旋转的特征 2
- 格式:ppt
- 大小:1.76 MB
- 文档页数:7
旋转旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。
(一)正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。
经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。
例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。
经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。
例2. 如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。
求此正方形ABCD面积。
(三)等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=90°, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。
例3.如图,在ΔABC中,∠ACB =900,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。
求∠BPC的度数。
旋转实际上是一种全等变换,由于具有可操作性,因而是考查同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的内容。
题型多以填空题、计算题呈现。
在解答此类问题时,我们通常将其转换成全等求解。
根据变换的特征,找到对应的全等形,通过线段、角的转换达到求解的目的。
认识旋转现象问题导入电风扇叶片、螺旋桨和钟面上的指针分别是怎样运动的?你能用手势表示这些运动吗?(教材80页例2)过程讲解1.观察图中物体的运动方向(1)电风扇叶片、螺旋桨和钟面上的指针的运动路线都是曲线,都是绕着中间一个轴运动。
(2)观察小结:电风扇叶片、螺旋桨和钟面上的指针这些物体的运或都可以看成是旋转。
2.旋转的特征电风扇叶片、螺旋桨和钟面上的指针绕中心运动时,物体的大小、形状都没有改变,但物体本身的方向和位置改变了,这就是旋转的特征。
重点点拨平移式物体沿直线运动,本身方向不发生改变;旋转式物体绕某一点或轴运动,本身方向发生改变。
3.实际操作,进一步感知旋转现象做一个转盘,把指针从指向A旋转到指向B。
然后再把指针继续旋转到指向C或D。
操作方法:先将指针从指向A开始,以轴为中心,顺时针拨动指针到B处,再按同样的方法,拨动指针到C处,最后到D处。
整个旋转的过程中,指针的大小、形状不变,但它本身的方向和位置发生了变化。
归纳总结1.旋转:物体或图形绕着一个点或一个轴运动的现象叫旋转。
2.旋转的特征:旋转时物体的形状、大小都不改变,只是自身的方向和位置发生变化。
误区警示【误区一】判断:汽车行驶是平移现象。
(√)错解分析没有理解平移的意义。
物体或图形只有沿直线运动时才是平移现象,如果汽车不是沿直线运动,即使汽车大小、形状都不改变,也不能称为平移现象。
错解改正×温馨提示判断平移现象时,要看物体是不是沿直线运动。
有些物体永远是直线运动,如电梯;而有些物体的运动方向是可以改变的,如题中的汽车,要明确题中要求,再作判断。
【误区二】选择:风车转动10圈后,叶片(A)。
A.变小了 B.变大了 C.大小、形状没有变化错解分析没有掌握旋转的特征,风车转动是旋转现象,旋转过程中物体的大小、形状都不改变。
错解改正C温馨提示物体或图形在旋转过程中,大小、形状都不改变。
10.3.2 旋转的特征教材分析:本节课的主要内容是通过实例进一步认识旋转变换,探索、理解旋转的特征,并应用旋转的特征作图、解决简单的图形问题。
教材在学生对轴对称、平移这两种简单的全等变换有了很好的认识的基础上,进一步推出了另一较难的全等变换——旋转;并在学生对旋转有了初步了解的基础上,探索其特征。
教材将旋转变换安排至此,目的是力求让学生从动态的角度观察图形、分析问题,为将来掌握“全等”知识奠定基础。
由于旋转与轴对称、平移都是全等变换,在特征上既存在共性又有特性;而学生已经掌握了轴对称、平移的特征,因此,探索、理解旋转区别于轴对称、平移的特征成了本节课的重要任务。
学情分析:在教学过程的设计上,通过一副旋转对称图片创设情景,吸引学生注意力,引出新课课题;进而通过旧知的回顾,为新知的探索作好铺垫。
其中第一题主要是加深学生对旋转基本概念的理解;第二题是为学生用类比的思想方法探索旋转特征作铺垫。
