序列是否存在自相关,如果存在,则返回第3步,重新选择模型。
通过以上步骤,可以有效地处理自相关问题,提高模型的准确性和可靠性。
二、异方差处理异方差是指随着自变量的变化,因变量的方差也发生变化。
当存在异方差时,会导致模型的参数估计不准确,假设检验无效,预测结果不可靠。
因此,需要进行异方差的处理。
异方差处理的一种常见方法是使用加权最小二乘法(Weighted Least Squares, WLS)。
WLS是一种在回归分析中常用的方法,通过对误差项进行加权,降低异方差对回归结果的影响。
在进行异方差处理时,可以采取以下步骤:1. 绘制残差图,观察残差的分布特征。
2. 进行异方差检验,判断是否存在异方差。
3. 如果存在异方差,可以使用加权最小二乘法进行回归估计。
4. 根据异方差的特点,选择合适的加权函数,对误差项进行加权。