高等代数北大版94
- 格式:ppt
- 大小:779.00 KB
- 文档页数:7
第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =,(2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+,(4) ∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设:1) )2,3,1,2(=α, )1,2,2,1(-=β,2) )3,2,2,1(=α, )1,5,1,3(-=β,3) )2,1,1,1(=α, )0,1,2,3(-=β。
北京大学数学考研题目1983年 基础数学、应用数学、计算数学、概率统计专业2222022200Ax By C z D yz Ezx Fxy A B C +++++=++=一、(分)证明:在直角坐标系中,顶点在原点的二次锥面有三条互相垂直的直母线的充要条件是.1223112220...1,...2, (1)n n n n n x x x x x x xx x n ++++++=⎧⎪+++=⎪⎨⎪⎪+++=+⎩二、(分)用导出组的基础解系表出线性方程组的一般解。
121220,,...,()()...()1n n a a a x a x a x a ----三、(分)设是相异整数。
证明:多项式在有理数域上不可约。
20000120231001011A ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭四、(分)用V 表示数域P 上全部4阶矩阵所成的线性空间,A 是V 中的一个矩阵,已知-10,,及10分别是的属于特征值, , ,-1的特征向量。
(1)求A;(2)求V 中与A 可交换的矩阵全体所成的子空间的维数及一组基。
20,A B 五、(分)设是两个n 级正定矩阵。
证明:AB 是正定矩阵的充要条件是A 与B 可交换。
1984年 数学各专业132110::23100363x y l z x y z π--==-++-=一、(分)求直线与平面的交点。
10,,,,a b c a b b c c a ⨯⨯⨯二、(分)设向量不共面。
试证:向量不共面。
15K K K K K K 三、(分)设和为平面上同心的单位(半径=1)开圆域和闭圆域。
(1)取定适当的坐标系,写出和的解析表示式;(2)试在和的点之间建立一个一一对应关系。
{}{}{}{}23231231251,,.2,,V R V T V V T T T T T T TT T T εεεεεεεεεεεεεεεεεεεεε--→==+=++111212312311113四、(分)设是实数域上的三维向量空间,,,是的一组基。
WORD 格式可编辑第一章 多项式0时,代入2)可得q2pm1. 用 g(x)除 f (x), 求商q(x)与余式r(x):1) f (x) x 3 3x * 22x 1, g(x) 3x 2x 2) f(x) x 4 2x5,g(x) x 211)由带余除法,可得q(x)亍討(X)26 x92同理可得q(x) x x 1, r(x) 5x 7。
1) 2 x mx 1| x 3px q , 2)2 ..4 2x mx 1 | x px q 。
解 1) 由假设, 所得余式为 0, 即(p 所以当 p 1 2 m 时有x 2 mxq m 0m(2 p m 2) 0 2) m, p,q 适合什么条件时,有 2. 1 |xq 1 p2,于是当m 21 m2 )x (q m) 0,pxm 0时,代入(2)可得综上所诉,当时,皆有x 2mx 1|x 4 px 2 q 。
1) f(x)2x 5 5x 3 8x, g(x) x3 ; 2) f (x) x 3 x 2x, g(x) x 12i 。
1)q(x) 2x 4 6x 3 1 13x 239x 109r(x) 327q(x ))x 22ix(52i)or(x) 9 8i求g(x)除f (x)的商q(x)与余式:解 2) 把f (x)表示成x X o 的方幕和,即表成3.4.C o C|(X X o ) C 2(X X o )2... C n (X X 。
)" L 的形式:51) f (X ) X , X o 1 ; 2)f (X ) x 4 2X 2 3,X o 2 ;3) 43f (X ) X 2ix (1i)x 23X 7 i,X o i o解 1)由综合除法,可得 f(x)1 5(X 1) 10(x21) 10(x 1)3 5(X 1)4 (X 1)5 ; 2) 由综合除法,可得 X 42X 2 3 11 24(X 2) 22(X 2)2 8(X2)3 (X 2)4 ;3) 由综合除法,可得X 42ix 3(1 i)x 2 3X (7i)(7 5i) 5(X i) ( 1 i)(x i)2 2i(x i)3 (X i)4。
