高等代数【北大版】65
- 格式:ppt
- 大小:698.51 KB
- 文档页数:30
高等代数北大版第章习题参考答案SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =,(2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+,(4) ∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设:1) )2,3,1,2(=α, )1,2,2,1(-=β,2) )3,2,2,1(=α, )1,5,1,3(-=β,3) )2,1,1,1(=α, )0,1,2,3(-=β。
高等代数北京大学第三版简介高等代数是数学中的一门重要课程,是数学的基础和核心课程之一。
北京大学的高等代数课程被广泛认为是高等代数学习中的经典教材之一。
本文将介绍北京大学第三版《高等代数》教材的主要内容和特点。
内容概述《高等代数北京大学第三版》是一本教材,由北京大学吴传荣、李建平合著。
全书共分为十五章,每章围绕一个主题展开讲解。
主要内容包括线性方程和矩阵、行列式、矩阵的相抵标准形及其应用、线性空间与线性变换、特征值与特征向量、正交线性变换与二次型、群、环和域等。
特点1. 详细而全面的内容本教材详细介绍了高等代数的各个重要概念和定理,并给出了充分的例题和习题来帮助学生掌握和巩固所学的知识。
每章的开头都给出了该章的学习目标,使学生能够清晰地了解该章的所学内容,并有针对性地学习。
2. 理论与实践相结合教材既注重理论的讲解,又注重实践的应用。
通过大量的实例和应用,教材将抽象的数学概念与实际问题相结合。
这有助于学生更好地理解数学原理,并在实践中灵活运用。
3. 重点突出,条理清晰教材对于重要的概念和定理都做了重点强调,并给出了详细的证明过程和推导。
条理清晰的内容安排使学生能够逐步建立起完整的知识体系。
4. 多样化的习题除了充分的例题之外,本书还提供了丰富的习题,涵盖了各个难度级别。
习题中融入了不同类型的问题,既能巩固基础知识,又能培养学生的综合运用能力。
习题的解答也提供了详细的步骤和解析,方便学生检查自己的答案和思考方式。
5. 适用范围广泛这本教材不仅适合北京大学的高等代数课程,也适合其他高校的相应课程。
无论是学生还是教师,都能从本书中获得很多学习和教学的帮助。
总结《高等代数北京大学第三版》是一本经典的高等代数教材,内容详细而全面,既注重理论讲解,又注重实际应用。
教材的特点包括多样化的习题和解答、重点突出、条理清晰以及适用范围广泛。
这本教材不仅帮助学生掌握高等代数的基本概念和定理,也培养了学生的分析问题和解决问题的能力。
高等代数教案(北大版)-高等代数试题以及解答一、线性方程组1. 定义线性方程组,并说明线性方程组的解的概念。
2. 线性方程组的求解方法:高斯消元法、克莱姆法则。
3. 线性方程组的解的性质:唯一性、存在性。
4. 线性方程组在实际应用中的例子。
二、矩阵及其运算1. 定义矩阵,说明矩阵的元素、矩阵的行和列。
2. 矩阵的运算:加法、减法、数乘、矩阵乘法。
3. 矩阵的转置、共轭、伴随矩阵。
4. 矩阵的行列式、行列式的性质和计算方法。
三、线性空间与线性变换1. 定义线性空间,说明线性空间的基、维数。
2. 线性变换的定义,线性变换的矩阵表示。
3. 线性变换的性质:线性、单调性、可逆性。
4. 线性变换的应用:线性映射、线性变换在几何上的意义。
四、特征值与特征向量1. 特征值、特征向量的定义。
2. 矩阵的特征多项式、特征值和特征向量的计算方法。
3. 特征值和特征向量的性质:特征值的重数、特征向量的线性无关性。
4. 对称矩阵的特征值和特征向量。
五、二次型1. 二次型的定义,二次型的标准形。
2. 二次型的矩阵表示,矩阵的合同。
3. 二次型的性质:正定、负定、不定。
4. 二次型的判定方法,二次型的最小值和最大值。
六、向量空间与线性映射1. 向量空间的概念,包括基、维数和维度。
2. 线性映射的定义,线性映射的性质,如线性、单调性和可逆性。
3. 线性映射的表示方法,包括矩阵表示和坐标表示。
4. 线性映射的应用,如线性变换、线性映射在几何上的意义。
七、特征值和特征向量的应用1. 特征值和特征向量的计算方法,包括特征多项式和特征方程。
2. 特征值和特征向量的性质,如重数和线性无关性。
