格林公式例题与习题
- 格式:ppt
- 大小:623.00 KB
- 文档页数:16
第二十一章 重积分3格林公式、曲线积分与路线的无关性一、格林公式概念:当区域D 的边界L 由一条或几条光滑曲线所组成时,规定边界曲线的正方向为:当人沿边界行走时,区域D 总在他的左边. 与正方向相反的方向称为负方向,记为-L.定理21.11:若函数P(x,y), Q(x,y)在闭区域D 上连续,且有连续的一阶偏导数,则有格林公式:⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D d y P x Q σ=⎰+L Qdy Pdx . L 为区域D 的边界曲线,并取正方向.证:根据区域D 的不同形状,可分三种情形来证明: (1)若区域D 既是x 型区域,又是y 型区域(如图1),即 平行于坐标轴的直线和L 至多交于两点,该区域D 可表示为: φ1(x)≤y ≤φ2(x), a ≤x ≤b 或ψ1(x)≤x ≤ψ2(x), c ≤y ≤d.这里y=φ1(x)和y=φ2(x)分别为曲线⌒ACB 和⌒AEB 的方程, x=ψ1(x)和x=ψ2(x) 分别为曲线⌒CAE 和⌒CBE的方程, ∴⎰⎰∂∂Dd x Qσ=⎰⎰∂∂)()(21y y d c dx x Q dy ψψ=⎰d c dy y y Q )),((2ψ-⎰d c dyy y Q )),((1ψ=⎰⋂CBE dy y x Q ),(-⎰⋂CAE dy y x Q ),(=⎰⋂CBE dy y x Q ),(+⎰⋂EAC dy y x Q ),(=⎰L dy y x Q ),(.同理可证:-⎰⎰∂∂Dd y Pσ=⎰L dx y x P ),(. 即有⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D d y P x Q σ=⎰+L Qdy Pdx . (2)若区域D 是一条按段光滑的闭曲线围成(如图2),则先用几段光滑曲线将D 分成有限个既是x 型又是y 型的子区域,然后逐块按(1)得到它们的格林公式,相加即可.图2中区域D 可分成三个既是x 型又是y 型的区域D 1,D 2,D 3,则有⎰⎰⎪⎪⎭⎫⎝⎛∂∂-∂∂D d y P x Q σ=⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂1D d y P x Q σ+⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂2D d y P x Q σ+⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂3D d y P x Q σ =⎰+1L Qdy Pdx +⎰+2L Qdy Pdx +⎰+3L Qdy Pdx =⎰+L Qdy Pdx.(3)若区域D 由几条闭曲线所围成(如图3), 可适当添加直线AB, CE,把区域转化为(2)的情况处理.图D 的边界线由AB,L 2,BA,⌒AFC ,CE,L 3,EC 及⌒CGA构成. 由(2)知 ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D d y P x Q σ=⎪⎭⎫ ⎝⎛+++++++⎰⎰⎰⎰⎰⎰⎰⎰⋂⋂CGA EC l CE AFCBA l AB32(Pdx+Qdy)=()⎰⎰⎰++132L L L (Pdx+Qdy)=⎰+L Qdy Pdx .注:格林公式可写为:⎰⎰∂∂∂∂Dd QP y x σ=⎰+L Qdy Pdx .例1:计算⎰AB xdy ,其中曲线AB 为半径为r 的圆在第一象限部分. 解:如图,对半径为r 的四分之一圆域D 应用格林公式有⎰⎰-D d σ=⎰-L xdy =⎰OA xdy +⎰AB xdy +⎰BO xdy =⎰AB xdy . ∴⎰AB xdy =⎰⎰-Dd σ=-41πr 2.例2:计算I=⎰+-Ly x ydxxdy 22, 其中L 为任一不包含原点的闭区域的边界线.解:⎪⎪⎭⎫ ⎝⎛+∂∂22y x x x =22222)(y x x y +-, ⎪⎪⎭⎫ ⎝⎛+-∂∂22y x y y =22222)(y x x y +- 在上述区域D 上连续且有界,∴⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-∂∂-⎪⎪⎭⎫ ⎝⎛+∂∂Dd yx yx y x x x σ2222=0. 由格林公式可得I=0.注:在格林公式中,令P=-y, Q=x ,则得到一个计算平面区域D 的面积S D 的公式:S D =⎰⎰Dd σ=⎰-L ydx xdy 21.例3:如图,计算抛物线(x+y)2=ax (a>0)与x 轴所围的面积.解:曲线⌒AMO由函数y=x ax -, x ∈[0,a], 直线OA 为直线y=0, ∴S D =⎰-ydx xdy 21=⎰-OA ydx xdy 21+⎰⋂-AMO ydx xdy 21=⎰⋂-AMO ydx xdy 21=dx x ax ax ax a ⎰⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-0)(1221=dx ax a ⎰-02121=dx x a a⎰4=62a .二、曲线积分与路线的无关性概念:若对于平面区域D 上任一封闭曲线,皆可不经过D 以外的点而连续收缩于属于D 的某一点,则称此平面区域为单连通区域,否则称为复连通区域。
