用改进的高碘酸钾氧化分光光度法测定海水中的Mn_
- 格式:pdf
- 大小:212.66 KB
- 文档页数:4
实验室月底模拟考试总分100分姓名得分一、填空题1 海水水色的观测只在白天进行,观测地点应选在背阳光处。
2 实验室用测定海水的盐度计分为感应式和电极式两种类型。
3 用催化极谱法测定海水中溶解态硒时,为了使结果稳定,样品加入碘酸钾溶液后,应在30min内测定。
若样品多,应分小批量加入底液。
4 碱性高锰酸钾法测定海水中化学需氧量时,用于制备碘酸钾标准溶液的纯水和玻璃器皿须经煮沸处理,否则碘酸钾溶液容易分解。
5 连续流动比色法测定海水中硅酸盐时,氟化物含量大于50mgF/L时会产生干扰,用硼酸和氟离子配位减少干扰。
6、采集地下水水样时,样品唯一性标中应包括、采样日期、编号、序号和监测项目等信息。
答案:样品类别监测井样品7、用冷原子原子分光光度法测定水中总汞时,须测量空白试样,每分析一批样品,应同时用代替样品,按与样品测定相同的操作步骤制备份空白试样。
答案:无汞蒸馏水 28、固相萃取气相色谱-质谱法测定水中有机氯农药时,固相萃取的3个步骤依次为、和。
答案:活化萃取洗脱9、GC -MS旋转式机械泵是利用工作室容积周期性增大或减少的原理来抽气的,气体总会从高压端泄漏到低压端,因此常用、有一定黏度的来密封,以达到较高的极限真空。
答案:蒸气压低油10、石墨原子吸收光度法测定水中溶解态硒时,样品采集后立即用um滤膜过滤,滤液酸化后贮存于聚乙烯瓶中。
答案:0.4511、离子色谱中抑制器的发展经历了几个阶段,最早的是树脂填充抑制柱、管状纤维膜抑制器,后来又有了平板微膜抑制器。
目前用得最多的是抑制器。
答案:自身再生12、测定铍所用的玻璃器皿,采样所用聚乙烯瓶应先用洗涤剂洗净,再用溶液浸泡小时,然后用清洗干净再用。
答案:盐酸 2413、测定水中碘化物的催化比色法,适用于测定饮用水、地下水和中的碘化物,其最低检出浓度为 ug/L.答案:清洁地表不 114.湿沉隆自动采样器的基本组成是接雨(雪)器、、和样品容器等。
答案:防尘盖雨传感器15.干沉降监测中,SO2、O3、NO、NO2、PM10、MP2.5等均为自动站监测,气态HMO3、NH3、HC. I、气溶胶等则用法进行样品采集,然后分析测定,该方法同时也可监测空气中的SO2等。
水中锰检测方法汇总及不确定度评定1.1 无火焰原子吸收分光光度法1.1.1 测定范围本法测锰的最低检测浓度为0.05μg/L。
1.1.2 方法提要本法基于样品经基体改进后,所含锰离子在石墨管内,高温蒸发解离为原子蒸气,并吸收锰空心阴极灯发射的共振线,且其吸收强度在一定范围内与锰浓度成正比。
因此,可在其他条件不变的情况下,根据测得的吸收值与标准系列比较进行定量。
1.1.3 试剂所用水均为去离子水。
1.1.3.1 浓硝酸:优级纯,1.1.3.2 硝酸溶液(1+1)。
1.1.3.3 硝酸溶液(0.5%):吸取浓硝酸5mL,用水稀释为1000mL。
1.1.3.4 硝酸镁(5%):称取优级纯硝酸镁〔Mg(NO2)2〕5g,加水溶解并定容至100mL。
1.1.3.5 锰标准贮备液(1.00mg/mL):称取金属锰(纯度在99.99%以上)1.000g于250mL烧杯中,加硝酸溶液(1.1.3.2)20mL,溶解后,用水定容至1000mL,此液1.00mL含1.000mg 锰。
1.1.3.6 锰标准中间液(50.0μg/mL):取锰标准贮备液(1.1.3.5.)5.00mL于100mL容量瓶中,0.5%(V/V)硝酸溶液(1.1.3.3)定容,摇匀。
此液1.00mL含50.0μg锰。
1.1.3.7 锰标准使用液(1.00μg/mL):取锰标准中间液(1.1.3.5.)2.00mL于100mL容量瓶中,0.5%硝酸溶液(1.1.3.3)定容,摇匀,此液1.00mL含1.00μg锰。
