图形变化规律型
- 格式:doc
- 大小:82.00 KB
- 文档页数:2
图案规律中的猜想归纳思想知识方法精讲1.规律型:图形的变化类图形的变化类的规律题首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.2.认识图形(1)几何图形:从实物中抽象出的各种图形叫几何图形.几何图形分为立体图形和平面图形.(2)立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形.(3)重点和难点突破:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.3.猜想归纳思想归纳猜想类问题也是探索规律型问题,这类问题一般给出一组具有某种有规律的数、式、图形,或是给出与图形有关的操作变化过程,或某一具体的问题情境,通过认真观察、分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论。
考查学生的归纳、概括、类比能力。
有利于培养学生思维的深刻性和创造性。
解决归纳猜想类问题的基本思路是“观察→归纳→猜想→证明(验证)”,具体做法:(1)认真观察所给的一组数、式、图等,发现它们之间的关系;(2)根据它们之间的关系分析、概括,归纳它们的共性和蕴含的变化规律,猜想得出一个一般性的结论;(3)结合题目所给的材料情景证明或验证结论的正确性。
4.归纳猜想类问题可以分成四大类:(1)数式归纳猜想题这类题通常是先给出一组数或式子,通过观察、归纳这组数或式子的共性规律,写出一个一般性的结论。
找出题目中规律,即不变的和变化的,变化的部分与序号的关系是解这类题的关键。
(2)图形归纳猜想题此类题通常给出一组图形的排列(或操作得到一系列的图形)探求图形的变化规律,以图形为载体考查图形所蕴含的数量关系。
其解题关键是找出相邻两个图形之间的位置关系和数量关系。
(3)结论归纳猜想题结论归纳猜想题常考数值结果、数量关系及变化情况。
模型【07】图形变化类【模型分析】解决图形规律题的步骤:(1)标序数——按图号标序;(2)找规律——观察图形,随着序号增加,后一个图形与前一个图形相比,找出图形变化规律,注意变量与不变量,将每个图中所求量的个数表示成与序数有关的式子;(3)验证——代入序号验证所归纳的式子是否正确;【经典例题】例1.(2021·重庆渝北区·八年级期末)如图是一组有规律的图案,第①个图案中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形……,依此规律,第⑧个图案中有()个三角形.A.19B.21C.22D.25【分析】由题意可知:第①个图案有3+1=4个三角形,第②个图案有3×2+1=7个三角形,第③个图案有3×3+1=10个三角形,…依此规律,第n个图案有(3n+1)个三角形,代入n=8即可求得答案.【解析】∵第①个图案有3+1=4个三角形,第②个图案有3×2+1=7个三角形,第③个图案有3×3+1=10个三角形,…∴第n个图案有(3n+1)个三角形.当n=8时,3×8+1=25,选D.【小结】考查图形的变化规律,解题的关键是找出图形之间的变化规律,利用规律解决问题.例2.(2021·北京东城区·八年级期末)如图,30MON ∠=︒,点1234,,,A A A A ,…在射线ON 上,点123,,B B B ,…在射线OM 上,且112223334,,A B A A B A A B A △△△,…均为等边三角形,以此类推,若11OA =,则202120212022A B A △的边长为_______.【分析】根据30MON ∠=︒,11OA =,112A B A △是等边三角形,得11260∠=︒B A A ,进而得1130∠=︒OB A ,1111A O B A ==,可得22OA =,以此类推即可求解.【解析】∵30MON ∠=︒,11OA =,112A B A △是等边三角形,∴11260∠=︒B A A ∴1130∠=︒OB A ∴1111A OB A ==∴22OA =同理:223A B A △,334A B A △,…均为等边三角形,2222B A OA ==,233342B A OA ===…则202120212022A B A △的边长为20202.【小结】本题考查了规律型-图形的变化类,解决本题的关键是观察图形的变化寻找规律.例3.(2021·安徽芜湖市·七年级期末)如图,同一行的两个图形中小正方形的个数相等,但它们的排列方式不一样,根据不同的排列方式可以得到一列等式.(12)223+⨯=⨯(123)234++⨯=⨯(1234)245+++⨯=⨯(1)第n 个图形中对应的等量关系是()21231n +++⋯++⨯=⎡⎤⎣⎦______.(2)根据(1)的结论,求24650+++⋅⋅⋅+的值.【分析】(1)根据前三幅图可知右边的式子等于左边括号内最大的数与比它大1数的积;(2)先逆用乘法分配律变形,然后根据(1)中结论计算即可;【解析】(1)∵(12)223+⨯=⨯,(123)234++⨯=⨯,(1234)245+++⨯=⨯,…,∴[]123(1)2(1)(2)n n n +++++⨯=++ (2)246501(5)2322+++⋅⋅⋅+=+++⋅⋅⋅+⨯2526650=⨯=【小结】本题考查了规律型—图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.也考查了有理数的混合运算.【巩固提升】1.(2020·浙江台州市·七年级期末)如图,用大小相等的黑色三角形按一定规律拼成如图的图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形…,依照此规律,第⑩个图案中黑色三角形的个数为()A .50B .55C .58D .61【分析】根据前3个图案中黑色三角形的个数找出规律,利用规律解题即可.【解析】第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,312=+,第③个图案中有6个黑色三角形,6123=++,……第⑩个图案中黑色三角形的个数为1234567891055+++++++++=,选B【小结】本题注意考查图形类规律探索,找到规律是解题的关键.2.(2021·北京房山区·八年级期末)如图甲,直角三角形ABC 的三边a ,b ,c ,满足222+=a b c 的关系.利用这个关系,探究下面的问题:如图乙,OAB 是腰长为1的等腰直角三角形,90OAB ∠=︒,延长OA 至1B ,使1AB OA =,以1OB 为底,在OAB 外侧作等腰直角三角形11OA B ,再延长1OA 至2B ,使121A B OA =,以2OB 为底,在11OA B 外侧作等腰直角三角形22OA B ,……,按此规律作等腰直角三角形n n OA B (1n ≥,n 为正整数),则22A B 的长及20212021OA B 的面积分别是()A .2,20202B .4,20212C .20202D .2,20192【分析】根据题意结合等腰直角三角形的性质,即可判断出22A B 的长,再进一步推出一般规律,利用规律求解20212021OA B 的面积即可.【解析】由题意可得:11OA AB AB ===,12OB =,∵11OA B 为等腰直角三角形,且“直角三角形ABC 三边a ,b ,c ,满足222+=a b c 关系”,∴根据题意可得:111OA A B ==,∴212OB OA ==,∴22222OA A B ===, ,∴总结出n n OA =,∵111122△OAB S =⨯⨯=,11112△OA B S =,2212222△OA B S =⨯⨯=,∴归纳得出一般规律:1122n n n n n OA B S -=⨯⨯= ,∴2021202120202OA B S = ,选A【小结】本题考查等腰直角三角形的性质,图形变化类的规律探究问题,立即题意并灵活运用等腰直角三角形的性质归纳一般规律是解题关键.3.(2021·山东青岛市·七年级期末)下列图形均是用长度相同的火柴棒按一定的规律搭成,搭第1个图形需要4根火柴棒,搭第2个图形需要10根火柴棒,…,依此规律,搭第10个图形需要________根火柴棒.【分析】由题意,分别求出前面几个的火柴棒数量,然后得到数量的规律,再求出第10个图形的数量即可.