高等代数【北大版】(13)
- 格式:ppt
- 大小:106.50 KB
- 文档页数:60
《高等代数》是北京大学数学科学学院(由数学、概率统计、科学与工程计算、信息科学、金融数学五个系组成)本科一年级的三门最重要的基础课之一,为期一学年,教学时间30周,复习、考试4周,总共10学分(每学期5学分)。
每年学生约260人(包括本院学生、元培班学生和重修的学生),分成两个大班,由两个主讲教师依照同样的教学计划(包括进度、内容、习题和作业的的安排)同步授课(每周4学时),同时配备有四位助教上习题课(每周2学时)和批改作业。
主讲教师负责安排习题课内容以及指导助教的工作。
每学期期中、期末考试各一次,采用统一的考题和统一的评分标准。
考试分数为百分制。
期末总成绩为期中成绩的40%加上期末成绩的60%再减去学生未交作业的次数。
课程目前采用的教材是蓝以中编著的《高等代数简明教程》(上、下册)(北京大学出版社2002年出版,北京大学数学教学系列丛书,该书为普通高等教育“十五”国家级规划教材及2002年北京市教育精品教材重点项目)。
主要教学参考书是北大几何与代数教研室代数小组编《高等代数》(高等教育出版社,1991年,第二版,曾获国家优秀教材一等奖);丘维声编著的《高等代数》(上、下册)(高等教育出版社1996年出版,国家“九五”重点教材)。
本课程的内容包括:线性方程组,矩阵,行列式,双线性型与二次型,线性空间,线性变换,具有度量的线性空间(欧氏空间、酉空间、四维时空空间、辛空间),Jordan标准形,有理整数环,一元和多元多项式环,多线性代数(张量积、张量、外代数)的初步理论等。
本课程不仅注重讲授代数学的基本知识,更强调对于学生的“三个基本训练”和“一个初步训练”,即、代数学基本思想的训练、代数学基本方法的训练、线性代数基本计算的训练以及综合运用分析、几何、代数方法处理问题的初步训练。
第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =,(2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+,(4) ∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设:1) )2,3,1,2(=α, )1,2,2,1(-=β,2) )3,2,2,1(=α, )1,5,1,3(-=β,3) )2,1,1,1(=α, )0,1,2,3(-=β。
WORD 格式可编辑第一章 多项式0时,代入2)可得q2pm1. 用 g(x)除 f (x), 求商q(x)与余式r(x):1) f (x) x 3 3x * 22x 1, g(x) 3x 2x 2) f(x) x 4 2x5,g(x) x 211)由带余除法,可得q(x)亍討(X)26 x92同理可得q(x) x x 1, r(x) 5x 7。
1) 2 x mx 1| x 3px q , 2)2 ..4 2x mx 1 | x px q 。
解 1) 由假设, 所得余式为 0, 即(p 所以当 p 1 2 m 时有x 2 mxq m 0m(2 p m 2) 0 2) m, p,q 适合什么条件时,有 2. 1 |xq 1 p2,于是当m 21 m2 )x (q m) 0,pxm 0时,代入(2)可得综上所诉,当时,皆有x 2mx 1|x 4 px 2 q 。
1) f(x)2x 5 5x 3 8x, g(x) x3 ; 2) f (x) x 3 x 2x, g(x) x 12i 。
1)q(x) 2x 4 6x 3 1 13x 239x 109r(x) 327q(x ))x 22ix(52i)or(x) 9 8i求g(x)除f (x)的商q(x)与余式:解 2) 把f (x)表示成x X o 的方幕和,即表成3.4.C o C|(X X o ) C 2(X X o )2... C n (X X 。
