高等代数【北大版】6.8
- 格式:ppt
- 大小:618.50 KB
- 文档页数:22
讲课内容教课时数教课目的教课要点教课难点教课方法与手段教学过程第八章λ-矩阵第一讲λ-矩阵2 学时讲课种类讲解法与练习法使学生认识-矩阵的观点,以及-矩阵和数字矩阵的关系,基本掌握-矩阵秩的判断,可逆的条件,以及求逆矩阵。
-矩阵秩的判断,可逆的条件,以及求逆矩阵。
求 -矩阵的逆矩阵启迪式讲解,议论,练习n 阶矩阵A与对角阵相像的充要条件是A有 n 个线性没关的特点向量.那么当只有 m( m n) 个线性没关的特点向量时, A与对角阵是不相像的.对这类情况 ,我们“退而求其次” ,找寻“几乎对角的”矩阵来与A相像 .这就引出了矩阵在相像下的各样标准型问题 .Jordan 标准型是最靠近对角的矩阵而且其相关的理论包括先前相关与对角阵相像的理论作为特例 .其他 , Jordan 标准型的宽泛应用波及到 Hamilton-Cayley 定理的证明 ,矩阵分解 ,线性微分方程组的求解等等 .因为Jordan 标准型的求解与特点多项式相关,而从函数的角度看,特点多项式其实是特别的函数矩阵(元素是函数的矩阵),这就引出对-矩阵的研究 .一、- 矩阵及其标准型定义 1称矩阵 A() ( f ij ()) 为-矩阵 ,此中元素f ij ( )(i1,2,L, m; j 1,2,L , n)为数域 F 上对于的多项式 .定义 2称 n 阶-矩阵A() 是可逆的,假如有A B B A I n并称 B( ) 为A() 的逆矩阵.反之亦然.定理 1 矩阵A() 可逆的充要条件是其队列式为非零的常数,即det( A( )) c0 .证明:( 1)充足性设A=d 是一个非零的数. A*表示A() 的伴随矩阵 ,则d1A*也是一个-矩阵 ,且有A d 1 A* d 1 A*A I所以,A( ) 是可逆的.(2) 必需性设A() 有可逆矩阵B() ,则A B I两边取队列式有A B I1因为 A与 B都是多项式 ,而它们的乘积为1,所以它们都是零次多项式 ,即都是非零常数 .证毕 .例题 1判断-矩阵2 +121A=11能否可逆 .解固然2 +121A=1=201A( ) 是满秩的,但A不是非零常数 ,因此A() 是不行逆的.注意与数字矩阵不一样的是满秩矩阵未必是可逆的.这么定义可逆是有必要的 ,可逆的实质就是要保证变换的矩阵能够经过非零常数的倒数逆回去.定义3假如矩阵A() 经过有限次的初等变换化成矩阵B() ,则称矩阵A( ) 与B()等价,记为A B定理2矩阵A()与B() 等价的充要与条件是存在可逆矩阵P、Q,使得B P A Q证明因为 A B, 所以A() 能够经过有限次初等变换变为B() ,即存在初等矩阵P( ),P( ),L ,P( )12s与初等矩阵Q1 ( ), Q2 ( ),L ,Q t ( )使得B( ) P( )P( )L P( )A( )Q( )Q( )L Q( )12s12t令P( ) P1 ( )P2 ( )L P s () ,Q( ) Q1( )Q2 ( )L Q t ( )就是所要求的-矩阵 .它们都是初等矩阵的乘积,进而使可逆的 .证毕 .定义 4矩阵 A() 的所有非零k阶子式的首一(最高次项系数为1)最大公因式 D k称为 A() 的k阶队列式因子.定理 2等价矩阵拥有同样的秩和同样的各级队列式因子.证明设-矩阵A( )经过一次行初等变换化为了B() ,f () 与 g( ) 分别是A( )与B() 的 k 阶队列式因子.需要证明f( )= g().分3种状况议论:( 1)A( )i , j B( ),此时,B() 的每个 k 阶子式或许等于A( ) 的某个k 阶子式,或许与A( ) 的某个阶子式反号,所以 , f ()是B() 的k阶子式的公因子 ,进而f ()| g() .(2)A( )i(c)B( ) ,此时,B( )的每个k阶子式或许等于A( )的某个 k 阶子式,或许等于 A() 的某个 k 阶子式的c倍.所以,f()是B() 的 k 阶子式的公因式 ,进而f()|g( ) .(3)A( )i j( )行与 j行的阶子式和B( ) ,此时,B( )中那些包括i那些不包括 i 行的 k 阶子式都等于A() 中对应的 k 阶子式; B() 中那些包括 i 行但不包括 j 行的 k 阶子式,按 i 行分红两个部分,而等于A( )的一个k阶子式与另一个 k 阶子式的( ) 倍的和,,也就是A() 的两个 k 阶子式的线性组合,所以,f( ) 是的k阶子式公因式进而 f( )| g().,对于列变换, 能够同样地议论.总之 , A() 经过一系列的初等变换变为B() ,那么f()|g() .又因为初等变换的可逆性, B( )经过一系列的初等变换能够变为 A() ,进而也有g( )| f() .当 A( ) 所有的阶子式为零时, B() 所有的 k 阶子式也就等于零;反之亦然.故 A() 与 B( ) 又同样的各阶队列式因子,进而有同样的秩.证毕.既然初等变换不改变队列式因子,所以 ,每个-矩阵与它的标准型有完整相同的队列式因子.而求标准型的矩阵是较为简单的,因此 ,在求一个-矩阵的队列式因子时 ,只需求出它的标准型的队列式因子即可.议论、练习与作业课后反省讲课内容教课时数教课目的教课要点教课难点教课方法与手段教学过程第二将λ-矩阵在初等变换下的标准型2讲课种类讲解课认识- 矩阵的初等变换,掌握求标准型的方法,掌握最小多项式的观点和求最小多项式的方法。
北大高等代数
北大高等代数是一门重要的数学课程,它是数学中的一支重要分支,是数学中的基础课程之一。
高等代数是一门研究代数结构的学科,它主要研究代数系统的性质和结构,包括群、环、域等代数结构的性质和结构。
北大高等代数课程的教学内容主要包括群论、环论、域论等内容。
群论是高等代数中的重要分支,它主要研究群的性质和结构,包括群的定义、子群、同态、正规子群、群的分类等内容。