1.1.4 仪器、设备1.1.4.1 原子吸收分光光度计及其配件:石墨炉控制装置、锰空心阴极灯,氘灯或塞曼背景扣除装置等。
1.1.4.2 氩气钢瓶气。
1.1.4.3 微量自动进样装置或微量定量取样器。
1.1.5 分析步骤1.1.5.1 仪器操作参照仪器说明书安装石墨炉并将仪器工作条件和石墨炉原子化参数调整至测锰最佳状态。
参考参数见表7。
实验室月底模拟考试总分100分姓名得分一、填空题1 海水水色的观测只在白天进行,观测地点应选在背阳光处。
2 实验室用测定海水的盐度计分为感应式和电极式两种类型。
3 用催化极谱法测定海水中溶解态硒时,为了使结果稳定,样品加入碘酸钾溶液后,应在30min内测定。
若样品多,应分小批量加入底液。
4 碱性高锰酸钾法测定海水中化学需氧量时,用于制备碘酸钾标准溶液的纯水和玻璃器皿须经煮沸处理,否则碘酸钾溶液容易分解。
5 连续流动比色法测定海水中硅酸盐时,氟化物含量大于50mgF/L时会产生干扰,用硼酸和氟离子配位减少干扰。
6、采集地下水水样时,样品唯一性标中应包括、采样日期、编号、序号和监测项目等信息。
答案:样品类别监测井样品7、用冷原子原子分光光度法测定水中总汞时,须测量空白试样,每分析一批样品,应同时用代替样品,按与样品测定相同的操作步骤制备份空白试样。
答案:无汞蒸馏水 28、固相萃取气相色谱-质谱法测定水中有机氯农药时,固相萃取的3个步骤依次为、和。
答案:活化萃取洗脱9、GC -MS旋转式机械泵是利用工作室容积周期性增大或减少的原理来抽气的,气体总会从高压端泄漏到低压端,因此常用、有一定黏度的来密封,以达到较高的极限真空。
答案:蒸气压低油10、石墨原子吸收光度法测定水中溶解态硒时,样品采集后立即用um滤膜过滤,滤液酸化后贮存于聚乙烯瓶中。
答案:0.4511、离子色谱中抑制器的发展经历了几个阶段,最早的是树脂填充抑制柱、管状纤维膜抑制器,后来又有了平板微膜抑制器。
目前用得最多的是抑制器。
答案:自身再生12、测定铍所用的玻璃器皿,采样所用聚乙烯瓶应先用洗涤剂洗净,再用溶液浸泡小时,然后用清洗干净再用。
答案:盐酸 2413、测定水中碘化物的催化比色法,适用于测定饮用水、地下水和中的碘化物,其最低检出浓度为 ug/L.答案:清洁地表不 114.湿沉隆自动采样器的基本组成是接雨(雪)器、、和样品容器等。
答案:防尘盖雨传感器15.干沉降监测中,SO2、O3、NO、NO2、PM10、MP2.5等均为自动站监测,气态HMO3、NH3、HC. I、气溶胶等则用法进行样品采集,然后分析测定,该方法同时也可监测空气中的SO2等。
水质中锰浓度测定实验方案1、实验目的使用高碘酸钾分光光度法测定水质中锰的含量2、方法原理在中性的的焦磷酸钾介质中,在室温下高碘酸钾可在瞬间将低价锰氧化到紫红色的七价锰,于波长525nm处进行光度测定。
在酸性介质中,用高碘酸钾氧化需长时间加热煮沸才能完成;而本方法在中性(pH7.0—8.6)溶液中,有焦磷酸钾-乙酸钠存在时,高碘酸钾可于室温下瞬间将低价锰氧化为高锰酸盐,且色泽稳定16小时以上。
3、干扰及消除水样中常见的金属离子和阴离子均不干扰锰的测定。
含有强还原剂或氧化剂的污水,或含有悬浮物的废水,应预先加入硝酸和硫酸(或高氯酸)加热消解后测定。
4、方法适用范围本方法测锰的最低检出浓度为0.05 mg/L(吸光度A为0.010时,所对应的锰浓度)。
使用50mm光程比色皿时,50 ml水中锰量低于125μg时,符合比耳定律。
本方法适用于环境水样和废水样中锰的监测。
5、仪器分光光度计,50 mm光程的比色皿。
6、试剂本实验所用试剂除另有说明外,均为分析纯试剂和蒸馏水或具有同等纯度的水。
(1)焦磷酸钾-乙酸钠缓冲溶液:称取焦磷酸钾(K4P2O7·3H20)230g和三水乙酸钠(CH COONa·3H2O)136 g溶于热水中,冷却后定容到1000ml。