【解析】根据题意可知:第1个图案需4根火柴,()4113=⨯+,第2个图案需10根火柴,()10223=⨯+,第3个图案需21根火柴,()18333=⨯+,……,第n 个图案需()3n n +根火柴,则第10个图案需:()10103130⨯+=(根).【小结】此题考查了平面图形,图形变化规律,主要培养学生的观察能力和空间想象能力.4.(2021·全国七年级)如图,△ABC 是边长为1的等边三角形,取BC 边中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的周长记作C 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的周长记作C 2.照此规律作下去,则C 2020=__.【分析】先计算出C 1、C 2的长,进而得到规律,最后求出C 2020的长即可.【解析】∵E 是BC 的中点,ED ∥AB ,∴DE 是△ABC 的中位线,∴DE =12AB =12,AD =12AC =12,∵EF ∥AC ,∴四边形EDAF 是菱形,∴C 1=4×12,同理C 2=4×12×12=4×212,…C n =4×12n ,∴20202020201811422C =⨯=.【小结】本题考查了中位线的性质,菱形的判定与性质,根据题意得到规律是解题关键.5.(2021·山东青岛市·七年级期末)(问题提出)以长方形ABCD 的4个顶点和它内部的n 个点,共(4)n +个点作为顶点,可把原长方形分割成多少个互不重叠的小三角形?(问题探究)为了解决上面的问题,我们将采取一般问题特殊化的策略,先从简单的情形入手:(探究一)以长方形ABCD 的4个顶点和它内部的1个点P (如图①),共5个点为顶点显然,此时可把长方形ABCD 分割成________个互不重叠的小三角形.(探究二)以长方形ABCD 的4个顶点和它内部的2个点P 、Q ,共6个点为顶点,可把长方形ABCD 分割成多少个互不重叠的小三角形?在探究一的基础上,我们可看作在图①长方形ABCD 的内部,再添加1个点Q ,那么点Q 的位置会有两种情况:一种情况是,点Q 在图①分割成的小三角形的某条公共边上不妨设点Q 在PB 上(如图②);另一种情况是,点Q 在图①分割成的某个小三角形内部.不妨设点Q 在PAB △的内部(如图③).显然,不管哪种情况,都可把长方形ABCD 分割成________个互不重叠的小三角形.(探究三)长方形ABCD 的4个顶点和它内部的3个点P 、Q 、R ,共7个点为顶点,可把长方形ABCD 分割成________个互不重叠的小三角形请在图④中画出一种分割示意图.(问题解决)以长方形ABCD 的4个顶点和它内部的n 个点,共(4)n +个点作为顶点,可把原长方形分割成________个互不重叠的小三角形.(实际应用)以梯形的4个顶点和它内部的2021个点作为顶点,可把梯形分割成________个互不重叠的小三角形.(拓展延伸)以五边形的5个顶点和它内部的m 个点,共(5)m +个点作为顶点,可把原五边形分割成________个互不重叠的小三角形.【分析】探究一:根据图形可回答;探究二:根据图形可回答;探究三:根据图形可回答;n ,进而解决问题;问题解决:由探究活动可得规律为2(1)实际应用:把2021代入所得规律,求值即可;拓展延伸:由四边形的规律可得五边形的规律.【解析】探究一:以长方形ABCD的4个顶点和它内部的1个点P,共5个点为顶点显然,此时可把长方形ABCD 分割成4个互不重叠的小三角形.故答案为:4;探究二:如图,不管哪种情况,都可把长方形ABCD分割成6个互不重叠的小三角形.故答案为;6;探究三:长方形ABCD的4个顶点和它内部的3个点P、Q、R,共7个点为顶点,可把长方形ABCD分割成8个互不重叠的小三角形问题解决:以长方形ABCD 的4个顶点和它内部的1个点,共5个点作为顶点,可把原长方形分割成互不重叠的小三角形个数为:4=2(1+1).以长方形ABCD 的4个顶点和它内部的2个点,共6个点作为顶点,可把原长方形分割成互不重叠的小三角形个数为:6=2(2+1).以长方形ABCD 的4个顶点和它内部的3个点,共7个点作为顶点,可把原长方形分割成互不重叠的小三角形个数为:8=2(3+1).所以,以长方形ABCD 的4个顶点和它内部的n 个点,共(4)n +个点作为顶点,可把原长方形分割成互不重叠的小三角形个数为:2(n +1).实际应用:当n =2021时,以梯形的4个顶点和它内部的2021个点作为顶点,可把梯形分割成互不重叠的小三角形2(2021+1)=4044个.拓展延伸:根据前面的解决问题可知:以五边形的5个顶点和它内部的m 个点,共(5)m +个点作为顶点,可把原五边形分割成互不重叠的小三角形个数为(2m +3)个.故答案为:(2m +3)【小结】本题考查了应用与设计作图,图形的变化规律的问题,读懂题目信息,根据前四个探究得到每多一个点,则三角形的个数增加2是解题的关键.6.(2021·青岛实验学校九年级期末)在平面直角坐标系中,点A 从原点O 出发,沿x 轴正方向按半圆形弧线不断向前运动,其移动路线如图所示,其中半圆的半径为1个单位长度,这时点1234,,,A A A A 的坐标分别为()()()()12340,0,1,12,03,1A A A A -,按照这个规律解决下列问题:()1写出点5678,,,,A A A A 的坐标;()2点2018A 的位置在_____________(填“x 轴上方”“x 轴下方”或“x 轴上”);()3试写出点n A 的坐标(n 是正整数).【分析】()1可根据点在图形中的位置及前4点坐标直接求解;()2根据图形可知点的位置每4个数一个循环,20184504...2÷=,进而判断2018A 与2A 的纵坐标相同在x 轴上方,即可求解;()3根据点的坐标规律可分4种情况分别写出坐标即可求解.【解析】(1)由数轴可得:()54,0A ,()65,1A ,()76,0A ,()87,1A -;(2)根据图形可知点的位置每4个数一个循环,20184504...2÷=,2018A ∴与2A 的纵坐标相同,在x 轴上方,故答案为:x 轴上方;(3)根据图形可知点的位置每4个数一个循环,每个点的横坐标为序数减1,纵坐标为0、1、0、-1循环,∴点n A 的坐标(n 是正整数)为A (n -1,0)或()1,1A n -或()1,0A n -或()1,1A n --.【小结】本题主要考查找点的坐标规律,点的坐标的确定,方法,根据已知点的坐标及图形总结点坐标的变化规律,并运用规律解决问题是解题的关键.。
答案:A分析:本题考察角度是图形的翻(旋转)转。
每一行三个图形的变化规律是:第一个图形逆时针旋转90度得到第二个图形,第二个图形上下翻转得到第三个图形。
例题4答案:D分析:本题考察角度是图形的翻转。
规律是含有字母B的图形,在下次出现的时候上下翻转。
含有其他字母的图形在下次出现的时候不做任何变动。
例题5答案:D分析:本题考察的角度是图形的转动。
阴影部分依次作逆时针转动135度,顺时针转动45度,逆时针转动135度,顺时针转动45度。
一.图形的对称(轴对称和中心对称)例题1二.图形的封闭(封闭图形以及图形的封闭部分之间的数量关系)三.图形的叠加四.图形的笔画数以及边角数量的关系五.图形的形状以及种类例题1答案: B解析:本题目考察的是图形的种类。
每一行都有3种不同的图形。
例题2六.(或者求异去同)例题1A B C D答案:A分析:所有图形的共同特点是都有三角形。
该题目考察的角度是求同。
即寻找所有图形的共同点。
七.权重问题八.图形的拆拼组合。
九.图形的重心位置。
图形推理注意事项。
1.有时候曲线看作边,有时候不看作边。
一般在国考中,边通常是指的直线边,而曲线不当作边。
例如:2007年国考真题:答案:D分析:该题目考察角度的是图形边数关系。
第一行三个图形边数与第二行三个图形边数对应相加等于第三行对应三个图形的边数。
本题曲线不算边。
考题中,解答有的题目我们需要把曲线也看成边。
这与命题专家的喜好有关。
根据具体题目,灵活处理。
在有的省考中,曲线和直线一样被看作一条边。
例如:2006年江苏省考真题:答案:C分析:本题考察角度是图形边数关系。
第一组图形,图形的边数和图形里面的小图案数量相等。
第二组图形,图形的边数比图形里面的小图案数量多1.本题中,圆圈被看作一条边。
