第九章 杆件的变形及刚度计算
- 格式:ppt
- 大小:2.06 MB
- 文档页数:79
《建筑力学》课程教学大纲一、本课程的地位、作用和任务《建筑力学》是水利水电建筑工程专业的一门重要的专业基础课,在本专业中起着承上启下的作用,为后续课程打基础。
《建筑力学》的任务是:教授学生掌握物体受力分析与静力平衡问题的求解方法;杆件及结构内力与变形的分析方法;关于构件的强度、刚度与稳定性的计算及构件应力、应变的方法。
通过本课程的学习,要求学生具备对常见结构、构件进行受力分析、内力与变形计算的能力,并初步具备对结构的实验分析能力。
二、教学内容和教学要求第一章绪论1、教学内容建筑力学的研究对象、研究方法、主要内容。
2、教学要求了解建筑力学课程的性质、地位和作用,了解建筑力学各部分的内容、了解建筑力学的学习方法。
第一篇、静力学第二章刚体静力分析基础1、教学内容2—1 力与力偶1)力的概念和性质2)力对点之矩3)力偶的概念和性质2—2 约束与约束反力1)约束与约束反力的概念2)工程中常见的约束与约束反力2—3 受力分析与受力图2、教学要求(1)理解力、力对点的矩、平面力偶的概念及静力学的四个公理,合力矩定理、刚体的概念;掌握平面力偶系合成的计算。
(2)了解约束的概念及荷载的分类;了解作用在构件上荷载的计算方法;掌握常见工程中的约束类型及其约束反力的确定;第三章平面力系1、教学内容3—1 平面力系向一点的简化1)力的平移定理2)平面力系向一点的简化3)力在坐标轴上的投影主矢与主矩的计算4)平面力系向一点简化结果的进一步分析3—2 平衡方程及其应用1)平面一般力系的平衡条件和平衡方程2)平面力系的几种特殊情形3)静定与超静定问题4)物体系的平衡问题2、教学要求(1)了解力的平移定理的内容;掌握力在坐标轴上的投影的概念及计算,掌握合力的投影定理;(2)理解平面一般力系的概念;了解平面一般力系向一点简化和简化结果分析。
(3)掌握平面一般力系、平面汇交力系、平面平行力系及平面力偶系的平衡方程及其应用,重点掌握常见物体支座反力的求法。
第九章位移分析与刚度设计一、教学目标具有胡克定律,弹性模量与泊松比的概念,能熟练地计算轴向拉压情况下杆的变形熟练掌握扭转杆件变形(扭转角)计算方法和扭转刚度计算方法;掌握求梁变形的两种方法:积分法和叠加法,明确叠加原理的使用条件,掌握用变形比较法求解静不定梁。
二、教学内容轴向拉伸和压缩的变形扭转杆件变形(扭转角)计算,刚度条件弯曲变形的量度及符号规定;挠曲线近似微分方程;计算弯曲变形的两种方法;用变形比较法解简单的超静定梁三、重点难点轴向拉伸和压缩的变形扭转杆件变形(扭转角)计算,刚度条件梁的变形分析。
挠曲线近似微分方程。
积分法求梁的变形。
叠加法求梁的变形。
用变形比较法解简单超静定梁。
四、教学方式采用启发式教学,通过提问,引导学生思考,让学生回答问题。
五、计划学时学时六、实施学时七、讲课提纲。
(一)、§9.1受轴向拉伸(压缩)时杆件的变形计算一、纵向变形图9-11、线变形:△l=l1-l (绝对变形)——反映杆的总伸长,但无法说明杆的变形程度(绝对变形与杆的长度有关)2、线应变:l l∆=ε(相对变形)——反映每单位长度的变形,即反映杆的变形程度。
(相对变形与杆的长度无关)3、虎克定律:EA σ=(9-1) 二、横向变形 泊松比1、 横向缩短:△b =b 1-b2、 横向线应变: b b b b b -=∆='1ε 3、 泊松比实验结果表明:在弹性范围,其横向应变与纵向应变之比的绝对值为一常数,既泊松比:考虑到两个应变的正负号恒相反,即拉伸时:ε+ , ε'-压缩后:ε- , ε'+三、变形和位移的概念1、变形..——物体受外力作用后要发生形状和尺寸的改变........,这种现象称为物体的变形。
2、 位移..——物体变形后,在物体上的一些点、一些线或面就可能 发生空间位置的改变,这种空间位置的改......变称为位移。
3、 变形和位移的关系——因果关系,产生位移的原因是杆件的变形,杆件变形的结果引起杆件中的一些点、面、线发生位移。