§10.3 格林公式及其应用一、格林公式一元微积分学中最基本的公式 — 牛顿、莱布尼兹公式'=-⎰F x dx F b F a ab ()()()表明:函数'F x ()在区间[,]a b 上的定积分可通过原函数F x ()在这个区间的两个端点处的值来表示。
无独有偶,在平面区域D 上的二重积分也可以通过沿区域D 的边界曲线L 上的曲线积分来表示,这便是我们要介绍的格林公式。
1、单连通区域的概念设D 为平面区域,如果D 内任一闭曲线所围的部分区域都属于D ,则称D 为平面单连通区域;否则称为复连通区域。
通俗地讲,单连通区域是不含“洞”(包括“点洞”)与“裂缝”的区域。
2、区域的边界曲线的正向规定设L 是平面区域D 的边界曲线,规定L 的正向为:当观察者沿L 的这个方向行走时,D 内位于他附近的那一部分总在他的左边。
简言之:区域的边界曲线之正向应适合条件,人沿曲线走,区域在左手。
3、格林公式【定理】设闭区域D 由分段光滑的曲线L 围成,函数P x y (,)及Q x y (,)在D 上具有一阶连续偏导数,则有()∂∂∂∂Q x Py dxdy Pdx Qdy DL -=+⎰⎰⎰ (1)其中L 是D 的取正向的边界曲线。
公式(1)叫做格林(green)公式。
【证明】先证 -=⎰⎰⎰∂∂Py dxdy Pdx D L假定区域D 的形状如下(用平行于y 轴的直线穿过区域,与区域边界曲线的交点至多两点)易见,图二所表示的区域是图一所表示的区域的一种特殊情况,我们仅对图一所表示的区域D 给予证明即可。
D a x b x y x :,()()≤≤≤≤ϕϕ12[]-=-=-⎰⎰⎰⎰⎰∂∂∂∂ϕϕϕϕP y dxdy dx P y dy P x y dx D a b x x abx x 1212()()()()(,)=--⎰{[,()][,()]}P x x P x x dxabϕϕ21另一方面,据对坐标的曲线积分性质与计算法有Pdx Pdx Pdx Pdx PdxLABBCCEEA⎰⎰⎰⎰⎰=+++弧弧=+++⎰⎰P x x dx P x x dx ab ba[,()][,()]ϕϕ1200=--⎰{[,()][,()]}P x x P x x dxabϕϕ21因此 -=⎰⎰⎰∂∂Py dxdy Pdx D L再假定穿过区域D 内部且平行于x 轴的直线与的D 的边界曲线的交点至多是两点,用类似的方法可证∂∂Qx dxdy Qdx D L ⎰⎰⎰=综合有当区域D 的边界曲线与穿过D 内部且平行于坐标轴( x 轴或y 轴 )的任何直线的交点至多是两点时,我们有-=⎰⎰⎰∂∂P y dxdy Pdx D L , ∂∂Q x dxdy Qdx D L ⎰⎰⎰=同时成立。
第十一章 曲线积分与曲面积分内容要点一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质性质1 设α,β为常数,则⎰⎰⎰+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα;性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则.),(),(),(2121⎰⎰⎰+=+L L LL ds y x f ds y x f ds y x f注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的.性质3 设在L 有),(),(y x g y x f ≤,则ds y x g ds y x f LL⎰⎰≤),(),(性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使s f ds y x f L⋅=⎰),(),(ηξ其中s 是曲线L 的长度.三、第一类曲线积分的计算:)(),(),(βα≤≤⎩⎨⎧==t t y y t x xdt t y t x t y t x f ds y x f L)()(])(),([),(22'+'=⎰⎰βα(1.10)如果曲线L 的方程为 b x a x y y ≤≤=),(,则dx x y x y x f ds y x f ba L )(1])(,[),(2'+=⎰⎰ (1.11)如果曲线L 的方程为 d y c y x x ≤≤=),(,则dy y x y y x f ds y x f dcL )(1]),([),(2'+=⎰⎰ (1.12)如果曲线L 的方程为 βθαθ≤≤=),(r r ,则θθθθθβαd r r r r f ds y x f L)()()sin ,cos (),(22'+=⎰⎰例5(E03)计算,||⎰Lds y 其中L 为双纽线(图10-1-4))()(222222y x a y x -=+的弧.