旋转的特征
- 格式:pdf
- 大小:692.75 KB
- 文档页数:6
10.3.2 旋转的特征教材分析:本节课的主要内容是通过实例进一步认识旋转变换,探索、理解旋转的特征,并应用旋转的特征作图、解决简单的图形问题。
教材在学生对轴对称、平移这两种简单的全等变换有了很好的认识的基础上,进一步推出了另一较难的全等变换——旋转;并在学生对旋转有了初步了解的基础上,探索其特征。
教材将旋转变换安排至此,目的是力求让学生从动态的角度观察图形、分析问题,为将来掌握“全等”知识奠定基础。
由于旋转与轴对称、平移都是全等变换,在特征上既存在共性又有特性;而学生已经掌握了轴对称、平移的特征,因此,探索、理解旋转区别于轴对称、平移的特征成了本节课的重要任务。
学情分析:在教学过程的设计上,通过一副旋转对称图片创设情景,吸引学生注意力,引出新课课题;进而通过旧知的回顾,为新知的探索作好铺垫。
其中第一题主要是加深学生对旋转基本概念的理解;第二题是为学生用类比的思想方法探索旋转特征作铺垫。
在练习的设计上,遵循由浅入深的原则,循序渐进地让学生逐步熟练应用旋转特征,解决生活与实际问题,从而体现数学的价值;同时,不同难度的习题可以满足不同层次学生的需要,让“不同的人在数学上得到不同的发展”。
课后的延伸——“请结合旋转的知识,用一个基本图形设计一副精美的图片”使整堂课前后呼应、更加完整。
教学目标:1.让学生认识旋转变换与前期所学的两种全等变换的共性与特性,从而掌握旋转变换的特征,并初步学会利用其特征解决简单的图形问题。
2.通过让学生欣赏和感受旋转实例,并亲身经历作图,继而观察、猜想、归纳出旋转的特征。
教学重点:探索旋转的特征教学难点:理解对应点到旋转中心的距离相等;图形中每一点都绕旋转中心旋转了同样大小的角度。
教学过程:一、提纲导学:1.复习回顾:问题:1、如图△OAB 绕O 点旋转到△OA ’B ’,请观察图填空:⑴点B 的对应点是 ⑵线段OB 的对应线段是 ⑶线段AB 的对应线段是 ⑷∠A 的对应角是 ⑸∠B 的对应角是 ⑹旋转中心是 ⑺旋转的角度是 2、平移的特征是什么? 2.创设情境,导入新课:展示一副美丽的旋转对称图片提问:想不想自己也设计一副呢?学完了旋转的特征后,你就能做到 今天我们来研究旋转的特征。
旋转现象的特征
旋转现象是指在物理学中,物体沿着某一轴线旋转的现象。
在自
然界中,我们可以看到各种旋转现象,例如地球的自转和公转、风扇
的旋转、磁铁的旋转等等。
旋转现象具有以下特征:
1.旋转中心:物体沿着某一轴线旋转,轴线上的一点是旋转中心。
旋转中心可以是固定的,也可以在旋转过程中发生改变。
例如,一个
小球在台球桌上旋转时,旋转中心就是球的中心。
2.角速度:角速度是指物体每秒钟绕着旋转中心旋转的角度。
角
速度的单位是弧度/秒(rad/s)。
角速度越大,物体旋转的速度也就
越快。
3.角加速度:角加速度是指物体旋转角速度的变化率,即每秒钟
角速度的变化量。
角加速度的单位是弧度/秒^2(rad/s^2)。
4.转动惯量:转动惯量是物体旋转时的惯性量。
类比于质量在直
线运动中的作用,转动惯量在旋转运动中也扮演着重要的角色。
转动
惯量可以看作是物体对于旋转轴的“反抗力”,转动惯量越大,物体越难以旋转。
5.守恒量:在旋转中,有很多物理量是守恒的,例如角动量、角动量矢量、转动动能等等。
守恒量是指在旋转过程中保持恒定的物理量。
6.惯性张力:惯性张力是指物体在旋转运动中,由于其转动惯量的存在而导致的弹力。
当物体在旋转过程中,由于转动惯量的存在而使其难以改变旋转状态,这种难以改变的状态就会产生惯性张力。
小学三年级旋转的特点
案例一:
旋转的三个特征:对应点到旋转中心的距离相等。
对应点与旋转中心所连线段的夹角等于旋转角。
旋转前、后的图形全等。
旋转的三个要素:旋转中心、旋转方向、旋转角度。
旋转的意义:在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化叫做旋转。
物体围绕一个点或一个轴做圆周运动。
案例二:
旋转的特点:
就是图形或物体围绕某一点或轴进行圆周运动。
其运动方式的特点是物体上的各点都绕着中心点做圆周运动。
旋转是绕一个定点沿某个方向旋转了一定的角度,那个定点叫做旋转中心,旋转的角度叫做旋转角.旋转与旋转的点、方向、位置和角度有关,旋转不改变图形的形状、大小,改变了图形的位置和方向。
在旋转的过程中,图形上所有点或线段的旋转方向相同,旋转角度相同。
图形旋转的三要素:
分别是旋转中心、旋转方向和旋转角度。
在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的
变化叫做图形旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角度。
图形旋转的性质:
1、对应点到旋转中心的距离相等。
2、对应点与旋转中心所连线段的夹角等于旋转角。
3、旋转前、后的图形全等,即旋转前后图形的大小和形状没有改变。
4、旋转中心是唯一不动的点。
5、一组对应点的连线所在的直线所交的角等于旋转角度。