第九章杆件的强度分析与计算第一节概述一、构件的承载能力机械或机器的每一组成部分称为构件,它是机器的运动单元,为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
因此,构件应当满足以下要求:(一)、强度要求:构件在外力作用下应具有足够的抵抗破坏的能力。
在规定的载荷作用下构件不应被破坏,具有足够的强度。
例如,冲床曲轴不可折断;建筑物的梁和板不应发生较大塑性变形。
强度要求就是指构件在规定的使用条件下不发生意外断裂或塑性变形。
(二)、刚度要求:构件在外力作用下应具有足够的抵抗变形的能力。
在载荷作用下,构件即使有足够的强度,但若变形过大,仍不能正常工作。
例如,机床主轴的变形过大,将影响加工精度;齿轮轴变形过大将造成齿轮和轴承的不均匀磨损,引起噪音。
刚度要求就是指构件在规定的使用条件下不发生较大的变形。
(三)、稳定性要求:构件在外力作用下能保持原有直线平衡状态的能力。
承受压力作用的细长杆,如千斤顶的螺杆、内燃机的挺杆等应始终维持原有的直线平衡状态,保证不被压弯。
稳定性要求就是指构件在规定的使用条件下有足够的稳定性。
为满足以上三方面的要求,构件可选用较好的材料和较大的截面尺寸,但这与节约和减轻构件自相矛盾。
构件设计的任务就是在保证满足强度、刚度和稳定性要求的前提下,以最经济的方式,为构件选择适宜的材料、确定合理的形状和尺寸。
二、变形固体的基本假设由各种固体材料制成的制成的构件在载荷作用下将产生变形,称为变形固体或变形体。
为了便于理论分析和实际计算,对变形固体常采用的几个基本假设:(一).连续性假设:假设在固体所占有的空间内毫无空隙地充满了物质。
实际上,组成固体的粒子之间存在空隙,但这种空隙极其微小,可以忽略不计。
于是可认为固体在其整个体积内是连续的。
基于连续性假设,固体内的一些物理量可用连续函数表示。
(二).均匀性假设:均匀性假设是指材料的力学性能在各处都是相同的,与其在固体内的位置无关。
(三).各向同性假设:即认为材料沿各个方向的力学性质是相同的。
第九章 压杆稳定第一节 压杆稳定的概念对于一般的构件,其满足强度及刚度条件时,就能确保其安全工作。
但对于细长压杆,不仅要满足强度及刚度条件,而且还必须满足稳定条件,才能安全工作。
例如,取两根截面(宽300mm ,厚5mm )相同;其抗压强度极限40=c σMpa 的松木杆;长度分别为30mm 和1000mm ,进行轴向压缩试验。
试验结果,长为30mm 的短杆,承受的轴向压力可高达6kN (A c σ),属于强度问题;长为1000mm 的细长杆,在承受不足30N 的轴向压力时起就突然发生弯曲,如继续加大压力就会发生折断,而丧失承载能力,属于压杆稳定性问题。
如图9-1(a)所示,下端固定,上端自由的理想细长直杆,在上端施加一轴向压力P 。
试验发现当压力P 小于某一数值cr P 时,若在横向作用一个不大的干扰力,如图9-1b 所示,杆将产生横向弯曲变形。
但是,若横向干扰力消失,其横向弯曲变形也随之消失,如图9-1c 所示,杆仍然保持原直线平衡状态,这种平衡形式称为稳定平衡。
当压力cr P P =时,杆仍然保持直线平衡,但此时再在横向作用一个不大的干扰力,其立刻转为微弯平衡,但此时在,如图9-1d 所示,并且当干扰力消失后,其不能再回到原来的直线平衡状态,这种平衡形式称为不稳定平衡。
压杆由原直线平衡状态转为曲线平衡状态,称为丧失稳定性,简称失稳。
使压杆原直线的平衡由稳定转变为不稳定的轴向压力值cr P ,称为压杆的临界载荷。
在临界载荷作用下,压杆既能在直线状态下保持平衡,也能在微弯状态保持平衡。
所以,当轴向压力达到或超过压杆的临界载荷时,压杆将产生失稳现象。
图9-1在工程实际中,考虑细长压杆的稳定性问题非常重要。
因为这类构件的失稳常发生在其强度破坏之前,而且是瞬间发生的,以至于人们猝不及防,所以更具危险性。
例如:1907年,加拿大魁北克的圣劳伦斯河上一座跨度为548m 的钢桥,在施工过程中,由于两根受压杆件失稳,而导致全桥突然坍塌的严重事故;1912年,德国汉堡一座煤气库由于其一根受压槽钢压杆失稳,而致致使其破坏。