3. 对称矩阵的特征值和特征向量的性质和计算。
4. 特征值和特征向量在实际问题中的应用,如振动系统、量子力学等。
八、二次型的定义和标准形1. 二次型的定义,包括二次型的标准形和矩阵表示。
2. 二次型的矩阵表示,包括矩阵的合同和相似。
3. 二次型的性质,如正定、负定和不定。
北大高等代数
北大高等代数是一门重要的数学课程,它是数学中的一支重要分支,是数学中的基础课程之一。
高等代数是一门研究代数结构的学科,它主要研究代数系统的性质和结构,包括群、环、域等代数结构的性质和结构。
北大高等代数课程的教学内容主要包括群论、环论、域论等内容。
群论是高等代数中的重要分支,它主要研究群的性质和结构,包括群的定义、子群、同态、正规子群、群的分类等内容。
环论是高等代数中的另一重要分支,它主要研究环的性质和结构,包括环的定义、子环、同态、理想、商环等内容。
域论是高等代数中的另一重要分支,它主要研究域的性质和结构,包括域的定义、子域、同态、理想、商域等内容。
北大高等代数课程的教学目标主要是培养学生的抽象思维能力和数学分析能力,使学生能够熟练掌握代数结构的基本概念和基本理论,能够运用代数结构的基本方法和技巧解决实际问题。
同时,北大高等代数课程还注重培养学生的创新能力和团队合作精神,使学生能够在团队中发挥自己的优势,共同完成学术研究和创新项目。
在北大高等代数课程的学习过程中,学生需要掌握一定的数学基础知识,包括微积分、线性代数、数学分析等内容。
同时,学生还需要具备一定的数学思维能力和数学分析能力,能够理解和运用代数结构的基本概念和基本理论,能够独立思考和解决实际问题。
北大高等代数是一门重要的数学课程,它是数学中的一支重要分支,是数学中的基础课程之一。
通过学习北大高等代数课程,学生可以掌握代数结构的基本概念和基本理论,培养抽象思维能力和数学分析能力,提高创新能力和团队合作精神,为未来的学术研究和创新项目打下坚实的基础。
第一章 多项式一 、习题及参考解答1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
&解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成—2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高等代数北京大学第三版北京大学精品课程地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第一学期第一次课第一章代数学的经典课题§1 若干准备知识代数系统的概念一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。
数域的定义定义(数域)设是某些复数所组成的集合。
如果K中至少包含两个不同的复数,且对复数的加、减、乘、除四则运算是封闭的,即对内任意两个数、(可以等于),必有,则称K为一个数域。
例1.1 典型的数域举例:复数域C;实数域R;有理数域Q;Gauss数域:Q (i) = {i |∈Q},其中i =。
命题任意数域K都包括有理数域Q。
证明设为任意一个数域。
由定义可知,存在一个元素。
于是。
进而Z,。
最后,Z,,。
这就证明了Q。
证毕。
集合的运算,集合的映射(像与原像、单射、满射、双射)的概念定义(集合的交、并、差) 设是集合,与的公共元素所组成的集合成为与的交集,记作;把和B中的元素合并在一起组成的集合成为与的并集,记做;从集合中去掉属于的那些元素之后剩下的元素组成的集合成为与B的差集,记做。
定义(集合的映射)设、为集合。
如果存在法则,使得中任意元素在法则下对应中唯一确定的元素(记做),则称是到的一个映射,记为如果,则称为在下的像,称为在下的原像。
的所有元素在下的像构成的的子集称为在下的像,记做,即。
若都有则称为单射。
若都存在,使得,则称为满射。
如果既是单射又是满射,则称为双射,或称一一对应。
1.1.4 求和号与求积号1.求和号与乘积号的定义. 为了把加法和乘法表达得更简练,我们引进求和号和乘积号。
高等代数教案(北大版)-高等代数试题以及解答一、线性方程组1. 定义线性方程组,并了解线性方程组的基本性质。
2. 掌握高斯消元法求解线性方程组,并能够运用该方法解决实际问题。
3. 了解克莱姆法则,并能够运用该法则判断线性方程组的解的情况。
4. 通过例题讲解,让学生熟练掌握线性方程组的求解方法。