高等代数教案(北大版)-高等代数试题以及解答一、线性方程组1. 定义线性方程组,并说明线性方程组的解的概念。
2. 线性方程组的求解方法:高斯消元法、克莱姆法则。
3. 线性方程组的解的性质:唯一性、存在性。
4. 线性方程组在实际应用中的例子。
二、矩阵及其运算1. 定义矩阵,说明矩阵的元素、矩阵的行和列。
2. 矩阵的运算:加法、减法、数乘、矩阵乘法。
3. 矩阵的转置、共轭、伴随矩阵。
4. 矩阵的行列式、行列式的性质和计算方法。
三、线性空间与线性变换1. 定义线性空间,说明线性空间的基、维数。
2. 线性变换的定义,线性变换的矩阵表示。
3. 线性变换的性质:线性、单调性、可逆性。
4. 线性变换的应用:线性映射、线性变换在几何上的意义。
四、特征值与特征向量1. 特征值、特征向量的定义。
2. 矩阵的特征多项式、特征值和特征向量的计算方法。
3. 特征值和特征向量的性质:特征值的重数、特征向量的线性无关性。
4. 对称矩阵的特征值和特征向量。
五、二次型1. 二次型的定义,二次型的标准形。
2. 二次型的矩阵表示,矩阵的合同。
3. 二次型的性质:正定、负定、不定。
4. 二次型的判定方法,二次型的最小值和最大值。
六、向量空间与线性映射1. 向量空间的概念,包括基、维数和维度。
2. 线性映射的定义,线性映射的性质,如线性、单调性和可逆性。
3. 线性映射的表示方法,包括矩阵表示和坐标表示。
4. 线性映射的应用,如线性变换、线性映射在几何上的意义。
七、特征值和特征向量的应用1. 特征值和特征向量的计算方法,包括特征多项式和特征方程。
2. 特征值和特征向量的性质,如重数和线性无关性。
3. 对称矩阵的特征值和特征向量的性质和计算。
4. 特征值和特征向量在实际问题中的应用,如振动系统、量子力学等。
八、二次型的定义和标准形1. 二次型的定义,包括二次型的标准形和矩阵表示。
2. 二次型的矩阵表示,包括矩阵的合同和相似。
3. 二次型的性质,如正定、负定和不定。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高等代数北京大学第三版北京大学精品课程地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第一学期第一次课第一章代数学的经典课题§1 若干准备知识代数系统的概念一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。
数域的定义定义(数域)设是某些复数所组成的集合。
如果K中至少包含两个不同的复数,且对复数的加、减、乘、除四则运算是封闭的,即对内任意两个数、(可以等于),必有,则称K为一个数域。
例1.1 典型的数域举例:复数域C;实数域R;有理数域Q;Gauss数域:Q (i) = {i |∈Q},其中i =。
命题任意数域K都包括有理数域Q。
证明设为任意一个数域。
由定义可知,存在一个元素。
于是。
进而Z,。
最后,Z,,。
这就证明了Q。
证毕。
集合的运算,集合的映射(像与原像、单射、满射、双射)的概念定义(集合的交、并、差) 设是集合,与的公共元素所组成的集合成为与的交集,记作;把和B中的元素合并在一起组成的集合成为与的并集,记做;从集合中去掉属于的那些元素之后剩下的元素组成的集合成为与B的差集,记做。
定义(集合的映射)设、为集合。
如果存在法则,使得中任意元素在法则下对应中唯一确定的元素(记做),则称是到的一个映射,记为如果,则称为在下的像,称为在下的原像。
的所有元素在下的像构成的的子集称为在下的像,记做,即。
若都有则称为单射。
若都存在,使得,则称为满射。
如果既是单射又是满射,则称为双射,或称一一对应。
1.1.4 求和号与求积号1.求和号与乘积号的定义. 为了把加法和乘法表达得更简练,我们引进求和号和乘积号。
高等代数北大版习题参考答案CKBOOD was revised in the early morning of December 17, 2020.第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量;2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P n n ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β,A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
高等代数教案(北大版)-高等代数试题以及解答一、线性方程组1. 定义线性方程组,并了解线性方程组的基本性质。
2. 掌握高斯消元法求解线性方程组,并能够运用该方法解决实际问题。