解 双纽线的极坐标方程为 .2cos 22θa r =用隐函数求导得 ,2sin ,2sin 22ra r a r r θθ-='-='.2sin 2224222θθθθd r a d ra r d r r ds =+='+= 所以 .)22(2sin 4sin 4||2402402a d a d ra r ds y L -==⋅=⎰⎰⎰ππθθθθ 内容要点一、引例:设有一质点在xOy 面内从点A 沿光滑曲线弧L 移动到点B ,在移动过程中,这质点受到力j y x Q i y x P y x F ρρρ),(),(),(+= (2.1)的作用,其中),(y x P ,),(y x Q 在L 上连续. 试计算在上述移动过程中变力),(y x F ρ所作的功. 二、 第二类曲线积分的定义与性质:j y x Q i y x P y x A ρρϖ),(),(),(+=⎰⎰+=⋅LLds Q P ds t A )cos cos (βαϖϖ平面上的第二类曲线积分在实际应用中常出现的形式是⎰+L dy y x Q dx y x P ),(),(⎰⎰+=L L dy y x Q dx y x P ),(),(性质1 设L 是有向曲线弧, L -是与L 方向相反的有向曲线弧,则⎰⎰+-=+-L L dy y x Q dx y x P dy y x Q dx y x P ),(),(),(),(;即第二类曲线积分与积分弧段的方向有关.性质2 如设L 由1L 和2L 两段光滑曲线组成,则⎰⎰⎰+++=+21L L L Qdy Pdx Qdy Pdx Qdy Pdx .三、第二类曲线积分的计算:),(t x x = ),(t y y =⎰+L dy y x Q dx y x P ),(),(⎰'+'=βαdt t y t y t x Q t x t y t x P )}()](),([)()](),([{. (2.9)如果曲线L 的方程为 ),(x y y =起点为a , 终点为b ,则.)}()](,[)](,[{⎰⎰'+=+ba L dx x y x y x Q x y x P Qdy Pdx如果曲线L 的方程为),(y x x = 起点为c , 终点为d ,则.]}),([)(]),([{⎰⎰+'=+dcLdy y y x Q y x y y x P Qdy Pdx内容要点一、格林公式定理1 设闭区域D 由分段光滑的曲线L 围成,函数),(y x P 及),(y x Q 在D 上具有一阶连续偏导数,则有⎰⎰⎰+=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂L D Qdy Pdx dxdy y P x Q (3.1)其中L 是D 的取正向的边界曲线.若在格林公式(3.1)中,令,,x Q y P =-= 得⎰⎰⎰-=LDydx xdy dxdy 2,上式左端是闭区域D 的面积A 的两倍,因此有 .21⎰-=Lydx xdy A 二、平面曲线积分与路径无关的定义与条件定理2 设开区域D 是一个单连通域,函数),(y x P 及),(y x Q 在D 内具有一阶连续偏导数,则下列命题等价:(1) 曲线积分⎰+LQdy Pdx 在D 内与路径无关;(2)表达式Qdy Pdx +为某二元函数),(y x u 的全微分; (3)xQy P ∂∂=∂∂在D 内恒成立; (4)对D 内任一闭曲线L ,0=+⎰LQdy Pdx .由定理的证明过程可见,若函数),(y x P ,),(y x Q 满足定理的条件,则二元函数⎰+=),(),(00),(),(),(y x y x dy y x Q dx y x P y x u (3.3)满足 dy y x Q dx y x P y x du ),(),(),(+=, 我们称),(y x u 为表达式dy y x Q dx y x P ),(),(+的原函数.C dy y x P dx y x P y x u yy xx ++=⎰⎰00),(),(),(0或 C dy y x P dx y x P y x u yy xx ++=⎰⎰0),(),(),(0例4 计算,2dxdy e Dy ⎰⎰- 其中D 是以)1,0(),1,1(),0,0(B A O 为顶点的三角形闭区域.