此溶液浓度焦磷酸钾为0.6mol/L, 乙酸钠为1.0mol/L。
(2)硝酸(HNO3),ρ=I.4g/ml ①硝酸溶液,1+9. ①硝酸溶液,1+1.(3)高碘酸钾溶液,20g/L溶液:称2g高碘酸钾(KIO4,优纯级)溶于100ml①硝酸溶液中。
(4)锰标准储备液,1.00g/L:称取1.00g纯度不低于99.9%的电解锰,溶于20ml①硝酸溶液中,加热溶解后移入1000ml容量瓶中,冷却后用水稀释至标线,摇匀。
(5)锰标准使用液,50.0μg/ml:吸取10.00ml锰标准储备液于200ml容量瓶中,用水稀释至标线,摇匀。
(6)硫酸(H2SO4),ρ=1.84g/ml。
高碘酸钾分光光度法测定水中锰(Ⅱ)的改进李孟迪;薛秀玲【摘要】提出加入柠檬酸钠以掩蔽水体中Ca2+对锰(Ⅱ)测定产生的干扰,改进国家标准GB/T 11906-1989中高碘酸钾分光光度法测定水中锰(Ⅱ)的方法.结果表明:所建立方法的线性范围为0.20~20.00mg.L-1,相关系数R2为0.999 3,检出限为0.05mg.L-1,标准加入回收率为95.8%~101.4%,相对标准偏差(RSD)为0.15%~2.47%(n=3).【期刊名称】《华侨大学学报:自然科学版》【年(卷),期】2012(033)002【总页数】3页(P176-178)【关键词】锰(Ⅱ);高碘酸钾;分光光度法;柠檬酸钠;钙离子【作者】李孟迪;薛秀玲【作者单位】华侨大学化工学院,福建厦门361021【正文语种】中文【中图分类】O657.32近几年来,我国发现几个大的地表水系不同程度地受到了锰的污染,如长江仪征段水质锰的污染指数为0.77,江西乐安江水系每年锰的平均质量浓度为0.3~0.4mg·L-1[1].锰是人体及动植物所必需的微量元素之一[2],适量的锰有利于身体健康,但含量过高或过低都会引起某些器官的病变或出现不适[3-4].据2007-2008年地下水质取样分析表明,福建省泉州市的沿海地区大部分地段的地下水以Ⅲ类水为主,水质较差,主要超标项有 Mn2+,Ca2+,F-,Cl-等[5].测定水中锰(Ⅱ)的常用方法有原子吸收法、甲醛肟比色法、高碘酸钾分光光度法等.甲醛肟比色法中试剂甲醛肟、氨水、盐酸羟胺和EDTA的加入量必须进行严格控制[6].高碘酸钾分光光度法(国家标准GB/T 11906-1989《水质锰的测定高碘酸钾分光光度法》,以下简称“国标法”)[7],其焦磷酸钾-乙酸钠缓冲试剂能很好地掩盖水体中大部分的金属离子,但无法排除Ca2+对锰(Ⅱ)测定产生的干扰[8].傅妍芳等[9]将缓冲试剂和氧化试剂做成粉包形式,延长了试剂的保质期,使测定简便快速,但其未考虑Ca2+对测定的干扰.Ca2+是天然水体中常见的金属离子,各水体中Ca2+质量浓度差别很大,国家标准GB/T 14848-1993《地下水质量标准》分类中,Ⅱ,Ⅲ,Ⅳ类地下水体中的碳酸钙质量浓度分别小于300,450,550mg·L-1[7].基于此,本文采用加入柠檬酸钠以掩蔽水体中Ca2+,改进了国标高碘酸钾分光光度法测定可溶性锰的方法.UV-1800PC型紫外/可见分光光度计(上海美谱达仪器有限公司);锰标准液(5.00mg·L-1),将MnCl2溶于二次水中,配制成质量浓度为1.00g·L-1的储备液,使用时逐级稀释;焦磷酸钾-乙酸钠,2%高碘酸钾溶液[7];氯化锰、硝酸(分析纯,上海国药集团化学试剂有限公司);三水合焦磷酸钾、无水乙酸钠、一水合硫酸锰、氯化锰、二水合柠檬酸三钠(分析纯,广东汕头市西陇化工厂有限公司);高碘酸钾(分析纯,天津市光复精细化工研究所).移取1.00,2.00,3.00mL的锰标准液各7份,置于50mL具塞比色管中,分别加入质量浓度为0~480mg·L-1的Ca2+溶液,用蒸馏水稀释至约25mL;然后,加入10mL的焦磷酸钾-乙酸钠缓冲溶液,3 mL的2%高碘酸钾溶液,用蒸馏水定容至50mL,摇匀.