数的开方与二次根式
- 格式:pptx
- 大小:1.96 MB
- 文档页数:34
数的开方与二次根式【回顾与思考】【例题经典】理解二次根式的概念和性质 例1 (1)(20062x-x 取值范围是________. 【点评】从整体上看分母不为零,从局部看偶次根式被开方数为非负. (2)已知a 31a a a--【点评】要注意挖掘其隐含条件:a<0.掌握最简二次根式的条件和同类二次根式的判断方法例2(20063 ) A 324.12..182B C D 【点评】抓住最简二次根式的条件,结合同类二次根式的概念去解决问题.掌握二次根式化简求值的方法要领例3 (2006年长沙市)先化简,再求值: 若33ba aba b-+【点评】注意对求值式子进行变形化简约分,再对已知条件变形整体代入.【基础训练】116_______,-164的立方根为_______. 2.当x_______25x +1x 有意义;当x________2x -无意义.3.(2006a .4.(2005)=_________.5.(2006年烟台市)若x+1x =5=______.6.下列叙述中正确的是( )A .正数的平方根不可能是负数B .无限小数都是无理数C .实数和实数上的点一一对应D .带根号的数是无理数 7.(2005年福州市)下列各式中属于最简二次根式的是( )A C8.(2006年恩施自治州)若m 的值为( ) A .20511315...32688B C D9.(2006=成立的x 的取值范围是( ) A .x ≠2 B .x ≥0 C .x>2 D .x ≥210.(2005年长沙市)小明的作业本上有以下四题:;105a a =;③21a a==;④=a ≠0),做错的...题是( ) A .① B .② C .③ D .④11.对于实数a 、b ,则( )A .a>bB .a<bC .a ≥bD .a ≤b12【能力提升】13.(1)若0<x<1.(2,则x 的取值范围为__________.14.(1)(2005你发现的规律,判断Q =n•为大于1的整数)的值的大小关系为( )A .P<QB .P=QC .P>QD .与n 的取值有关(2(a>0,b>0)分别作如下的变形:== 这两种变形过程的下列说法中,正确的是( )A .甲、乙都正确B .甲、乙都不正确C .只有甲正确D .只有乙正确(3)(2006年桂林市)观察下列分母有理化的计算:==== ……,从计算结果中找出规律利用规律计算:(2007++)=_________.15.化简式计算:(1)(200621)(2)(2005年山东省)已知求22[()]33x y x y x x y x +---+的值.【应用与探究】16.(2006年内江市)对于题目“化简求值:1a ,其中a=15”甲、•乙两人的解答不同.甲的解答是:1a =1a 112495a a a a a =+-=-=;乙的解答是:1a =1a 1115a a a a =+-==, 谁的解答是错误的是,为什么?答案:例题经典例1:(1)x<2 (2)(1-a 例2:B例3:a b a b+-,值为43考点精练1.±2 -14 2.x ≥-52且x ≠0,x ≤2 3..-25.C 7.A 8.•D 9.C 10.D 11.D12.-32.(1)2x (2)4≤x ≤614.(1)A (2)D (3)200615.•92② 2 16.乙解答是错误的,∵a=15, ∴│1a -a │=1a -a ,而不是a-1a.。
开方及二次根式知识点全文共四篇示例,供读者参考第一篇示例:开方是数学中常见的运算符号,表示一个数的平方根。
而二次根式则是指包含开方的代数式。
在学习数学过程中,掌握开方及二次根式的知识是非常重要的。
本文将就开方及二次根式的相关知识进行详细介绍。
我们来看看开方的定义。
对于一个非负实数a,如果实数b满足b 的平方等于a,即b²=a,那么b就是a的平方根,记作√a,其中√符号称为根号。
如果a是一个负数,那么它的平方根定义为复数,可以表示为±√(-a),其中±表示取正负号。
开方的运算可以用来求解方程、计算距离等实际问题,是数学中的重要工具。
在代数中,我们经常会遇到二次根式,即含有开方的代数式。