1.根据旋转的性质找相等的线段或角【例1】如图,若把△ABC绕点A旋转一定角度就得到△ADE,那么AB=______,BC=______,∠CAB=______,∠B=_______.总结:1. 旋转的特征:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等,所以对应边相等,对应角相等。
2. 图形的旋转不改变图形的大小和形状。
练1如图,点O是平行四边形ABCD的对角线的交点,△AOB绕点O旋转180°,可以与△____重合,这说明△AOB≌△_____.这两个三角形的对应边是AO与_____,OB与_____,BA与____;对应角是∠AOB与_______,∠OBA与________,∠BAO与________.2.根据旋转的性质求角的度数【例2】(2015•天津)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130° B.150° C.160° D.170°总结:1.当图形中出现图形旋转时,要利用旋转的性质解题.2.注意:(1)旋转前后图形全等,所以对应边相等,对应角相等;(2)旋转角都相等;(3)对应点到旋转中心的距离相等.练2(2010春•姜堰市校级期中)如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°.(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.3.已知一个图形和旋转中心,画旋转图形【例3】在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).画出△ABC绕点O逆时针旋转90°后的△A′B′C′.总结:旋转作图的基本步骤:(1)根据题意,确定旋转中心、旋转方向和旋转角;(2)找出原图形的关键点;(3)连接各关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到这些关键点的对应点,并标上相应的字母;(4)按原图形依次连接这些对应点,得到旋转后的图形。
《旋转的特征》教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如规章制度、作文大全、教案大全、合同范本、实习总结、演讲稿、心得体会、活动方案、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, the shop provides you with various types of practical information, such as rules and regulations, composition, teaching plan, contract template, internship summary, speech, experience, activity program, work plan, other information, etc., want to know different data formats and writing methods, please pay attention!《旋转的特征》教案《旋转的特征》教案作为一名教师,时常要开展教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。
5图形的运动(三)一、认识图形的旋转,探索图形旋转的特征和性质,体会图形旋转的基本要素。
1.旋转的含义:物体绕某一点或轴运动,这种运动现象称为旋转。
2.旋转的特征:旋转中心的位置不变,所有边旋转的方向相同,旋转的角度也相同;旋转后图形的形状、大小都没有发生变化,只是位置变了。
3.把与钟表上指针的旋转方向相同的方向称为顺时针方向,与钟表上指针的方向相反的方向称为逆时针方向。
4.图形旋转的性质:图形绕某一点旋转一定的度数,图形中的对应点、对应线段都旋转相同的度数,对应点到旋转点的距离相等,对应线段、对应角都分别相等。
5.旋转的三要素:(1)旋转中心:物体旋转时所绕的点,也叫旋转中心。
(2)旋转方向:顺时针方向或逆时针方向。
(3)旋转角度:对应线段的夹角或对应顶点与旋转点连线的夹角的度数。
6.描述图形旋转的方法:图形绕哪个点按什么方向转动了多少度。
二、能在方格纸上进行旋转作图。
1.把一个简单图形旋转一定角度的画法:(1)找出原图形的几个关键点所在的位置;(2)确定关键点到旋转点的距离;(3)确定关键点的对应点,对应点与旋转点所连线段和温馨提示:把钟面看作一个圆周,是360度。
钟面上有12个大格,每个大格是360÷12=30(度),也就是说,指针每走1个大格就旋转了30度。
温馨提示:描述物体的旋转时,一定要说清旋转中心、旋转方向和旋转角度。
旋转后的图形与旋转前的图形相比较,每条边、每个点都旋转了相同的角度,但图形的大小、形状都没有发生改变。
易错点:用平移和旋转拼组图形时,要先观察和思考变化前后各部分的位置,再确定位置改变的图形是如何通过平移或旋转得到的。
相应关键点与旋转点所连线段形成的夹角和旋转的度数一致,对应点到旋转点的距离与相应的关键点到旋转点的距离相等;(4)把描出的对应点按顺序连线。
2.图形旋转时,它的中心点、角上的点都可以作为旋转中心,可根据实际需要来选择。
哪一点在旋转过程中位置没有改变,就是绕那一点旋转的。