放置10min后以水作参比,用1cm的比色皿在525nm处测量其光密度值D(525),由此可得到干扰测试锰(Ⅱ)的Ca2+质量浓度上限值. 将上述含上限质量浓度的Ca2+加到5份质量浓度为2.50mg·L-1的锰标准液中,配制成钙干扰的锰溶液;然后,依次加入0~12.5g·L-1的柠檬酸钠溶液,测定其在525nm处的光密度值D(525).最后,将其与不含Ca2+的同质量浓度的锰标准溶液进行对比,确定柠檬酸钠的最佳用量.考察不同Ca2+质量浓度对锰(Ⅱ)测定的干扰,结果如图1所示.由图1可知:当水样中Ca2+的质量浓度超过240mg·L-1时,会严重干扰锰(Ⅱ)的测定,造成结果偏高.这可能是因为在pH为0.6左右的酸性测定体系中,钙与焦磷酸钾反应生成白色的焦磷酸钙沉淀,影响了锰(Ⅱ)的测定.由于Ca2+的质量浓度为240mg·L-1时会对锰(Ⅱ)的测定产生干扰 .文献[10]的研究发现:柠檬酸钠离子浓度为0.5mol·L-1时,柠檬酸与Ca2+能较好地络合,其一级络合常数为10.9.因此,选择在2.5mg·L-1的锰标准液基础上分别加入0,320,400mg·L-1的Ca2+,考察柠檬酸钠的最佳用量,结果如图2所示. 由图2可知,当水体中柠檬酸钠的质量浓度为7.5g·L-1时,对质量浓度为320,400mg·L-1的Ca2+可以完全掩蔽,故实验选择柠檬酸钠的最佳用量为7.5g·L-1.Ⅳ类水体Ca2+质量浓度过高,通过对含混合干扰溶液(Ca2+的质量浓度为550mg·L-1)的锰标准液进行测定.结果发现,当柠檬酸钠用量为10g·L-1时也无法完全掩蔽Ca2+.考虑到试剂成本,对此类水样在进行锰(Ⅱ)测定前需进行相应的稀释或过滤.另外,柠檬酸钠还具有优良的缓凝性能及稳定性能[11],在缓冲试剂中加入柠檬酸钠可以改进试剂,扩大测试水样的范围.按照实验方法进行测试,可得其线性方程为D=0.039 8ρ,线性范围为0.20~20.00mg·L-1,相关系数R2=0.999 3,方法的检出限为0.05mg·L-1.其中,D 为光密度值;ρ为锰(Ⅱ)的质量浓度.为了考察柠檬酸钠的加入对改进方法的准确度和精密度的影响,对含混合干扰溶液(Ca2+的质量浓度为320mg·L-1)的锰标准液进行平行测定5次,并与国标法(无柠檬酸钠掩蔽Ca2+)作比较 .其中,锰(Ⅱ)的加标质量浓度为3.0mg·L-1.结果表明:在标准样品中含有混合干扰物与不含干扰物时,按未经任何前处理国标法实测锰(Ⅱ)的平均质量浓度分别为4.99,3.01mg·L-1;SD(标准偏差)值分别为0.06,0.01;RSD(相对标准偏差)值分别为1.20%,0.33%;回收率分别为99.8%,100.3%,说明混合干扰对锰离子测定有较大影响 .究其原因可能是Ca2+质量浓度过高,生成的白色沉淀干扰了锰(Ⅱ)的测定.加入柠檬酸钠后,改进方法实测锰(Ⅱ)的质量浓度为3.07mg·L-1,与不含干扰物时锰的测定结果(3.01mg·L-1)相当,其SD(标准偏差)为0.04,RSD (相对标准偏差)为1.30%,回收率为102.3%,说明柠檬酸钠很好地掩蔽了Ca2+对锰(Ⅱ)测定的干扰,方法准确可靠,具有较好的准确度和精密度.为了考察不同基底对改进方法的影响,选择福建厦门市的筼筜湖水、坂头水库及某电镀水厂总排水口出水进行基底加标实验(n=3),并与国标法进行比较.其中,锰(Ⅱ)的加标质量浓度为2.0mg·L-1.结果表明:3种水样中锰(Ⅱ)的加标回收率为95.8%~101.4%,RSD值为0.15%~2.47%(n=3).统计学检验结果表明:3种水样的统计值(F)分别为0.37,7.00,0.81,小于临界值(F0.025(2,2)=39.00)[12],即测定结果与国标法均无统计学意义.说明该方法回收率高、重现性好,具有可行性.