)" L 的形式:51) f (X ) X , X o 1 ; 2)f (X ) x 4 2X 2 3,X o 2 ;3) 43f (X ) X 2ix (1i)x 23X 7 i,X o i o解 1)由综合除法,可得 f(x)1 5(X 1) 10(x21) 10(x 1)3 5(X 1)4 (X 1)5 ; 2) 由综合除法,可得 X 42X 2 3 11 24(X 2) 22(X 2)2 8(X2)3 (X 2)4 ;3) 由综合除法,可得X 42ix 3(1 i)x 2 3X (7i)(7 5i) 5(X i) ( 1 i)(x i)2 2i(x i)3 (X i)4。
高等代数教案(北大版)-高等代数试题以及解答一、线性方程组1. 定义线性方程组,并说明线性方程组的解的概念。
2. 线性方程组的求解方法:高斯消元法、克莱姆法则。
3. 线性方程组的解的性质:唯一性、存在性。
4. 线性方程组在实际应用中的例子。
二、矩阵及其运算1. 定义矩阵,说明矩阵的元素、矩阵的行和列。
2. 矩阵的运算:加法、减法、数乘、矩阵乘法。
3. 矩阵的转置、共轭、伴随矩阵。
4. 矩阵的行列式、行列式的性质和计算方法。
三、线性空间与线性变换1. 定义线性空间,说明线性空间的基、维数。
2. 线性变换的定义,线性变换的矩阵表示。
3. 线性变换的性质:线性、单调性、可逆性。
4. 线性变换的应用:线性映射、线性变换在几何上的意义。
四、特征值与特征向量1. 特征值、特征向量的定义。
2. 矩阵的特征多项式、特征值和特征向量的计算方法。
3. 特征值和特征向量的性质:特征值的重数、特征向量的线性无关性。
4. 对称矩阵的特征值和特征向量。
五、二次型1. 二次型的定义,二次型的标准形。
2. 二次型的矩阵表示,矩阵的合同。
3. 二次型的性质:正定、负定、不定。
4. 二次型的判定方法,二次型的最小值和最大值。
六、向量空间与线性映射1. 向量空间的概念,包括基、维数和维度。
2. 线性映射的定义,线性映射的性质,如线性、单调性和可逆性。
3. 线性映射的表示方法,包括矩阵表示和坐标表示。
4. 线性映射的应用,如线性变换、线性映射在几何上的意义。
七、特征值和特征向量的应用1. 特征值和特征向量的计算方法,包括特征多项式和特征方程。
2. 特征值和特征向量的性质,如重数和线性无关性。
3. 对称矩阵的特征值和特征向量的性质和计算。
4. 特征值和特征向量在实际问题中的应用,如振动系统、量子力学等。
八、二次型的定义和标准形1. 二次型的定义,包括二次型的标准形和矩阵表示。
2. 二次型的矩阵表示,包括矩阵的合同和相似。
3. 二次型的性质,如正定、负定和不定。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高等代数北京大学第三版北京大学精品课程地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第一学期第一次课第一章代数学的经典课题§1 若干准备知识代数系统的概念一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。
数域的定义定义(数域)设是某些复数所组成的集合。
如果K中至少包含两个不同的复数,且对复数的加、减、乘、除四则运算是封闭的,即对内任意两个数、(可以等于),必有,则称K为一个数域。
例1.1 典型的数域举例:复数域C;实数域R;有理数域Q;Gauss数域:Q (i) = {i |∈Q},其中i =。
命题任意数域K都包括有理数域Q。
证明设为任意一个数域。
由定义可知,存在一个元素。
于是。
进而Z,。
最后,Z,,。
这就证明了Q。
证毕。
集合的运算,集合的映射(像与原像、单射、满射、双射)的概念定义(集合的交、并、差) 设是集合,与的公共元素所组成的集合成为与的交集,记作;把和B中的元素合并在一起组成的集合成为与的并集,记做;从集合中去掉属于的那些元素之后剩下的元素组成的集合成为与B的差集,记做。
定义(集合的映射)设、为集合。
如果存在法则,使得中任意元素在法则下对应中唯一确定的元素(记做),则称是到的一个映射,记为如果,则称为在下的像,称为在下的原像。
的所有元素在下的像构成的的子集称为在下的像,记做,即。
若都有则称为单射。
若都存在,使得,则称为满射。
如果既是单射又是满射,则称为双射,或称一一对应。
1.1.4 求和号与求积号1.求和号与乘积号的定义. 为了把加法和乘法表达得更简练,我们引进求和号和乘积号。