2006年江苏省考真题:答案:B分析:本题考察角度是边的关系。
几个图形中,依次有1,2,3,4,5,6条边边长相等。
本题中,圆圈当作一条边。
这个题目本来有难度的,但是答案选项的设置不是很好,很多考生直接选B。
几何变化规律1、正方形边长扩大(缩小)a倍,周长扩大(缩小)a倍。
面积扩大(缩小)a×a(a2)倍。
2、长方形长和宽同时扩大(缩小)a倍,周长扩大(缩小)a倍,面积扩大(缩小)a×a(a2)倍。
3、正方体棱长扩大(缩小)a倍,棱长之和扩大(缩小)a倍。
表面积扩大(缩小)a×a(a2)倍。
体积扩大(缩小)a×a×a(a3)倍。
4、长方体长、宽、高同时扩大(缩小)a倍,棱长之和扩大(缩小)a倍。
表面积扩大(缩小)a×a(a2)倍。
体积扩大(缩小)a×a×a(a3)倍。
5、长方形拉成平行四边形周长不变,高变短,面积变小。
平行四边形拉成长方形周长不变,高变长,面积变大。
6、周长一定正方形面积最大,长方形次之,平行四边形面积最小。
7、n个长、正方体拼在一起成为长方体新长方体最大表面积=【单个长、正方体表面积–最小面积(两个最小数的乘积)】×(n-1)×2新长方体最小表面积=【单个长、正方体表面积–最大面积(两个最小数的乘积)】×(n-1)×28、边长1分米的的正方体,体积是1立方分米,能分成体积是1立方厘米的小正方体1000个,把这些小正方体排成一行,新的长方体长是1000厘米、高是1厘米、宽是1厘米。
9、煅造和分割都是体积不变,表面积变。
解题时要抓住体积相等进行解答。
10、正方体棱长=正方体棱长之和÷12 正方体一个面面积=正方体表面积÷6长方体(长+宽+高)=棱长之和÷4 长方体高=长方体体积÷底面积11、有一组对面是正方形的长方体,四个侧面面积相等。
表面积=边长×边长×2+边长×高×4上、下 4个侧面。
---------------------------------------------------------------最新资料推荐------------------------------------------------------规律型:图形的变化类(一)典例剖析 1. ( 2006 湛江)观察下列顺序排列的等式:a1=1-31, a2=21-41, a3=31-51,a4=41-61,.试猜想第n 个等式( n 为正整数):an= n1-21+n . 2.阅读下列材料:为了求 1 +2+22+23+ +2201 1的值,可令 S=1 +2+22+23++2201 1①,则 2S=2+22+23+ +2201 2②,② -①得 2S-S=22012-1 ,即 S=2201 2-1, 1+2+22+23+ +2201 1=2201 2-1 仿照以上推理,请计算:1+4+42+43 +4201 1. 3. 如图数表是由从 1 开始的连续自然数组成.下面所给的判断中,不正确的是() A.表中第 8 行的最后一个数是 64 C.第 n 行的最后一个数是 n2 B.第 n 行的第一个数是( n-1)2+1 D.第n 行共有 2n 个数 4.将正六边形 ABCDEF 的各边按如图所示延长,从射线 FA 开始,分别在各射线上标记点 O1, O2, O3,,按此规律,则点 O2019所在射线是() A. AB B. DE C. BC D. EF 考点:规律型:图形的变化类.分析:把射线 FA, AB, CD, BC, DE, EF 上面的点分别列举,再1 / 3找到规律,由规律即可求出点 A2019所在的射线.解答:解:从射线 FA 开始,分别在各射线上标记点 O1, O2, O3,,按此规律,得出:FACDABDEBCEFCDFADEABEFBCFACDAB 故点 O1, O2, O3,,每12 次一循环,∵201912=1679,点 O2019所在射线与第 9 次标记相同,故点 O2019所在射线是 DE.故选:B.点评:本题考查了点的坐标规律,是一个规律探索题,可以列出点的排列规律从中得到规律,在变化的点中找到其排列直线的不变的规律,此类问题的排列通常是具有周期性,按照周期循环,难度适中. 5. ( 2019 潍坊)当 n 等于 1, 2, 3 时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第 n 个图形中白色小正方形和黑色小正方形的个数总和等于.(用 n 表示, n 是正整数) 6. ( 2019 南昌)观察下列图形中点的个数,若按其规律再画下去,可以得到第 n个图形中所有点的个数为(用含 n 的代数式表示). 7. ( 2019 綦江)如下表从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第 2019 个格子中的整数为(). 3 a b c -1 2 A. 3 B. 2 C. 0 D. -1 8. ( 2019 绵阳)把所有正奇---------------------------------------------------------------最新资料推荐------------------------------------------------------ 数从小到大排列,并按如下规律分组:( 1),( 3, 5,7),( 9, 11, 13, 15, 17),( 19, 21, 23, 25, 27, 29, 31),,现用等式AM=( i, j)表示正奇数 M 是第 i...3 / 3。
数学篇解题指南图形变化问题就是观察一组由简到繁的图形的变化过程,然后归纳猜想,找出一般规律,进而列出通用的代数式的一类问题.我们在解答这类问题时,需从第1、2、3个甚至更多个简单图形开始,分析其变化规律,然后借助代数式推算出后面更复杂图形的变化形式,从而得出结果.图形规律题通常分为“同增幅”与“变增幅”两大类,下面举例予以说明.一、“同增幅”图形的变化规律“同增幅”图形是指相邻两个图形增加的量是相同的,即增幅相等.我们可以借助“做标记”的方法找出相同增幅,从而将图形变化规律转化为数字变化规律,并将数量关系用代数式表示出来.1.单一增加型单一增加型是指图形的变化是以某一个小整体依次连续不断的增加组成的.解答的策略即先观察分析递增的组合图,然后用作差法确定图形变化的增幅,进而探寻图形的变化规律.例1图1为一组有规律的图案,第1个图案由4个基础图形构成,第2个图案由7个基础图形构成,……,第n(n 为正整数)个图案中由__________个基础图形构成.图1分析:该图案每两个之间增加的图形是相同的,即其增加的“幅度”是相等的.可以通过“做标记”(如图1-1所示)的方法将其增加部分表示出来.这样就可以清楚地看出增加的部分是相同的.然后利用归纳和推理找出其中的规律.图1-1解:通过观察和归纳发现:第1个图案:4个基本图形;第2个图案:4个基本图形+3个基本图形(阴影标注),共4+3个基本图形;第3个图案:4个基本图形+3个基本图形(阴影标注)+3个基本图形(空心标注),共4+3+3=4+2×3个基本图形;……由此可以推理出:第n 个图案:4个基本图形+3个基本图形+…+3个基本图形,共4+3+…+3=4+(n -1)×3=3n +1个基本图形;所以,第n 个图案由(3n +1)个基本图形组成.评注:单一增加型图形的变化规律比较明显,同学们只需要耐心地画出两个相连图案之间的增幅,通过观察、归纳和整理即可解题.2.成倍增加型这类图形不是以图形的整体增加组成,而是图形各部分依次成倍地增加,通常很难快速找出增量,需要仔细观察,慢慢分析才可以找到突破口.解答这类问题应分步思考:第一步,把每次增加的部分表示出来;第二步,各部分相加表示出整体;第三步,确定增幅,找出规律.例2如图2,每个图形都是由若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n(n ≥2)个棋子,每个图案的棋子总数为S ,按下图的分布规律推断,S 与n之间的关系可以用式子_________去表示.19数学篇数苑纵横图2分析:此题的图案是正方形,仔细观察图形可以发现,第2个图案四条边各增加一个棋子,第3个图案每条边各增加2个棋子,增量构成了边长为“2”的正方形.各图案间的增幅构成规则的正方形,且相邻图形的增量是相等的,因此,此题可以转化为求正方形周长问题.图2-1解:用空心圆标注图案“增幅”如图2-1所示.