解 令,0=P ,2y xe Q -=则 yPx Q ∂∂-∂∂.2y e -= 应用格林公式,得dxdy e Dy ⎰⎰-2⎰++-=BOAB OA y dy xe 2⎰-=OAdy xe y 2⎰-=102dx xe x ).1(211--=e 例5(E03)计算,22⎰+-L y x ydx xdy 其中L 为一条无重点)1(, 分段光滑且不经过原点的连续闭曲线, L 的方向为逆时针方向.解 记L 所围成的闭区域为,D 令,22y x y P +-=,22yx xQ += 则当022≠+y x 时,有 x Q∂∂22222)(y x x y +-=.y P ∂∂=(1) 当D ∉)0,0(时,由格林公式知;022=+-⎰L y x ydxxdy(2) 当D ∈)0,0(时,作位于D 内圆周,:222r y x l =+记1D 由L 和l 所围成,应用格林公式,得⎰⎰=+--+-L l y x ydxxdy y x ydx xdy .02222故⎰+-L y x ydx xdy 22⎰+-=l y x ydxxdy 22⎰+=πθθθ2022222sin cos d rr r ⎰=πθ20d .2π=例6(E04)求椭圆θcos a x =,θsin b y =所围成图形的面积A . 解 所求面积A ⎰-=L ydx xdy 21⎰+=πθθθ2022)sin cos (21d ab ab ⎰=πθ2021d ab.ab π=例7 计算抛物线)0()(2>=+a ax y x 与x 轴所围成的面积. 解 ONA 为直线.0=y 曲线AMO 为 ,x ax y -=].,0[a x ∈ ∴A ⎰-=AMOydx xdy 21⎰⎰-+-=AMOONAydx xdy ydx xdy 2121⎰-=AMOydx xdy 21⎰--⎪⎪⎭⎫⎝⎛-=)(1221a dx x ax dx ax a x ⎰=adx x a4.612a =例10(E06)计算,)8,6()0,1(22⎰++yx ydy xdx 积分沿不通过坐标原点的路径.解 显然,当)0,0(),(≠y x 时, 22y x ydy xdx ++,22y x d +=于是⎰++)8,6()0,1(22yx ydy xdx ⎰+=)8,6()0,1(22y x d )8,6()0,1(22y x +=.9=例 12 验证: 在整个xOy 面内, ydy x dx xy 22+是某个函数的全微分, 并求出一个这样 的函数.证2 利用原函数法求全微分函数).,(y x u 由2xy y u =∂∂ ),(2222y y x dx xy u ϕ+==⎰其中)(y ϕ是y 的待定函数.由此得).(2y y x yuϕ'+=∂∂ 又u 必须满足 y x yu2=∂∂ y x y y x 22)('=+ϕ 0)('=y ϕ ,)(C y =ϕ 所求函数为.2/22C y x u +=例13(E07)设函数),(y x Q 在xoy 平面上具有一阶连续偏导数, 曲线积分与路径无关, 并且对任意t , 总有,),(2),(2),1()0,0()1,()0,0(⎰⎰+=+t t dy y x Q xydx dy y x Q xydx求).,(y x Q解 由曲线积分与路径无关的条件知,2x xQ=∂∂ 于是),(),(2y C x y x Q +=其中)(y C 为待定函数.dy y x Q xydx t ),(2)1,()0,0(+⎰⎰+=102))((dy y C t ,)(102⎰+=dy y C tdy y x Q xydx t ),(2),1()0,0(+⎰⎰+=tdy y C 0))(1(,)(0⎰+=t dy y C t由题意可知⎰+12)(dy y C t .)(0⎰+=tdy y C t两边对t 求导,得)(12t C t +=或.12)(-=t t C 所以.12),(2-+=y x y x Q例14(E08)设曲线积分⎰+Ldy x y dx xy )(2ϕ与路径无关, 其中ϕ具有连续的导数, 且,0)0(=ϕ计算.)()1,1()0,0(2⎰+dy x y dx xy ϕ解 ),(y x P ,2xy =),(y x Q ),(x y ϕ= y P ∂∂)(2xy y ∂∂=,2xy =x Q ∂∂)]([x y xϕ∂∂=).('x y ϕ= 因积分与路径无关散,xQy P ∂∂=∂∂ 由xy x y 2)('=ϕ .)(2C x x +=ϕ 由,0)0(=ϕ知0=C .)(2x x =ϕ 故⎰+)1,1()0,0(2)(dy x y dx xy ϕ⎰⎰+=1010ydy dx .21= 例15 选取b a ,使表达式dy e y x be dx ae e y x yxyy])1([])1[(++-++++为某一函数的全微分, 并求出这个函数.