二、矩阵及其运算1. 定义矩阵,并了解矩阵的基本性质。
2. 掌握矩阵的运算,包括矩阵的加法、减法、数乘以及矩阵的乘法。
3. 了解逆矩阵的概念,并掌握逆矩阵的求法。
4. 通过例题讲解,让学生熟练掌握矩阵的运算方法。
三、线性空间与线性变换1. 定义线性空间,并了解线性空间的基本性质。
2. 掌握线性变换的概念,并了解线性变换的基本性质。
3. 了解特征值和特征向量的概念,并掌握特征值和特征向量的求法。
4. 通过例题讲解,让学生熟练掌握线性空间和线性变换的相关知识。
四、二次型1. 定义二次型,并了解二次型的基本性质。
2. 掌握二次型的标准形以及惯性定理。
3. 了解二次型的正定性以及其判定方法。
4. 通过例题讲解,让学生熟练掌握二次型的相关知识。
五、向量空间与线性映射1. 定义向量空间,并了解向量空间的基本性质。
2. 掌握线性映射的概念,并了解线性映射的基本性质。
3. 了解核空间以及秩的概念,并掌握核空间和秩的求法。
4. 通过例题讲解,让学生熟练掌握向量空间和线性映射的相关知识。
六、特征值和特征向量1. 回顾特征值和特征向量的定义,理解它们在矩阵对角化中的作用。
2. 学习如何求解一个矩阵的特征值和特征向量,包括利用特征多项式和行列式等方法。
3. 掌握特征值和特征向量在简化矩阵表达式和解决实际问题中的应用。
4. 提供例题,展示如何将一般矩阵问题转化为特征值和特征向量的问题,并教会学生如何解这些问题。
七、二次型1. 复习二次型的基本概念,包括二次型的定义、标准形和惯性定理。
2. 学习如何将一般二次型转化为标准形,以及如何从标准形判断二次型的正定性。
高等代数(北大高等代数(北大**第三版)答案第一章多项式1.用)(x g 除)(x f ,求商)(x q 与余式)(x r :1)123)(,13)(223+−=−−−=x x x g x x x x f ;2)2)(,52)(24+−=+−=x x x g x x x f 。
解1)由带余除法,可得92926)(,9731)(−−=−=x x r x x q ;2)同理可得75)(,1)(2+−=−+=x x r x x x q 。
2.q p m ,,适合什么条件时,有1)q px x mx x ++−+32|1,2)q px x mx x ++++242|1。
解1)由假设,所得余式为0,即0)()1(2=−+++m q x m p ,所以当⎩⎨⎧=−=++012m q m p 时有q px x mx x ++−+32|1。
2)类似可得⎩⎨⎧=−−+=−−010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=−−m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==1q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =−−=+;2)32(),()12f x x x x g x x i =−−=−+。
解1)432()261339109()327q x x x x x r x =−+−+=−;2)2()2(52)()98q x x ix i r x i=−−+=−+。
4.把()f x 表示成0x x −的方幂和,即表成2010200()()...()n n c c x x c x x c x x +−+−++−+⋯的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =−+=−;3)4320()2(1)37,f x x ix i x x i x i =+−+−++=−。
第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在nR 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =,(2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4)∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a a a a a a a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3))2,1,1,1(=α, )0,1,2,3(-=β。