第1图案:4个棋子第2图案:4个棋子+4棋子(空心),即共4+4个棋子;第3图案:4个棋子+4棋子(空心)+4棋子(空心),即共4+2×4棋子;第4图案:4个棋子+4棋子(空心)+4棋子(空心)+4棋子(空心),即共4+3×4个棋子;……由此可以推算出:第n 图案:4个棋子+4棋子(空心)+…+4棋子(空心),即共4+(n -1)×4=4n 个棋子;所以,S =4n.评注:此类题的增幅虽然是“相同”的,但很容易让人产生增幅不等的错觉,同学们在研究分析图形变化规律时,要准确找出相邻图案间的“增幅”.二、“变增幅”图形的变化规律“变增幅”图形变化规律是指相邻两个图形增加的量是不同的.这类问题比较复杂,我们需要仔细观察图案,首先借助“做标记”的方法找到相邻图形之间的变化,并确定变化的增幅,然后找出增幅的数字变化规律,最后例3将一些半径雷同的小圆按如下图的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有_________个小圆.第n 个图形呢?图3分析:此题图案比较复杂,但细细观察可以发现,每个图案的四个角的小圆数量相等,属于不变量.因此我们只需要找出中间小圆的变化规律即可解题.再次观察图案发现,中间的小球相邻的图案每增加一行,同时增加一列,构成一个矩形,如图3-1所示.图3-1解:第1图案:4个球+2球(中间),即共4+2=4+1×2个球;第2图案:4个球+2×3球(中间矩形),即共4+2×3个球;第3图案:4个球+3×4球(中间矩形),即共4+3×4个球;第4图案:4个球+4×5球(中间矩形),即共4+4×5个球;……由此可以推算出:第6图案:4个球+6×7球(中间矩形),即共4+6×7=46个球……第n 图案:4个球+n ×(n +1)球(中间矩形)4+n ×(n +1)=n 2+n +4个球.评注:“变增幅”图形比较复杂,规律比较难寻,但只要我们仔细观察,找出“变”与“不变”的量,问题便可迎刃而解.在解答图形规律题时,同学们要多罗列出前几个图形的变化情况,找出变化趋势,然。
找规律是解决数学问题的图形找规律一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.板块一数量规律【例 1】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。
【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】(方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个三角形△.(方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4、?、2、1的顺序变化,也可以看出“?”处应是三角形△.【例 2】观察下面的图形,按规律在“?”处填上适当的图形.【解析】本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【例 3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【解析】观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:【例 4】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【解析】第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:板块二旋转、轮换型规律【例 5】相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?○□☆△○□☆△△○□☆△○□☆☆△○□☆△○□()()()()()()()()【解析】有几种方法可以找出密码:(方法一)后面一排和前面一排比,上排的第一个图形移到最后,其他每个图形都向前移动了一格,变成了下一排.(方法二)斜着看,每一斜列的图形是一样的.所以密码就是:□☆△○□☆△○【例 6】观察下图的变化规律,画出丙图.【总结】旋转是数学中的重要概念,掌握好这个概念,可以提高观察能力,加快解题速度,对于许多问题的解决,也有事半而功倍的效果.【例 7】下面各种各样的娃娃头好看吗?认真观察你能找到它们排列的规律吗?根据规律把最后一个画出来.【例 8】观察图中所给出图形的变化规律,然后在空白处填画上所缺的图形.【例 9】琪琪特别喜欢蝴蝶,她用直尺和圆规在纸上画了9幅蝴蝶图,并用剪刀将它们一一剪下来.她将这9只纸蝴蝶摆在桌上,见下图1,她发现这些纸蝴蝶排列挺有规律,突然一阵风来,吹走了3只纸蝴蝶,见下图2.你能找出蝴蝶的排列规律,将图2的3只蝴蝶放入图1的空缺处吗?【解析】从已摆好的第一行和第一列来看,无论横看或竖看,同一行中3只蝴蝶的翅膀形状各不相同,翅膀上的斑点的形状也各不相同.根据这个规律,剩下的3只蝴蝶图案的排列应该是:6号位置放图案C;8号位置放图案B;9号位置放图案A.【例 10】观察下列各组图的变化规律,并在“?”处画出相关的图形.(1)【解析】(1)这四个图形的变化规律是:每一个图形都是由其前一个图形顺时针旋转90°而得到的.见下面左图;(2)甲乙丙丁四个图形变化规律也类似,注意因为图形是由旋转而得到的,所以其中三角形、菱形的方向随旋转而变化,作图的时候要注意到这一点.丁图处的图形应是下面右图:【例 11】请你认真仔细观察,按照下面图形的变化规律,在“?”处画出合适的图形。
专题04 图形变化类规律问题一、单选题1.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形拼接而成,第①个图案有4个三角形和1个正方形,第②个图案有7个三角形和2个正方形,第③个图案有10个三角形和3个正方形,⋯依此规律,如果第n 个图案中正三角形和正方形的个数共有2021个,则n =( )A .504B .505C .506D .507【答案】B 【分析】根据图形的变化规律、正方形和三角形的个数可发现第n 个图案有31n +个三角形和n 个正方形,正三角形和正方形的个数共有41n +个,进而可求得当412021n +=时n 的值. 【详解】解:∵第∵个图案有4个三角形和1个正方形,正三角形和正方形的个数共有5个; 第∵个图案有7个三角形和2个正方形,正三角形和正方形的个数共有9个; 第∵个图案有10个三角形和3个正方形,正三角形和正方形的个数共有13个; 第∵个图案有13个三角形和4个正方形,正三角形和正方形的个数共有17个;∵第n 个图案有()43131n n +-=+个三角形和n 个正方形,正三角形和正方形的个数共有3141n n n ++=+个∵第n 个图案中正三角形和正方形的个数共有2021个∵412021n += ∵505n =. 故选择:B 【点睛】本题考查了图形变化类的规律问题、利用一元一次方程求解等,解决本题的关键是观察图形的变化寻找规律.2.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n 个知形的面积为( )A .14B .114n - C .14nD .114n + 【答案】B 【分析】易得第二个矩形的面积为(21)2,第三个矩形的面积为(41)2,依此类推,第n 个矩形的面积为(221)2n -.【详解】解:已知第一个矩形的面积为1; 第二个矩形的面积为原来的(22211)24⨯-=; 第三个矩形的面积是(23211)216⨯-=; ⋯故第n 个矩形的面积为:(2211111)()244n n n ---==.【点睛】本题考查了三角形的中位线定理及矩形、菱形的性质,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.3.如图,第1个图形中小黑点的个数为5个,第2个图形中小黑点的个数为9个,第3个图形中小黑点的个数为13个,…,按照这样的规律,第n 个图形中小黑点的个数应该是( )A .41n +B .32n +C .51n -D .62n -【答案】A 【分析】观察规律,逐个总结,从特殊到一般即可. 【详解】第1个图形,1+1×4=5个; 第2个图形,1+2×4=9个; 第3个图形,1+3×4=13个;第n 个图形,1+4n 个; 故选:A .