解 y P ∂∂])1[(y y ae e y x y +++∂∂=,y y ae e +=x Q ∂∂])1([y x e y x be x ++-∂∂=,y x e be -=若表达式全微分式,则,xQy P ∂∂=∂∂即 .y x y x e be ae e -=+得,1-=a .1=b ),(y x u +-+++=⎰xx dx e e x 00])1()10[(⎰+++-yy x C dy e y x e 0])1([C dy e y x e dx e x yy y xx +++-+-+=⎰⎰])1([]1)1[(C ye xe y e x xe yy y x x x +--+-=00][][.))((C e e y x y x +-+=例16(E09)求方程0)3()3(2323=-+-dy y x y dx xy x 的通解. 解 ,6xQxy y P ∂∂=-=∂∂原方程是全微分方程, ⎰⎰+-=yxdy y dx xy x y x u 0323)3(),(,42344224y y x x +-=原方程的通解为.42344224C y y x x =+- 例19求微分方程0)1(222=---+dy y x dx y x x 的通解.解 将题设方程改写为,02222=---+dy y x dx y x x xdx 即,0)()(2222=---+dy y x x d y x x d 将方程左端重新组合,有,0)()(222=--+y x d y x x d故题设方程的通解为 .)(322/322C y x x =-+内容要点一、 第一类曲面积分的概念与性质定义1 设曲面∑是光滑的, 函数),,(z y x f 在∑上有界, 把∑任意分成n 小块i S ∆(i S ∆同时也表示第i 小块曲面的面积),在i S ∆上任取一点),,,(i i i ζηξ作乘积),,2,1(),,(n i S f i i i i Λ=∆⋅ζηξ并作和,),,(1∑=∆⋅ni i i i i S f ζηξ 如果当各小块曲面的直径的最大值0→λ时, 这和式的极限存在,则称此极限值为),,(z y x f 在∑上第一类曲面积分或对面积的曲面积分,记为∑⎰⎰=→∑∆=ni i i i i S f dS z y x f 1),,(lim ),,(ζηξλ 其中),,(z y x f 称为被积函数,∑称为积分曲面. 二、对面积的曲面积分的计算法.),(),(1)],(,,[),,(22⎰⎰⎰⎰++=∑xyD y x dxdy y x z y x z y x z y x f dS z y x f例4计算,dS xyz ⎰⎰∑其中∑为抛物面).10(22≤≤+=z y x z解 根据抛物面22y x z +=对称性,及函数||xyz 关于yOz xOz 、坐标面对称,有dxdy y x y x xy xyzdS dS xyz xy D ⎰⎰⎰⎰⎰⎰'+++=∑=∑2222)2()2(1)(441⎰⎰⎰⎰+=+⋅=20125122220412sin 241sin cos 4ππdr r r tdt rdr r rt t r dt.420151254141512-=⎪⎭⎫ ⎝⎛-=⎰du u u 例 5 计算,⎰⎰∑xdS 其中∑是圆柱面,122=+y x 平面2+=x z 及0=z 所围成的空间立体的表面.解,=⎰⎰⎰⎰⎰⎰⎰⎰∑+∑+∑∑321∑∑12,在xOy 面上得投影域.1:22≤+y x D xy于是⎰⎰⎰⎰∑==1,0xyD xdxdy xdS ⎰⎰⎰⎰∑=+=2,011xyD dxdy xxdS将)1:,(313223∑∑∑-±=x y 投影到zOx 面上,得投影域 .10,11:+≤≤≤≤-x y x D xydxdz y y x xdS xdS xdS zx D z x ⎰⎰⎰⎰⎰⎰⎰⎰++=∑+∑=∑221232313,12112211222π=-=-+=⎰⎰⎰⎰+-x D dz x xdxdz x x x xz所以.00ππ=++=∑⎰⎰xdS例8 设有一颗地球同步轨道卫星, 距地面的高度为36000=h km ,运行的角速度与地球自转的角速度相同. 试计算该通讯卫星的覆盖面积与地球表面积的比值(地球半径6400=R km).解 取地心为坐标原点,地心到通讯卫星重心的连线为z 轴,建立如图坐标系.卫星覆盖的曲面∑是上半球面倍半顶角为α的圆锥面所截得的部分.∑的方程为,222y x R z --=它在xOy 面上的投影区域.sin :2222αR y x D xy ≤+于是通讯卫星的覆盖面积为).cos 1(22απ-=R A将h R R +=αcos 代入上式得 .21222h R h R h R R R A +⋅=⎪⎭⎫ ⎝⎛+-=ππ 由此得这颗通讯卫星的覆盖面积与地球表面积之比为%.5.4242≈RAπ 由以上结果可知,卫星覆盖了全球三分之一以上的面积,故使用三颗相隔32π角度的通讯卫星就可以覆盖几乎地球全部表面.