在练习的设计上,遵循由浅入深的原则,循序渐进地让学生逐步熟练应用旋转特征,解决生活与实际问题,从而体现数学的价值;同时,不同难度的习题可以满足不同层次学生的需要,让“不同的人在数学上得到不同的发展”。
课后的延伸——“请结合旋转的知识,用一个基本图形设计一副精美的图片”使整堂课前后呼应、更加完整。
教学目标:1.让学生认识旋转变换与前期所学的两种全等变换的共性与特性,从而掌握旋转变换的特征,并初步学会利用其特征解决简单的图形问题。
2.通过让学生欣赏和感受旋转实例,并亲身经历作图,继而观察、猜想、归纳出旋转的特征。
教学重点:探索旋转的特征教学难点:理解对应点到旋转中心的距离相等;图形中每一点都绕旋转中心旋转了同样大小的角度。
教学过程:一、提纲导学:1.复习回顾:问题:1、如图△OAB 绕O 点旋转到△OA ’B ’,请观察图填空:⑴点B 的对应点是 ⑵线段OB 的对应线段是 ⑶线段AB 的对应线段是 ⑷∠A 的对应角是 ⑸∠B 的对应角是 ⑹旋转中心是 ⑺旋转的角度是 2、平移的特征是什么? 2.创设情境,导入新课:展示一副美丽的旋转对称图片提问:想不想自己也设计一副呢?学完了旋转的特征后,你就能做到 今天我们来研究旋转的特征。
五年级(下册)数学《图形的运动三》教学设计、点拨自学老师:你们观察两个风车的中心点学生:两个风车都是绕着0点转动老师:旋转的中心点是固定不变的。
(完成练习填空)2.旋转的方向出示两个旋转的风车,引导发现旋转的方向老师:再观察两个风车,有什么不同?学生:一个是反方向,一个正向。
或者一个是顺时针一个是逆时针。
(出示钟表)老师:我们一起看着钟表,和钟表走的方向一样的叫做顺时针,反方向的叫做逆时针。
所以像这样的旋转方向的叫做顺时针,另外一个风车运动的方向叫做逆时针。
(出示填空,完成表述填空)3.旋转的角度出示钟表图,发现指针的转动特点。
指针从“12”到“3”旋转角度学生发现总结知识,并且将之前的知识一起运用填空,明白要将旋转表达清楚就要将旋转的中心点,旋转方向和旋转角度一起总结。
(完成表述填空)体交流反馈,发现特点。
对知识点的发现降低了难度。
每一个发现练习填空就是让学生及巩固引导发现规律4.旋转三要素的总结(边总结,边出示课件)5.旋转运动的表述(完成书上的例一填空)6.巩固练习(83页做一做)三、图形旋转的特征认识问题导入:出示课件(例二的图形)1.观察图形,读题,理解题意12.示意图分析学生边发现,旋转点是0,自己用直尺在格子上面自己旋转,引导学生发现(三角形的旋转就是三角形的边绕着0点旋转)3.对比直角三角形旋转前后的位置变化4.总结旋转的特征(通过观察三角形旋转90度前后的图形变换知道,旋转前后的图形的形状、大小不变,知识位置变化了。
三角形的边都是绕着0顺时针旋转了90度。
)出示填空进行知识的帮助总结。
四、知识巩固(出示课件,动画练习图)直观的将各种不同图形的旋转运动展示出来。
图形的运动观察,由直观的三角形在方格纸中的观察每一个的知识填空,是为了帮助学生进行语言总结小学生的导学案一、旋转运动的三个要素()()()二、如例二的图,自己将直角三角形固定在方格纸上,像这样在方格纸上每次按顺时针方向旋转90°,观察三角形的位置是如何变化的。
第三单元旋转一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征(3分)1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)单元测试1.下列正确描述旋转特征的说法是()A.旋转后得到的图形与原图形形状与大小都发生变化.B.旋转后得到的图形与原图形形状不变,大小发生变化.C.旋转后得到的图形与原图形形状发生变化,大小不变.D.旋转后得到的图形与原图形形状与大小都没有变化.2.下列描述中心对称的特征的语句中,其中正确的是()A.成中心对称的两个图形中,连接对称点的线段不一定经过对称中心B.成中心对称的两个图形中,对称中心不一定平分连接对称点的线段C.成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分D.成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分3.4.下列图形中即是轴对称图形,又是旋转对称图形的是()A.(l)(2)B.(l)(2)(3)C.(2)(3)(4)D.(1)(2)(3(4)5.下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。