环论是高等代数中的另一重要分支,它主要研究环的性质和结构,包括环的定义、子环、同态、理想、商环等内容。
域论是高等代数中的另一重要分支,它主要研究域的性质和结构,包括域的定义、子域、同态、理想、商域等内容。
北大高等代数课程的教学目标主要是培养学生的抽象思维能力和数学分析能力,使学生能够熟练掌握代数结构的基本概念和基本理论,能够运用代数结构的基本方法和技巧解决实际问题。
同时,北大高等代数课程还注重培养学生的创新能力和团队合作精神,使学生能够在团队中发挥自己的优势,共同完成学术研究和创新项目。
在北大高等代数课程的学习过程中,学生需要掌握一定的数学基础知识,包括微积分、线性代数、数学分析等内容。
同时,学生还需要具备一定的数学思维能力和数学分析能力,能够理解和运用代数结构的基本概念和基本理论,能够独立思考和解决实际问题。
北大高等代数是一门重要的数学课程,它是数学中的一支重要分支,是数学中的基础课程之一。
通过学习北大高等代数课程,学生可以掌握代数结构的基本概念和基本理论,培养抽象思维能力和数学分析能力,提高创新能力和团队合作精神,为未来的学术研究和创新项目打下坚实的基础。
高等代数北大版习题参考答案CKBOOD was revised in the early morning of December 17, 2020.第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量;2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P n n ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β,A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
高等代数(北大版)第6章习题参考答案第六章线性空间1?设 MuN,证明:MRN = M、MUN = N。
证任取a eM,由MuN,得awN,所以awMDN,即证又因 MflNuM,故Mp|N = M。
再证第二式,任取a^M或a已N,但MuN,因此无论哪一种情形,都有aeN,此即。
但N uMU N,所以MUN = N °2.证明 Mp|(NUD = (MriN)U(MrU), MU(NfU) = (MUN)n(MUD。
证 VxwMCl(NUD,则在后一情形,于是 xeMflN佥所以xe(MC\N)\J(MC\L),由此得 MCl(NUD = (MnN)U(Mri 厶)。
反之,若 xw(MnN)U(MfU),则XW MCIN或iwMCl L.在前一情形,x 已M、x已N、因此X^N\JL.故得xeMCl(NUE),在后一情形,因而xeM,xeL, x^N\jL ,得 xwMCl(NU 厶),故(MnN)U(MClDuMri(N U 厶),于是 Mn(NUD=(MriN)u(Mru)。
若xwMU(NDZJ ,贝ijxe M, xeNf)厶。
在前一情形 XxwMUN,且X wMU厶,因而xw(MUN)n(MUL)。
在后一情形,xwN,xwL,因而xiWUN,且XwMU厶,即Xw(MUN)n(MUL)所以(MUN)n(MUL)uMU(NUL)故MU(Np|L) = (MUN)pl(MUL)即证。
3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1)次数等于n (n>l)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设A是一个nXn实数矩阵,A的实系数多项式f (A)的全体,对于矩阵的加法和数呈乘法;3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法;4)平面上不平行于某一向量所成的集合,对于向疑的加法和数量乘法;5)全体实数的二元数列,对于下面定义的运算:(?,勺2(。
高等代数(北大高等代数(北大**第三版)答案第一章多项式1.用)(x g 除)(x f ,求商)(x q 与余式)(x r :1)123)(,13)(223+−=−−−=x x x g x x x x f ;2)2)(,52)(24+−=+−=x x x g x x x f 。
解1)由带余除法,可得92926)(,9731)(−−=−=x x r x x q ;2)同理可得75)(,1)(2+−=−+=x x r x x x q 。
2.q p m ,,适合什么条件时,有1)q px x mx x ++−+32|1,2)q px x mx x ++++242|1。
解1)由假设,所得余式为0,即0)()1(2=−+++m q x m p ,所以当⎩⎨⎧=−=++012m q m p 时有q px x mx x ++−+32|1。
2)类似可得⎩⎨⎧=−−+=−−010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=−−m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==1q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =−−=+;2)32(),()12f x x x x g x x i =−−=−+。
解1)432()261339109()327q x x x x x r x =−+−+=−;2)2()2(52)()98q x x ix i r x i=−−+=−+。
4.把()f x 表示成0x x −的方幂和,即表成2010200()()...()n n c c x x c x x c x x +−+−++−+⋯的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =−+=−;3)4320()2(1)37,f x x ix i x x i x i =+−+−++=−。