数的开方与二次根式
- 格式:ppt
- 大小:1.02 MB
- 文档页数:59
开方及二次根式知识点全文共四篇示例,供读者参考第一篇示例:开方是数学中常见的运算符号,表示一个数的平方根。
而二次根式则是指包含开方的代数式。
在学习数学过程中,掌握开方及二次根式的知识是非常重要的。
本文将就开方及二次根式的相关知识进行详细介绍。
我们来看看开方的定义。
对于一个非负实数a,如果实数b满足b 的平方等于a,即b²=a,那么b就是a的平方根,记作√a,其中√符号称为根号。
如果a是一个负数,那么它的平方根定义为复数,可以表示为±√(-a),其中±表示取正负号。
开方的运算可以用来求解方程、计算距离等实际问题,是数学中的重要工具。
在代数中,我们经常会遇到二次根式,即含有开方的代数式。
如√2、√3等都属于二次根式。
二次根式通常可以简化,使其形式更加简洁。
简化二次根式的方法是利用数的乘法性质,将开方中的被开方数进行因式分解,找到一个完全平方数因子,然后将其提出开方符号。
对于√12,可以找到一个完全平方数的因子4,即√12=√(4*3)=2√3。
这样就化简成了更加简洁的形式。
在进行运算时,需要注意开方及二次根式的运算规则。
首先是同底数相乘的运算法则,即√a*√b=√(a*b),这条规则适用于任意实数a、b。
其次是开方的乘法公式,即√a±√b=√(a±2√(a*b)±√b),这个公式在计算开方时经常会用到。
如果要进行开方的除法运算,可以采用类似的方法,将被开方数分解成较小的因子,然后进行化简。
运用这些运算规则,可以更加方便地进行开方及二次根式的运算。
除了基本的开方运算,还有一些特殊的开方,如立方根、四次根等。
立方根表示一个数的三次方根,记作³√a,其运算规则与平方根类似。
比如³√8=2,因为2³=8。
四次根则表示一个数的四次方根,记作⁴√a,其运算规则也可以类似的推出。
这些特殊的开方可以在数学问题中发挥重要作用,例如求解立方程等。
数的开方及二次根式
哎,说起数的开方跟二次根式,这事儿咱们得扯扯清楚。
在数学里头,数的开方,就好比是把一个数儿,咔嚓一下,劈成好多相等的部分,看能劈成几份儿,每份儿是多少。
比如说,9的开方,那就是3嘛,因为3乘3等于9,简单得很。
二次根式呢,听起来有点儿玄乎,其实也不难。
就是把个平方根摆在那儿,再跟其他数儿一起搅和搅和,搞出些新花样来。
比如说,根号下面有个4,再加上个5,写成式子就是√4+5,结果就是2+5,等于7。
当然,这只是个简单的例子,实际运用起来,可能要复杂得多。
在计算二次根式的时候,咱们得注意点儿,根号下面的数儿得是非负的,要不然就没得解了。
还有啊,根号跟根号之间不能直接相加,得想办法把它们变成同类项,才能相加或者相减。
比如说,√2跟√8,看着不一样,其实√8可以变成2√2,这样一来,它们就能相加了。
总的来说,数的开方跟二次根式,都是数学里头挺重要的东西。
虽然刚开始接触的时候,可能会觉得有点儿难,但是只要多练练,多琢磨琢磨,慢慢地就能掌握其中的窍门了。
毕竟,数学这东西,还是得靠多练,才能熟能生巧嘛。
所以,大家伙儿,要是遇到了数的开方或者二次根式的问题,别怕,大胆地去做,相信你们一定能行的!。
数的开方及二次根式1、(2015黄冈)9 的平方根是( ) A.±3 B.±31C.3D.-3 2、(2014东营( ) A.±3 B.3 C.±9 D.93、(2015=_____ 4、(2015=_____1、(2015黄冈)9 的平方根是( ) A.±3 B.±31C.3D.-3 2、(2015的值是( )A .±5 B.5 C .–5 D . 6253、(2014菏泽)下列计算中,正确的是( )A .a 3•a 2=a 6 B .(π﹣3.14)0=1 C .133-=- D 3?4、(2015南京)4的平方根是 ;4的算术平方根是 (2015山东潍坊模拟)4 的算术平方根是5、(2015(20156、(2015(2015甘肃武威)64的立方根是_____7、(2015随州)4的算术平方根是 ,9的平方根是 ,﹣27的立方根是8、(2015= 9、(201401)+=初中数学基础知识讲义—数的开方及二次根式考点2:二次根式概念:式子a ( )叫做二次根式。