通过对国标法的改进,解决了水体中400mg·L-1以下Ca2+对测定锰(Ⅱ)的干扰,其检出限与国标法均为0.05mg·L-1,相关系数R2=0.999 3,方法准确、可靠 .此外,将混合试剂分别制成缓冲试剂包和氧化剂包,可方便使用与携带,尤其适合现场的快速检测.(责任编辑:钱筠英文审校:刘源岗)【相关文献】[1]康建雄,马毅妹,杨建军.高锰酸钾氧化法地表水除锰工艺试验[J].中国农村水利水电,2003(7):41-42.[2]肖子敬.锰的吡啶-2-磺酸配合物的合成和晶体结构[J].华侨大学学报:自然科学版,2007,28(2):170-173.[3]荆俊杰,谢吉民.微量元素锰污染对人体的危害[J].广东微量元素科学,2008,15(2):6-9.[4]付广云.催化动力学光度法测定水中痕量锰(Ⅱ)[J].临沂师范学院学报,2002,24(3):42-43.[5]郇环,王金生,胡立堂,等.沿海大降雨地区地下水利用探讨:以泉州沿海地区为例[J].安徽农业科学,2011,39(1):509-511,524.[6]王海侠,胡宗超,徐静.甲醛肟法测定配合物中锰的含量[J].贵州科学,2006,24(2):24-27.[7]中国标准出版社第二编辑室 .环境监测方法标准汇编:水环境[M].2版 .北京:中国标准出版社,2010.[8]孟俊利,周长波,彭小成.钙离子干扰下锰(Ⅱ)测定分析方法探讨[J].中国锰业,2009,27(3):29-31.[9]傅妍芳,邓金花,蔡淑珍,等.水中锰的快速检测方法的研究[J].广东化工,2010,37(5):200-206.[10]武汉大学.分析化学[M].4版 .北京:高等教育出版社,2006:388-390.[11]张英,周长民.柠檬酸钠的特性与应用[J].辽宁化工,2007,36(5):350-352. [12]邵崇斌.概率论与数理统计[M].北京:中国林业出版社,2003:392-397.。
分光光度法测定水中的CODMn值作者:胡丽娟来源:《课程教育研究·上》2016年第07期【摘要】标准的重铬酸钾法测定水中的COD值存在着采样测定的时间长,会形成二次污染且不能实现在线分析的问题。
近年来,改进及测定COD的方法研究比较活跃,但都存在着测定时间长、试剂用量大或成本高等弱点。
本文提出了用分光光度法快速测定水样的CODMn 值的方法,通过大量的实践,提出了分光光度法测定水样的CODMn值的具体方案,比较了传统的COD值测定方法和分光光度法测定的不同效果,并建议将此法进行推广。
【关键词】COD 分光光度法水样【中图分类号】G71 【文献标识码】A 【文章编号】2095-3089(2016)07-0214-01水是人类的生产和生活必不可少的重要物质之一。
我国地表水体储水量总计6388km3,属贫水国。
人口的增长,用水量越来越大,给水体带来的污染与日俱增,威胁着人们的健康和其它生物的生存的环境。
水体污染是指由于人类活动排放的污染物进入河流、湖泊、海洋或地下水等水体,使水和水体底泥的物理、化学性质或生物群落组成发生变化,从而降低水体使用价值,使水体的物理性质或者化学物质含量超标。
化学需氧量(Chemical Oxygen Demand,COD)是评价水体污染程度的重要指标,它是指在一定条件下,水中易被强氧化剂氧化的还原性物质所消耗的氧化剂的量,再将其折算成氧含量,单位mg/L。
测量COD的方法主要分为化学法和物理法两种。
对于化学法,我国的标准方法是GB/T11914重铬酸钾法,它测量准确,但是消耗的试剂多、成本高、测量时间长且存在二次污染,不能实时地测量水质的变化。
高锰酸钾法中草酸钠预热易分解,滴定消耗的时间长且终点不易控制,造成测定结果存在误差。
物理法主要是可见分光光度法、紫外吸收分光光度法和电化学分析法等。
本文提出的可见光分光光度法是通过测定水样消化后剩余高锰酸钾的量,从而间接计算水样的CODMn值,此法耗时短、试剂用量少,结果准确且重现性好。