本题考查利用整式表示图形的规律,仔细观察规律并用整式准确表达是解题关键.4.按图示的方式摆放餐桌和椅子,图1中共有6把椅子,图2中共有10把椅子,…,按此规律,则图7中椅子把数是()A.28B.30C.36D.42【答案】B【分析】观察图形变化,得出n张餐桌时,椅子数为4n+2把(n为正整数),代入n=7即可得出结论.【详解】解:1张桌子可以摆放的椅子数为:2+1×4=6,2张桌子可以摆放的椅子数为:2+2×4=10,3张桌子可以摆放的椅子数为:2+3×4=14,…,n张桌子可以摆放的椅子数为:2+4n,令n=7,可得2+4×7=30(把).故选:B.【点睛】此题考查图形类规律探究,列式计算,根据图形的排列总结规律并运用解决问题是解题的关键.5.如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有202个白色纸片,则n的值为()A.66B.67C.68D.69【答案】B【分析】根据题目中的图形,可以发现白色纸片个数的变化规律,然后根据第n个图案中有202张白色纸片,即可求得n的值.【详解】由图可得,第1个图案中白色纸片的个数为:1+1×3=4,第2个图案中白色纸片的个数为:1+2×3=7,第3个图案中白色纸片的个数为:1+3×3=10,…,第n个图案中白色纸片的个数为:1+n×3=3n+1,令3n+1=202,解得,n=67,故答案为:B.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中白色纸片的变化规律,利用数形结合的思想解答.6.如图所示的图形都由同样大小的小圆圈按一定规律所组成的,若按此规律排列下去,则第50个图形中有()个小圆圈.A.2454B.2605C.2504D.2554【答案】D【分析】设第n个图形中有a n个小圆圈(n为正整数),根据图形中小圆圈个数的变化可找出“a n=4+n(n+1)(n为正整数)”,再代入n=50即可求出结论.【详解】解:设第n个图形中有a n个小圆圈(n为正整数)观察图形,可知:a1=4+1×2,a2=4+2×3,a3=4+3×4,a4=4+4×5,…,∵a n=4+n(n+1)(n为正整数),∵a50=4+50×51=2554故选D.【点睛】本题考查了规律型:图形的变化类,根据图形中小圆圈个数的变化找出变化规律“a n=4+n(n+1)(n为正整数)”是解题的关键.7.用火柴棒按下图的方式搭图形,搭第n个图形需要火柴棒根数为()A .21nB .2nC .21n -D .2(1)n +【答案】A 【分析】观察给出图形的根数,发现以此增加2,即可列出代数式. 【详解】第一个图形有:1+2=3根, 第二个图形有:1+2×2=5根, 第三个图形有:1+2×3=7根, 第四个图形有:1+2×4=9根,⋯⋯∵第n 个图形有:2n+1根; 故选:A . 【点睛】本题考查列代数式表示图形的变化规律,找准每个图形增加的数量关系是解题关键.8.按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的数量是( )A.360B.363C.365D.369【答案】C【分析】观察求出图案中地砖的块数,找到规律再求出黑色的地砖的数量即可.【详解】第1个图案只有(2×1﹣1)2=12=1块黑色地砖,第2个图案有黑色与白色地砖共(2×2﹣1)2=32=9,其中黑色的有12(9+1)=5块,第3个图案有黑色与白色地砖共(2×3﹣1)2=52=25,其中黑色的有12(25+1)=13块,…第n个图案有黑色与白色地砖共(2n﹣1)2,其中黑色的有12[(2n﹣1)2+1],当n=14时,黑色地砖的块数有12×[(2×14﹣1)2+1]=12×730=365.故选:C.【点睛】此题考查图形类规律的探究,有理数的混合运算,根据所给图案总结出图案排列的规律由此进行计算是解题的关键.9.法国数学家柯西于1813年在拉格朗日、高斯的基础上彻底证明了《费马多边形数定理》,其主要突破在“五边形数”的证明上.如图为前几个“五边形数”的对应图形,请据此推断,第20个“五边形数”应该为(),第2020个“五边形数”的奇偶性为()A .533;偶数B .590;偶数C .533;奇数D .590;奇数【答案】B 【分析】根据前几个“五边形数”的对应图形找到规律,得出第n 个“五边形数”为23122n n -,将n=10代入可求得第20个“五边形数”,利用奇偶性判断第2020个“五边形数”的奇偶性. 【详解】解:第1个“五边形数”为1=2311122⨯-⨯, 第2个“五边形数”为5=2312222⨯-⨯, 第3个“五边形数”为12=2313322⨯-⨯, 第4个“五边形数”为22=2314422⨯-⨯, 第5个“五边形数”为35=2315522⨯-⨯, ···由此可发现:第n 个“五边形数”为23122n n -, 当n=20时,23122n n -= 231202022⨯-⨯=590, 当n=2020时,232n =3×2020×1010是偶数,12n =1010是偶数,所以23122n n -是偶数,故选:B .【点睛】本题考查数字类规律探究、有理数的混合运算,通过观察图形,发现数字的变化规律是解答的关键. 10.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第8个图中共有点的个数是( )个A .108B .109C .110D .112【答案】B 【分析】由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…,由此规律得出第n 个图有1+1×3+2×3+3×3+…+3n 3(1)12n n +=+个点,然后依据规律解答即可. 【详解】解:第1个图中共有1+1×3=4个点, 第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点, …第n 个图有1+1×3+2×3+3×3+…+3n=13(123)n ++++⋯+3(1)12n n +=+个点, ∵第8个图中共有点的个数38(81)11092⨯+=+=个,故选B.【点睛】此题考查图形的变化规律,根据图形得出数字之间的运算规律是解题的关键.11.观察下列图形:它们是按一定规律排列的,依照此规律,第7个图形共有()个五星.A.14B.18C.21D.28【答案】C【分析】根据图形的变化发现规律即可求解.【详解】解:第一个图形中有1×3=3个五星,第二个图形中有2×3=6个五星,第三个图形中有3×3=9个五星,第四个图形中有4×3=12个五星,…根据规律可知第n个图形有3n个五星,所以第7个图形共有7×3=21个五星.故选:C.【点睛】考查了规律型:图形的变化类,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n 个图形有3n 个五星.12.如图所示,2条直线相交只有1个交点,3条直线相交最多能有3个交点,4条直线相交最多能有6个交点,5条直线相交最多能有10个交点,……,n (n ≥2,且n 是整数)条直线相交最多能有( )A .()23n -个交点B .()36n -个交点C .()410n -个交点D .()112n n -个交点 【答案】D【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:()112n n - 【详解】解:2条直线相交有1个交点;3条直线相交有1+2=3个交点;4条直线相交有1+2+3=6个交点;5条直线相交有1+2+3+4=10个交点;6条直线相交有1+2+3+4+5=15个交点;…n 条直线相交有1+2+3+4+…+(n -1)=()112n n -故选:D【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有()112n n -个交点. 13.如图所示图形是由相同的小五角星按一定的规律排列组合而成,其中第一个图形有6个五角星,第二个图形有10个五角星,第三个图形有16个五角星,第四个图形有24个五角星,……,则第八个图形五角星的个数为( )A .74B .76C .78D .80【答案】B【分析】 根据已知图形得出第n 个图形中五角星个数为4+n(n+1),据此可得.