称为二次根号,二次根号下的a 叫做被开方数.由算术平方根和二次根式的意义,只有当a≥0...,当a <0①二次根式a 必须注意a_ __o 这一条件,其结果也是一个非负数即:a _ __o , ②二次根式a (a≥o)中,a 可以表示数,也可以是一切符合条件的代数式考点一:二次根式有意义的条件1、(2015四川甘孜)使二次根式的有意义的x 的取值范围是( ) A .x >0 B .x >1 C .x ≥1 D . x ≠12、(2015武汉)若代数式2-x 在实数范围内有意义,则x 的取值范为是( )A .x ≥-2B .x >-2C .x ≥2D .x ≤21、(2015南京)x 的取值范围是 ______2、(2015x 的取值范围是3、(2015四川乐山)函数y =x 的取值范围是4、(2015湖南衡阳)函数y =x 的取值范围为( )A .x ≥0 B .x ≥-1 C .x >-1 D .x >1考点3:二次根式的性质 : ⑴; ⑵ ()=2a (a ≥0) ⑶ =2a ;= (0,0a b吵);= (0,0a b?).a ===,一般情况下二次根式除法运算过程就要进行分母有理化。
开方及二次根式知识点全文共四篇示例,供读者参考第一篇示例:开方及二次根式是高中数学中常见的一个知识点,也是数学中的基础概念之一。
在学习代数学时,开方及二次根式是必须要掌握的重要内容。
本文将对开方及二次根式进行详细介绍,帮助读者更好地理解和掌握这一知识点。
让我们从最基础的概念开始。
所谓开方,就是对一个数进行开方运算,即找到一个数,使得它的平方等于给定的数。
如果一个数是另一个数的平方,那么这个数就是这个数的平方根。
开方也可以用符号√来表示,如√4表示对4进行开方运算,结果为2,因为2的平方等于4。
二次根式是由一个数与它的二次根号组成的一个式子,例如√2、√3、√5等。
这些数都是无理数,也就是不能用有限位小数表示的数。
在数轴上,二次根式对应的数是不完全平方数,即无法整除的数。
在计算开方及二次根式时,有一些基本规则需要遵循。
对于整数n,如果n>0,则√n是一个正数;如果n<0,则√n是一个虚数。
开方运算是一个单调递增的函数,即当x<y时,√x < √y。
开方运算不满足交换律和结合律,即√xy≠√x·√y,(√x)²≠x。
在开方运算中,常见的性质有:1.开方运算的运算性质:√a ± √b ≠ √(a ± b),√a · √b ≠√(a · b)。
3.二次根式的乘法运算:√a · √b = √(a · b)。
还有一些常见的运算法则需要注意。
如何计算复合二次根式呢?如何计算√(√2 + √3)呢?我们可以用代数的方法将其化简。
设x = √2 + √3,则x² = (√2 + √3)² = 2 + 2√6 + 3 = 5 + 2√6,即x² - 5 = 2√6。
所以√(√2 + √3) = √(x) = √(x² - 5) = √(2√6) = √2 · √3 = √6。
第一单元 数与式第5课时 数的开方及二次根式考点知识清单考点一 数的开方1.算术平方根:非负数x 满足x 2=a(a ≥0),则x 叫做a 的算术平方根,记作①____________。
2.平方根:若x 2=a(a ≥0),则x 叫做a 的平方根,记作②_____________。
3.立方根:如果x 3=a ,那么x 叫做a 的立方根(或三次方根),记作③_____________。
【温馨提示】1.一个正数有两个平方根,它们互为相反数,0的平方根与算术平方根都是0本身,负数没有平方根。
2.一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0.考点二 二次根式的有关概念1.二次根式:式子a (④__________)叫做二次根式。
【温馨提示】a (a ≥0)其实就是a 的算术平方根。
2.最简二次根式:同时满足以下两个条件:被开方数都不含⑤___________,也不能含能开得尽方的因数或因式。
【温馨提示】分母中含有根式的不是最简二次根式。
如21的最简形式应为22。
考点三 二次根式的性质三个重要性质(1)a (a ≥0)是⑥_______________;(2)=2)(a ⑦______________(a ≥0);(3)=2a ⑧________________。
积的算术平方根 )0,0(≥≥⋅=b a b a ab商的算术平方根 ).0,0(≥>=b a ab a b【温馨提示】2)(a 与2a 的被开方数的取值范围是不相同的,前者a ≥0,后者a 为任意实数。
考点四 二次根式的运算【温馨提示】二次根式运算的结果必须是最简二次根式,若含有分母,则分母中不能含有根号。
题型归类探究类型一 数的开方与估算(易错点)【典例1】(1)(2018·安顺)4的算术平方根是( ) A.2±B.2C.±2D.2(2)(2018·昆明)黄金分割数215-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面。