内容要点二、第二类曲面积分的概念与性质定义1 设∑为光滑的有向曲面, 其上任一点),,(z y x 处的单位法向量,cos cos cos k j i n ρρρργβα++= 又设k z y x R j z y x Q i z y x P z y x A ρρρϖ),,(),,(),,(),,(++=其中函数R Q P ,,在∑上有界, 则函数γβαcos cos cos R Q P n v ++=⋅ϖϖ 则∑上的第一类曲面积分⎰⎰∑⋅dS n v ϖϖ.)cos cos cos (⎰⎰∑++=dS R Q P γβα (5.5)称为函数),,(z y x A ϖ在有向曲面∑上的第二类曲面积分.三、第二类曲面积分的计算法设光滑曲面∑:),(y x z z =,与平行于z 轴的直线至多交于一点,它在xOy 面上的投影区域为xy D , 则.⎰⎰⎰⎰±=∑yzD dxdy y x z y x R dxdy z y x R )],(,,[),,(. (5.9)上式右端取“+”号或“-”号要根据γ是锐角还是钝角而定.内容要点一、高斯公式定理1设空间闭区域Ω由分片光滑的闭曲面∑围成,函数),,(z y x P 、),,(z y x Q 、),,(z y x R 在Ω上具有一阶连续偏导数,则有公式⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z R y Q x P (6.1)这里∑是Ω的整个边界曲面的外侧, γβαcos ,cos ,cos 是∑上点),,(z y x 处的法向量的方向余弦. (6.1)式称为高斯公式.若曲面∑与平行于坐标轴的直线的交点多余两个,可用光滑曲面将有界闭区域Ω分割成若干个小区域,使得围成每个小区域的闭曲面满足定理的条件,从而高斯公式仍是成立的.此外,根据两类曲面积分之间的关系,高斯公式也可表为.)cos cos cos (⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂dS R Q P dv z R y Q x P γβα二、通量与散度一般地,设有向量场k z y x R j z y x Q i z y x P z y x A ρρρρ),,(),,(),,(),,(++=,其中函数P 、Q 、R 有一阶连续偏导数,∑是场内的一片有向曲面,ορn 是曲面∑的单位法向量. 则沿曲面∑的第二类曲面积分⎰⎰⎰⎰⎰⎰∑∑∑++=⋅=⋅=ΦRdxdy Qdzdx Pdydz S d n A S d A ρρρρρο称为向量场A ρ通过曲面∑流向指定侧的通量. 而zRy Q x P ∂∂+∂∂+∂∂ 称为向量场A ρ的散度,记为A div ϖ,即zRy Q x P A div ∂∂+∂∂+∂∂=ϖ. (6.5)例4(E04)证明: 若∑为包围有界域Ω的光滑曲面, 则⎰⎰⎰⎰⎰⎰⎰⎰Ω∑Ω⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=∆dV z v z u y v y u x v x u dS n uvudV v其中nu∂∂为函数u 沿曲面∑的外法线方向的方向导数,u ,v 在Ω上具有一阶和二阶连续偏导数,符号222222zy x ∂∂+∂∂+∂∂=∆称为拉普拉斯算子. 这个公式称为格林第一公式.证 因为=∂∂n u γβαcos cos cos z u y u xu∂∂+∂∂+∂∂n u ρ⋅∇=,其中}cos ,cos ,{cos γβα=n ρ是∑在点),,(z y x 处 的外法线的方向余弦,于是⎰⎰⎰⎰⎰⎰∑∑∑⋅∇=⋅∇=∂∂dS n u v dS n u v dS nu v)[()(ρρdS z u v y u v x u v ⎰⎰∑⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=γβαcos cos cos dv z u v z y u v y x u v x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=.dv z v z u y v y u x v x u udv v ⎰⎰⎰⎰⎰⎰ΩΩ⎝⎛⎪⎭⎫∂∂∂∂+∂∂∂∂+∂∂∂∂+∆=将上式右端移至左端即得所要证明的等式.例5(E05)求向量场k z j y i x r ρρρρ++=的流量(1) 穿过圆锥)0(222h z z y x ≤≤≤+的底(向上); (2) 穿过此圆锥的侧表面(向外).解 设21,S S 及S 分别为此圆锥的面,侧面及全表面,则穿过全表面向外的流量 Q ⎰⎰+⋅=S S d r ρρ⎰⎰⎰=Vdv r div ρ⎰⎰⎰=Vdv 3.3h π=(1)穿过底面向上的流量 1Q ⎰⎰+⋅=S S d r ρρ⎰⎰=≤+=hz z y x zdxdy 222⎰⎰≤+=222z y x hdxdy .3h π=(2)穿过侧表面向外的流量2Q 1Q Q -=.0=内容要点一、斯托克斯公式定理1 设Γ为分段光滑的空间有向闭曲线,∑是以Γ为边界的分片光滑的有向曲面,Γ的正向与∑的侧符合右手规则,函数),,(),,,(),,,(z y x R z y x Q z y x P 在包含曲面∑在内的一个空间区域内具有一阶连续偏导数, 则有公式dxdy y P x Q dzdx x R z P dydz z Q y R ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⎰⎰∑.