【详解】解:∵第一个图形中五角星的个数6=4+1×2,第二个图形中五角星的个数10=4+2×3,第三个图形中五角星的个数16=4+3×4,……,∵第八个图形中五角星的个数为4+8×9=76,故选B .【点睛】本题主要考查图形的变化规律,解题的关键是将已知图形分割成两部分,并从中找到总个数的通项公式4+n(n+1)14.观察下列一组图形,其中图形(1)中共有2颗星,图形(2)中共有6颗星,图形(3)中共有11颗星,图形(4)中共有17颗星,…,按此规律,图形(20)中的星星颗数是( )A .210B .236C .249D .251【答案】C【分析】 设图中第n 个图形的星星个数为a n (n 为正整数),然后列出各个图形星星的个数,去判断星星个数的规律,然后计算第20个图形的星星个数.【详解】解:第n 个图形的星星个数为a n (n 为正整数)则a 1=2=1+1,a 2=6=1+2+3,a 3=11=1+2+3+5,a 4=17=1+2+3+4+7∵a n =1+2+3+……+n +(2n -1)=2(1)15(21)1222n n n n n ++-=+- 令n =20,则2215151?20+?20-12222n n +-==249 故选:C【点睛】本题主要考查根据图形找规律,解题的关建是找出图形规律,然后计算.二、填空题15.如图,45MON ∠=︒,正方形1ABB C ,正方形1121A B B C ,正方形2232A B B C ,正方形3343A B B C ,…,的顶点A ,123,,A A A ,在射线OM 上,顶点1234,,,,,B B B B B ,在射线ON 上,连接2AB 交11A B 于点D ,连接13A B 交22A B 于点1D ,连接24A B 交33A B 于点2D ,…,连接11B D 交2AB 于点E ,连接22B D 交13A B 于点1E ,…,按照这个规律进行下去,设四边形11A DED 的面积为1S ,四边形2112A D E D 的面积为2S ,四边形3223A D E D 的面积为3S ,…,,若2AB =,则n S 等于________.(用含有正整数n 的式子表示).【答案】2429n +. 【分析】先证得∵ADC ~∵21B DB ,推出CD=23,143DB =,同理得到1143C D =,1283D B =,由∵1~EDB ∵21EB D ,推出∵ED 1B 边D 1B 上的高为43,计算出1649S =,同理计算得出26449S =⨯,236449S =⨯,找到规律,即可求解【详解】解:∵正方形1ABB C ,正方形1121A B B C ,且45MON ︒∠=,∵OAB ∆和11AA B ∆都是等腰直角三角形,∵12OB AB BB ===,∵1114A B OB ==,同理228A B =,∵正方形1ABB C ,正方形1121A B B C ,正方形2232A B B C ,边长分别为2,4, 8,∵12112//,//AC B B DB D B ,∵11224CD AC DB B B ==, ∵12DB CD =,∵11124,333CD CB DB ===, 同理:1112122223231481816,,,333333C D C B D B C D C B D B ======, ∵112//DB D B ,∵121DEB EB D ∆∆∽,设∵EDB 1和∵EB 2D 1的边DB 1和B 2D 1上的高分别为h 1和1h ', ∵11112413,823h DB h D B '=== ∵11124,h h B B '+== ∵1148,33h h '==, 设1112223,,D E D B B E B E D ∆∆∆的边11223,,DB D B D B 的高分别为123,,h h h , ∵1234816,,,333h h h === ∵11112211111114464442222339A B D DB E S S S DB h ∆∆=-=⨯-⨯⋅=⨯-⨯⨯=; 同理求得:221212222122111188648842222339A B D D B E S S S D B h ∆∆=-=⨯-⨯⋅=⨯-⨯⨯=⨯; 333232223233111161664161284222339A B D D B E S S S D B h ∆∆=-=⨯-⨯⋅=-⨯⨯=⨯; …224164424999n n n n S ++-=⨯==.故答案为:2429n.【点睛】本题考查了正方形的性质,等腰直角三角形的判定和性质,相似三角形的判定与性质在规律型问题中的应用,数形结合并善于发现规律是解题的关键.16.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品......,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉..............,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有43枚图钉可供选用,则最多可以按照要求展示绘画作品________张.【答案】30【分析】分别找出展示的绘画作品展示成一行、二行、三行、四行、五行、六行、七行的时候,43枚图钉最多可以展示的画的数量,比较后即可得出结论.【详解】解:∵如果所有的画展示成一行,43÷(1+1)=21……1,∵43枚图钉最多可以展示20张画;∵如果所有的画展示成两行,43÷(2+1)=14……1,14-1=13(张),2×13=26(张),∵43枚图钉最多可以展示26张画;∵如果所有的画展示成三行,43÷(3+1)=10……3,10-1=9(张),3×9=27(张),∵43枚图钉最多可以展示27张画;∵如果所有的画展示成四行,43÷(4+1)=8……3,8-1=7(张),4×7=28(张),∵43枚图钉最多可以展示28张画;∵如果所有的画展示成五行,43÷(5+1)=7……1,7-1=6(张),5×6=30(张),∵43枚图钉最多可以展示30张画;∵如果所有的画展示成六行,43÷(6+1)=6……1,6-1=5(张),6×5=30(张),∵43枚图钉最多可以展示30张画;∵如果所有的画展示成七行,43÷(7+1)=5……3,5-1=4(张),4×7=28(张),∵43枚图钉最多可以展示28张画;综上所述:43枚图钉最多可以展示30张画.故答案为:30.【点睛】本题考查了规律型中图形的变化类,观察图形,求出展示的绘画作品展示成一行、二行、三行、四行、五行、六行、七行时,最多可以展示的画的数量是解题的关键.17.如图,每条边上有n(n≥2)个方点,每个图案中方点的总数是S.(1)请写出n=5时,S=_____________ ;(2)按上述规律,写出S与n的关系式,S=__________________ .【答案】16; 44n -.【分析】当2n =时,4(21)4S =⨯-=;当3n =时,4(31)8S =⨯-=,⋯,以此类推,可知当n n =时,4(1)S n =⨯-,即4(1)S n =-,根据解答即可.【详解】解:(1)2n =,()4421S ==⨯-;3n =,()8431S ==⨯-;4n =,()12441S ==⨯-;()()412S n n ∴=-≥.∵4n =,()45116S =⨯-=;(2)由(1)可得()4144S n n =-=-.【点睛】主要考查了图形类的规律,正确分析理解题目是解题的关键.18.如图,在矩形ABCD 中,AD=2,CD=1,连接AC ,以对角线AC 为边,按逆时针方向作矩形ABCD 的相似矩形AB 1C 1C ,再连接AC 1,以对角线AC 1为边作矩形AB 1C 1C 的相似矩形AB 2C 2C 1,…,按此规律继续下去,则矩形AB4C4C3的面积为_____.【答案】4 75 2【分析】利用勾股定理可求得AC的长,根据面积比等于相似比的平方可得矩形AB1C1C的面积,同理可求出矩形AB2C2C1、AB3C3C2,……的面积,从而可发现规律,根据规律即可求得第n个矩形的面积,继而即可求得矩形AB4C4C3的面积.