3. 了解克莱姆法则,并能够运用该法则判断线性方程组的解的情况。
4. 通过例题讲解,让学生熟练掌握线性方程组的求解方法。
二、矩阵及其运算1. 定义矩阵,并了解矩阵的基本性质。
2. 掌握矩阵的运算,包括矩阵的加法、减法、数乘以及矩阵的乘法。
3. 了解逆矩阵的概念,并掌握逆矩阵的求法。
4. 通过例题讲解,让学生熟练掌握矩阵的运算方法。
三、线性空间与线性变换1. 定义线性空间,并了解线性空间的基本性质。
2. 掌握线性变换的概念,并了解线性变换的基本性质。
3. 了解特征值和特征向量的概念,并掌握特征值和特征向量的求法。
4. 通过例题讲解,让学生熟练掌握线性空间和线性变换的相关知识。
四、二次型1. 定义二次型,并了解二次型的基本性质。
2. 掌握二次型的标准形以及惯性定理。
3. 了解二次型的正定性以及其判定方法。
4. 通过例题讲解,让学生熟练掌握二次型的相关知识。
五、向量空间与线性映射1. 定义向量空间,并了解向量空间的基本性质。
2. 掌握线性映射的概念,并了解线性映射的基本性质。
3. 了解核空间以及秩的概念,并掌握核空间和秩的求法。
4. 通过例题讲解,让学生熟练掌握向量空间和线性映射的相关知识。
六、特征值和特征向量1. 回顾特征值和特征向量的定义,理解它们在矩阵对角化中的作用。
2. 学习如何求解一个矩阵的特征值和特征向量,包括利用特征多项式和行列式等方法。
3. 掌握特征值和特征向量在简化矩阵表达式和解决实际问题中的应用。
4. 提供例题,展示如何将一般矩阵问题转化为特征值和特征向量的问题,并教会学生如何解这些问题。
七、二次型1. 复习二次型的基本概念,包括二次型的定义、标准形和惯性定理。
2. 学习如何将一般二次型转化为标准形,以及如何从标准形判断二次型的正定性。
第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在nR 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =,(2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4)∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a a a a a a a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3))2,1,1,1(=α, )0,1,2,3(-=β。
第一章多项式多项式理论是高等代数研究得基本对象之一,在整个高等代数课程中既相对独立,又贯穿其它章节,换句话说,多项式理论得讨论可以不依赖于高等代数得其他内容而自成体系,却可为其它章节的内容提供范例和理论依据。
本章主要讨论多项式的基本概念和基本性质,包括数域的概念、一元多项式的定义与运算规律、整除性、因式分解及根等概念。
教学目的:通过本章的学习,要使学生了一元多项式及运算、整除、最大公因式、(不)可约多项式、重因式等基本概念,领会因式分解定理的基本内容及复数域和实数域上的因式分解的具体内容,掌握多项式的最大公因式的求法、因式分解的方法、重因式的求法及有理系数多项式的可约性的判定。
教学重点:最大公因式的求法、因式分解定理及其应用教学难点:有理系数多项式教学方法与手段:1. 理论课教学以讲授为主,部分介绍性内容用多媒体。
2.习题课以多媒体教学为主。
教学内容:§1 一元多项式的定义和运算1. 多项式的定义令R是一个数环, 并且R含有数1, 因而R含有全体整数。
在这一章里, 凡是说到数环, 都作这样的约定, 不再每次重复。
先讨论R上一元多项式。
定义1 数环R上一个文字x的多项式或一元多项式指的是形式表达式a0+a1x+ a2x2+…+ a n x n (1)这里n是非负整数而a0, a1, a2, …, a n都是R中的数。
在多项式 (1)中, a0叫做零次项或常数项, a1x叫做一次项, 一般地,a i x i叫做第i次项, a i叫做第i次项的系数。
一元多项式常用符号f(x), g(x), …来表示。
2. 相等多项式:定义2 若是数环R上两个一元多项式f(x)和g(x)有完全相同的项, 或者只差一些系数为零的项, 那么f(x)和g(x)说是相等;f (x)=g(x)定义3a n x n叫做多项式a0+a1x+ a2x2+…+ a n x n, ( a n≠0)的最高次项,非负整数n叫做多项式a0+a1x+…+ a n x n, (a n≠0)的次数。
第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+L 的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。