⎰++=LRdz Qdy Pdx (7.1)公式(7.1)称为斯托克斯公式.为了便于记忆,斯托克斯公式常写成如下形式:⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx RQ P zy x dxdy dzdx dydz 利用两类曲面积分之间的关系,斯托克斯公式也可写成.cos cos cos ⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx dS RQPzy x γβα二、空间曲线积分与路径无关的条件三、环流量与旋度 设向量场,),,(),,(),,(),,(k z y x R j z y x Q i z y x P z y x A ρρρρ++= 则沿场A ρ中某一封闭的有向曲线C 上的曲线积分⎰++=ΓCRdz Qdy Pdx称为向量场A ρ沿曲线C 按所取方向的环流量. 而向量函数⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,称为向量场A ρ的旋度,记为A rot ρ,即.k y P x Q j x R z P i z Q y R A rot ρρρρ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=旋度也可以写成如下便于记忆的形式:RQ Pz y x k j i A rot ∂∂∂∂∂∂=ρρρρ.四、向量微分算子:,k zj y i x ρρρ∂∂+∂∂+∂∂=∇ 例 2 计算曲线积分,)()()(222222dz y x dy x z dx z y -+-+-⎰Γ其中Γ是平面2/3=++z y x 截立方体:,10≤≤x ,10≤≤y 10≤≤z 的表面所得的接痕,从x 轴的正向看法,取逆时针方向.解 取∑为题设平面的上侧被Γ所围成部分,则该平面的法向量,3}3,1,1{=n ρ即,31cos cos cos ===λβα原式dS y x x y z y z y x z⎰⎰∑---∂∂∂∂∂∂=222222313131⎰⎰∑++-=dS z y x )(34.293322334-=-=∑⋅-=⎰⎰⎰⎰xyD dxdy dS 例3(E02)计算,)()()(222222⎰Γ+++++dz y x dy z x dx z y 式中Γ是).0,0(2,222222><<=+=++z R r rx y x Rx z y x此曲线是顺着如下方向前进的: 由它所包围在球面Rx z y x 2222=++上的最小区域保持在左方.解 由斯托克斯公式,有 原式⎰⎰∑-+-+-=dS y x x z z y ]cos )(cos )(cos )[(2γβαdS R z y x R y x z R x z y ⎰⎰∑⎥⎦⎤⎢⎣⎡-+-+⎪⎭⎫ ⎝⎛--=)()(1)( ⎰⎰∑-=dS y z )(2(利用对称性)⎰⎰⎰⎰∑=∑=dS R zdS γcos ..2222R r d R Rdxdy rx y x πσ==∑=⎰⎰⎰⎰≤+ 例5(E03)设,32222yz xy y x u -+= 求grad u ; div(grad u );rot(grad u ). 解 gradu ⎭⎬⎫⎩⎨⎧∂∂∂∂∂∂=z u y u x u ,,}.6,4,2{yz xy xy -=div(gradu)⎭⎬⎫⎩⎨⎧∂-∂+∂∂+∂∂=z yz y xy x xy )6()4()2(y x y 642-+=).(4y x -=rot(gradu).,,222222⎭⎬⎫⎩⎨⎧∂∂∂-∂∂∂∂∂∂-∂∂∂∂∂∂-∂∂∂=x y u y x u z x u x z u y z u z y u 因为22232yz xy y x u -+=有二阶连续导数,故二阶混合偏导数与求导次序无关,故rot(gradu).0=注:一般地,如果u 是一单值函数,我们称向量场A ϖ=grad u 为势量场或保守场,而u 称为场A ϖ的势函数.例6(E04)设一刚体以等角速度k j i z y x ϖϖϖϖωωωω++=绕定轴L 旋转,求刚体内任意一点M 的线速度v ϖ的旋度.解 取定轴l 为z 轴,点M 的内径r ρOM =,k z j y i x ρρρ++=则点M 的线速度v ρr ρρ⨯=ωzyx kji z yx ωωωρρρ=,)()()(k x y j z x i y z y x x z z y ρρρωωωωωω-+-+-=于是v ρrot x y z x y z z y x kj i y x x z z y ωωωωωω---∂∂∂∂∂∂=ρρρ)(2k j i z y x ρρρωωω++=.2ωρ=即速度场v ρ的旋等于角速度ωρ的 2 倍.