【详解】∵在矩形ABCD中,AD=2,CD=1,=∵矩形ABCD与矩形AB1C1C相似,∵矩形AB1C1C与矩形ABCD,∵矩形AB1C1C与矩形ABCD的面积比为54,∵矩形ABCD的面积为1×2=2,∵矩形AB1C1C的面积为2×54=52,同理:矩形AB2C2C1的面积为52×54=258=2352,矩形AB 3C 3C 2的面积为258×54=12532=3552, ……∵矩形AB n C n C n -1面积为2152nn , ∵矩形AB 4C 4C 3的面积为=4752, 故答案为:4752【点睛】本题考查了矩形的性质,勾股定理,相似多边形的性质,根据求出的结果得出规律并熟记相似图形的面积比等于相似比的平方是解题关键.19.如图所示,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,……,按此规律,那么第(n )个图有________个相同的小正方形.【答案】n(n +1)【分析】通过观察可以发现,每一个图形中正方形的个数等于图形序号乘以比序号大一的数,根据此规律解答即可.【详解】第(1)个图有2个相同的小正方形,2=1×2,第(2)个图有6个相同的小正方形,6=2×3,第(3)个图有12个相同的小正方形,12=3×4,第(4)个图有20个相同的小正方形,20=4×5,…,以此类推,第n 个图应有n(n +1)个相同的小正方形.【点睛】本题是对图形变化规律的考查,发现正方形的个数是两个连续整数的乘积是解题的关键,此类题目对同学们的能力要求较高,在平时的学习中要不断积累.20.如图所示是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,按照这样的规律,第4个图案中有______个涂有阴影的小正方形,第n个图案中有_______个涂有阴影的小正方形(用含有n的代数式表示).【答案】17 4n+1【分析】观察发现,后一个图案比前一个图案多涂4个有阴影的小正方形,根据规律写出第n个图案的涂阴影的小正方形的个数即可.【详解】由图可得,第1个图案涂有阴影的小正方形的个数为5个,第2个图案涂有阴影的小正方形的个数为5+4=9个,第3个图案涂有阴影的小正方形的个数为5+4+4=13个,第4个图案涂有阴影的小正方形的个数为5+4+4+4=17个,,第n个图案涂有阴影的小正方形的个数为5+4(n-1)=4n+1(个),故答案为:17,4n+1.【点睛】此题考查图形类规律的探究,列代数式,有理数的加法计算法则,观察图形得到图形的变化规律,总结规律并解决问题是解题的关键.21.将一半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依此规律,第11个图形的小圆个数是______.【答案】134【分析】根据图形的变化寻找规律即可求解.【详解】解:观察图形的变化可知:第1个图形有1×2+2=4个小圆,第2个图形有2×3+2=8个小圆,第3个图形有3×4+2=14个小圆,…,发现规律:第n个图形的小圆个数是n(n+1)+2.所以第11个图形的小圆个数是11×12+2=134.故答案为:134.【点睛】本题考查了规律型-图形的变化,解决本题的关键是观察图形的变化寻找规律并总结规律,会利用找到的规律进行解题.22.德国数学家康托尔引入位于一条线段上的一些点的集合,做法如下:取一条长度为1的线段三等分后,去掉中间段,余下两条线段,达到第1阶段;将剩下的两条线段分别三等分后,各去掉中间段,余下四条线段,达到第2阶段;再将剩下四条线段分别三等分后,各去掉中间段,余下八条线段,达到第3阶段;..,一直如此操作下去大在不断分割舍弃过程中,所形成的线段数目越来越多.如图是最初几个阶段,(1)当达到第5个阶段时,余下的线段条数为____________.(2)当达到第n个阶段时(n为正整数),去掉的线段的长度之和为___ (用含n的式子表示)【答案】(1)32;(2)1 ()3n.【分析】根据题意写出前面所求的结果的式子,然后推广得出规律,即可解答.【详解】(1)根据题意可知:第一阶段余下的线段的条数为12=2条;第二阶段余下的线段的条数为22=4条;第三阶段余下的线段的条数为32=8条;第四阶段余下的线段的条数为42=16条;第五阶段余下的线段的条数为52=32条;故答案为32.(2)根据题意可知:第一阶段去掉的线段的长度为11()3; 第二阶段去掉的线段的长度和为211111=()33333⨯+⨯; 第三阶段去掉的线段的长度和为22311111()()()33333⨯+⨯=; 以此类推,第n 阶段去掉的线段的长度和为1()3n. 故答案为1()3n.【点睛】考查发现图形的规律,根据图形写出前面的几种情况,然后找出其规律是解答本题的关键.23.如图,用火柴棍摆出一列正方形图案,其中图∵有4根火柴棍,图∵有12根火柴棍,图∵有24根火柴棍… …以此类推,则图∵中火柴棍的根数是_____________.【答案】220【分析】图形从上到下可以分成几行,第n 个图形中,竖放的火柴有n (n+1)根,横放的有n (n+1)根,因而第n 个图案中火柴的根数是:n (n+1)+n (n+1)=2n (n+1),把n=10代入就可以求出.【详解】设摆出第n 个图案用火柴棍为S n .∵图,S 1=1×(1+1)+1×(1+1);∵图,S 2=2×(2+1)+2×(2+1);∵图,S 3=3×(3+1)+3×(3+1);…;第n 个图案,S n =n (n+1)+n (n+1)=2n (n+1),则第∵个图案为:2×10×(10+1)=220.故答案为:220.【点睛】本题考查了规律型图形的变化,有一定难度,注意此题第n 个图案用火柴棍为2n (n+1),要拥有一定的推理与论证能力.24.如图,用棋子摆出下列一组图形:按照这种规律摆下去,第2020个图形用的棋子个数是_______.【答案】6063个【分析】根据各图形中所用棋子个数的变化可得出变化规律“33n a n =+”,此题得解.【详解】设第n 个图形用的棋子个数为n a 个(n 为正整数),∵1123a =++,2234a =++,3345a =++,…,∵()()1233n a n n n n =++++=+,∵20203202036063a =⨯+=.故答案为:6063个.【点睛】本题考查了规律型:图形的变化类,根据各图形中所用棋子个数的变化,找出变化规律“33n a n =+”是解题的关键.25.如图,正方形ABCD 的边长为1,其面积标记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为2···S ,按照此规律继续下去,则5S 的值为__________【答案】116【分析】根据正方形的面积公式以及勾股定理的内容发现S 1=12=1,S 2=12S 1=12,S 3=12S 2=14,S 4=12S 3=18,…,继而得出规律即可求得答案.【详解】观察,发现规律:S 1=12=1,S 2=12S 1=12,S 3=12S 2=14,S 4=12S 3=18,…, ∵S n =(12)n -1,当n=5时,S 5=411=126⎛⎫ ⎪⎝⎭, 故答案为:116. 【点睛】本题考查了规律型——图形的变化类,推导出前几个正方形的面积得出面积变化的规律是解题的关键∵ 26.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是___________.【答案】6【分析】求出各个层的正方体的表面积,求出它们的和,该塔形的表面积(含最底层正方体的底面面积)超过39,求出正方体的个数至少个数.【详解】解:底层正方体的表面积为24;第2层正方体的棱长214()2⨯;第3层正方体的棱长为222⨯,每个面的面积为214()2⨯;第n 层正方体的棱长为12)2n -⨯,每个面的面积为114()2n -⨯; 若该塔形为n 层,则它的表面积为2151111244[4()4()4()]40()2222n n --+⨯+⨯+⋯+⨯=-因为该塔形的表面积超过39,所以该塔形中正方体的个数至少是6.故答案为:6.【点睛】本题是中档题,考查计算能力,数列求和的知识,正确就是解好数学问题的关键,常考题型. 27.如图1是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示的方式两两相扣,相扣处不留空隙,小明用x 个如图1所示的图形拼出来的总长度y 会随着x 的变化而变化,y 与x 的关系式为y =______.【答案】52x +【分析】探究规律,利用规律解决问题即可.