内容要点点函数积分的概念 点函数积分的性质点函数积分的分类及其关系一、点函数积分的概念定义1 设Ω为有界闭区域, 函数))((Ω∈=P P f u 为Ω上的有界点函数. 将形体Ω任意分成n 个子闭区域,,,,21n ∆Ω∆Ω∆ΩΛ其中i ∆Ω表示第i 个子闭区域, 也表示它的度量, 在i ∆Ω上任取一点i P , 作乘积),,2,1()(n i P f i i Λ=∆Ω并作和∑=∆Ωni iiP f 1)(如果当各子闭区域i ∆Ω的直径中的最大值λ趋近于零时, 这和式的极限存在, 则称此极限为点函数)(P f 在Ω上的积分, 记为⎰ΩΩd P f )(, 即.)(lim )(1∑⎰=→Ω∆Ω=Ωni iiP f d P f λ其中Ω称为积分区域, )(P f 称为被积函数, P 称为积分变量, Ωd P f )(称为被积表达式,Ωd 称为Ω的度量微元.点函数积分具有如下物理意义: 设一物体占有有界闭区域Ω, 其密度为),)((Ω∈=P P f ρ则该物体的质量)0)((,)(≥Ω=⎰ΩP f d P f M特别地, 当1)(≡P f 时, 有).(lim 1度量Ω=∆Ω=Ω∑⎰=→Ωni id λ如果点函数)(P f 在有界闭区域Ω上连续, 则)(P f 在Ω上可积.二、点函数积分的性质设)(),(P g P f 在有界闭区域Ω上都可积, 则有 性质1 .)()()]()([⎰⎰⎰ΩΩΩΩ±Ω=Ω±d P g d P f d P g P f性质2 )()()(为常数k d P f k d P kf ⎰⎰ΩΩΩ=Ω性质3,)()()(21⎰⎰⎰ΩΩΩΩ+Ω=Ωd P f d P f d P f其中,21Ω=ΩΩY 且1Ω与2Ω无公共内点. 性质4 若,,0)(Ω∈≥P P f 则.0)(≥Ω⎰Ωd P f性质5 若,),()(Ω∈≤P P g P f 则.)()(⎰⎰ΩΩΩ≤Ωd P g d P f特别地, 有.|)(|)(⎰⎰ΩΩΩ≤Ωd P f d P f性质6 若)(P f 在积分区域Ω上的最大值为M , 最小值为m , 则.)(Ω≤Ω≤Ω⎰ΩM d P f m性质7 (中值定理)若)(P f 在有界闭区域Ω上连续, 则至少有一点,*Ω∈P 使得.)()(*Ω=Ω⎰ΩP f d P f其中ΩΩ=⎰Ωd P f P f )()(*称为函数)(P f 在Ω上的平均值.三、点函数积分的分类及其关系1.若,],[R b a ⊂=Ω这时],,[),()(b a x x f P f ∈=则.)()(⎰⎰=ΩΩbadx x f d P f (1)这是一元函数)(x f 在区间],[b a 上的定积分. 当1)(=x f 时,a b dx ba-=⎰是区间长.2.右,2R L ⊂=Ω且L 是一平面曲线, 这时,),(),,()(L y x y x f P f ∈=于是⎰⎰=ΩΩLds y x f d P f ),()( (2)当1)(≡P f 时,s ds L =⎰是曲线的弧长. (2)式称为第一类平面曲线积分.3.若,3R ⊂Γ=Ω且Γ是空间曲线, 这时,),,(),,,()(Γ∈=z y x z y x f P f 则.),,()(⎰⎰ΓΩ=Ωds z y x f d P f (3)当1)(≡P f 时,s ds =⎰Γ是曲线的弧长. (3)式称为第一类空间曲线积分.2、3的特殊情形是曲线为直线段, 而直线段上的点函数积分本质上是一元函数的定积分,这说明⎰⎰Γds z y x f ds y x f L),,(,),(可用一次定积分计算, 因此用了一次积分号.4.若,2R D ⊂=Ω且D 是平面区域, 这时,),(),,()(D y x y x f P f ∈= 则⎰⎰⎰=ΩΩDd y x f d P f σ),()( (4)(4)式称为二重积分. 当1),(=y x f 时,σσ=⎰⎰Dd 是平面区域D 的面积.5.若,3R ⊂∑=Ω且∑是空间曲面, 这时,),,(),,,()(∑∈=z y x z y x f P f 则⎰⎰⎰∑Ω=ΩdS z y x f d P f ),,()( (5)(5)式称为第一类曲面积分. 当1)(≡P f 时,S dS =⎰⎰∑是空间曲面∑的面积.由于(5)的特殊情形是平面区域上的二得积分, 说明该积分可化为两次定积分的计算, 因此用二重积分号.6.若3R ⊂Ω为空间立体, 这时,),,(),,,()(Ω∈=z y x z y x f P f 则.),,()(⎰⎰⎰⎰ΩΩ=Ωdv z y x f d P f (5)(6)式称为三重积分. 当1)(≡P f , 则V dv =⎰⎰⎰Ω是空间立体Ω的体积.更进一步, 我们还可以利用点函数积分的概念统一来表述占有界闭区域Ω的物体的重心、转动惯量、引力等物理概念, 此处不再表述.。