【详解】观察图形可知:当两个图(1)拼接时,总长度为:7+5=12;当三个图(1)拼接时,总长度为:7+2×5;以此类推,可知:用x 个这样的图形拼出来的图形总长度为:()75152x x +-=+,∵y 与x 的关系式为52y x =+.【点睛】本题考查了图形规律,根据图形的拼接规律得出y 与x 的关系式是解题的关键.28.如图,古希腊人常用小石子在沙滩上摆成各种图形来研究数.例如:图中的数1,5,12,22…,由于这些数能够表示成五边形,所以将它们称为五边形数,按照此规律,第40个图形表示的五边形数是_____.【答案】2380【分析】观察图形得到第1个五边形数为1,第2个五边形数为1+4=5,第3个五边形数为1+4+7=12,第4个五边形数为1+4+7+10=22,即每个五边形数是从1开始,后面的数都比前面一个数大3的几个数的和,且数的个数等于序号数,则第n 个五边形数为232n n -,把n =40代入计算即可. 【详解】第一个图形有1个,第二个图形有5=2+3个,第三个图形有12=3+4+5个,第n 个图形五边形数为()2312312n n n n n n n n -⎡⎤+++++++⋯++-=⎣⎦故第40个图形表示的五边形数是:23404023802⨯-=个【点睛】本题考查了规律型:图形的变化类,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.29.如图,∵ABC 的面积为1,分别倍长(延长一倍)AB ,BC ,CA 得到∵A 1B 1C 1,再分别倍长A 1B 1,B 1C 1,C 1A 1得到∵A 2B 2C 2.…按此规律,倍长2020次后得到的∵A 2020B 2020C 2020的面积为_____.【答案】72020【分析】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,可得111A B C S △=7S ∵ABC ,由此即可解题.【详解】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,∵A 1BC 、∵A 1B 1C 、∵AB 1C 、∵AB 1C 1、∵ABC 1、∵A 1BC 1、∵ABC 的面积都相等,所以,111A B C S △=7S ∵ABC ,同理222A B C S △=7111A B C S △=72S ∵ABC ,依此类推,∵A 2020B 2020C 2020的面积为=72020S ∵ABC ,∵∵ABC 的面积为1,∵202020202020A S B C =72020.故答案为:72020.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.30.(观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为______.【答案】364【分析】根据题意找出图形的变化规律,根据规律计算即可.【详解】因为1n =时,挖去三角形的个数是1个,即03个,2n =时,挖去三角形的个数是4个,即()0133+个,3n =时,挖去三角形的个数是13个,即()012333++个,所以图n 中挖去三角形的个数是()011333n -+++个,所以图∵中挖去三角形的个数是012345333333364+++++=个.故答案为:364.【点睛】本题考查的是图形的变化,掌握图形的变化规律是解题的关键.31.如图,有一个正六边形的点阵,层数由内向外第一层每边有两个点,第二层每边有三个点,依此类推,从射线OA 开始,沿逆时针方向按顺序将每个点依次标上1,2,3,4,5,6,7,……用含n 的代数式表示:第n 层共有______个点、射线OC 上第n 个数字是________.【答案】6n 231n n -+【分析】先分别求出第1、2、3层的点的个数,再归纳类推出一般规律即可得;先分别求出射线OC 上第1、2、3个数字,再归纳类推出一般规律即可得.【详解】第1层共有的点的个数为6,第2层共有的点的个数为1262=⨯,第3层共有的点的个数为1863=⨯,归纳类推得:第n 层共有的点的个数为6n ;射线OC 上第1个数字为33021160=+=⨯++⨯,射线OC 上第2个数字为()1156221601=+=⨯++⨯+,射线OC 上第3个数字为()257182316012=+=⨯++⨯++,归纳类推得:射线OC 上第n 个数字为()2160121n n ++++++-,()()1112162n n n -+-=++⨯,()2131n n n =++-,231n n =-+,故答案为:6n ,231n n -+.【点睛】本题考查了用代数式表示图形的规律型问题、整式的乘法与加减法的应用,正确归纳类推出一般规律是解题关键.32.(2020·达州市达川区中小学教学研究室)如图,有一个面积为1的正方形纸板,第一次剪掉这块正方形纸板的一半,第二次剪掉剩下的一半,以此类推.小明想到第n 次剪掉的面积是12n ,第n 次剪掉后剩下的面积也是12n ,小明受此启发,于是计算出202011112482++⋯+=_____________.【答案】2020112-【分析】 根据第1次剪掉的面积是12,第1次剪掉后剩下的面积是12;第2次剪掉的面积是14,第2次剪掉后剩下的面积是14;…第n 次剪掉的面积是12n ,第n 次剪掉后剩下的面积也是12n ;由此规律得出:利用1减去最后剩下的面积计算得出202011112482++⋯+的结果. 【详解】解:∵第1次剪掉的面积是12,第1次剪掉后剩下的面积是12; 第2次剪掉的面积是14,第2次剪掉后剩下的面积是14;。
图形变化规律型
解题技巧:先做什么,再找规律。
①可以根据选择项ABCD,找出相同点与不同点,在读题时关注这些,②可以进行分步求解,③可以设第一个数量为整体a.
1.(2011•通州区一模)如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2010,最少经过_____次操作()
A.6B.5C.4D.3 2.(2012•贵阳)如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠A n的度数为_________.
3.(2012•鞍山)如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB边中线CD,得到第一个三角形ACD;DE⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第二个三角形DEF;依此作下去…则第n个三角形的面积等于_________.
4.(2013•平遥县模拟)如图,在平面直角坐标系中,∠AOB=30°,点A坐标为(2,0).过A作AA1⊥OB,垂足为A1;过A1作A1A2⊥x轴,垂足为A2;再过点A2作A2A3⊥OB,垂足为点A3;再过点A3作A3A4⊥x轴,垂足为A4…;这样一直作下去,则A2013的纵坐标为_________.
5.(2008•临沂)如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n=_________.
6.如图,在图(1)中,A1、B1、C1分别是△ABC的边BC、CA、AB的中点,在图(2)中,A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,已知△ABC的面积为1,按此规律,则△A n B n C n的面积是
_________.
7.如图,已知∠AOB=45°,A1是OA上的一点,OA1=1,过A1作OA的垂线交OB于点B1,过点B1作OB的垂线交OA于点A2;过A2作OA的垂线交OB于点B2…如此继续,依次记△A1B1A2,△A2B2A3,△A3B3A4…的面积为S1,S2,S3…,则S2011= _________ .
8、如图,已知直线l:y=
3
3
x,过点A(0,1)作y轴的垂线交直线l于点
B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l 于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为( )
A.(0,64) B.(0,128) C.(0,256) D.(0,512)。