如√2、√3等都属于二次根式。
二次根式通常可以简化,使其形式更加简洁。
简化二次根式的方法是利用数的乘法性质,将开方中的被开方数进行因式分解,找到一个完全平方数因子,然后将其提出开方符号。
对于√12,可以找到一个完全平方数的因子4,即√12=√(4*3)=2√3。
这样就化简成了更加简洁的形式。
在进行运算时,需要注意开方及二次根式的运算规则。
首先是同底数相乘的运算法则,即√a*√b=√(a*b),这条规则适用于任意实数a、b。
其次是开方的乘法公式,即√a±√b=√(a±2√(a*b)±√b),这个公式在计算开方时经常会用到。
如果要进行开方的除法运算,可以采用类似的方法,将被开方数分解成较小的因子,然后进行化简。
运用这些运算规则,可以更加方便地进行开方及二次根式的运算。
除了基本的开方运算,还有一些特殊的开方,如立方根、四次根等。
立方根表示一个数的三次方根,记作³√a,其运算规则与平方根类似。
比如³√8=2,因为2³=8。
四次根则表示一个数的四次方根,记作⁴√a,其运算规则也可以类似的推出。
这些特殊的开方可以在数学问题中发挥重要作用,例如求解立方程等。
数的开方及二次根式
哎,说起数的开方跟二次根式,这事儿咱们得扯扯清楚。
在数学里头,数的开方,就好比是把一个数儿,咔嚓一下,劈成好多相等的部分,看能劈成几份儿,每份儿是多少。
比如说,9的开方,那就是3嘛,因为3乘3等于9,简单得很。
二次根式呢,听起来有点儿玄乎,其实也不难。
就是把个平方根摆在那儿,再跟其他数儿一起搅和搅和,搞出些新花样来。
比如说,根号下面有个4,再加上个5,写成式子就是√4+5,结果就是2+5,等于7。
当然,这只是个简单的例子,实际运用起来,可能要复杂得多。
在计算二次根式的时候,咱们得注意点儿,根号下面的数儿得是非负的,要不然就没得解了。
还有啊,根号跟根号之间不能直接相加,得想办法把它们变成同类项,才能相加或者相减。
比如说,√2跟√8,看着不一样,其实√8可以变成2√2,这样一来,它们就能相加了。
总的来说,数的开方跟二次根式,都是数学里头挺重要的东西。
虽然刚开始接触的时候,可能会觉得有点儿难,但是只要多练练,多琢磨琢磨,慢慢地就能掌握其中的窍门了。
毕竟,数学这东西,还是得靠多练,才能熟能生巧嘛。
所以,大家伙儿,要是遇到了数的开方或者二次根式的问题,别怕,大胆地去做,相信你们一定能行的!。
数的开方与二次根式1、平方根(1)平方根的定义:如果一个数的平方等于a ,这个数就叫做a 的平方根。
用数学语言表达即为:若a x =2,则x 叫做a 的平方根。
a 的平方根记作: ,读作“根号a ”(2)平方根的性质: ①一个正数有两个平方根,它们互为相反数。
②0有一个平方根,它是0本身。
③负数没有平方根。
(3)求一个数a 的平方根的运算,叫做开平方的运算。
+3与-3的平方是9,9的平方根是+3和-3,可见平方运算与开平方运算互为逆运算。
(4)平方根的表示方法: a 表示正数a 的正的平方根 -a 表示正数a 的负的平方根 练习:求169的平方根 将1.44开平方2、算术平方根(1)算术平方根的定义:正数a 有两个平方根,其中正数a 的正的平方根,也叫做a 的算术平方根, 记作 “a ”,读作:“根号a ”,其中a 叫做被开方数。
(2)算术平方根的性质:①正数a 的算术平方根是一个正数。
②0的算术平方根是0。
③负数没有算术平方根 。
(3)重要性质: 练习:求25的算术平方根 求的算术平方根3、立方根(1)立方根的定义:如果一个数的立方等于a ,那这个数叫做a 的立方根(也叫三次方根)。
用数学语言表达即为:若a x =3,则x 叫做a 的立方根。
记作: ,读作“三次根号a ” 。
(2)立方根的性质:①一个正数有一个正的立方根;②一个负数有一个负的立方根;③0的立方根是0。
(3)重要性质: (4)求一个数的立方根的运算,叫做开立方运算。
立方运算与开立方运算互为逆运算。
练习:求81-的立方根 求64的立方根a 2±±或a ())0(2≥=a a a aa =23a x =33-aa -=a ±⎭⎬⎫记作4.二次根式的有关概念(1) a (a ≥0)表示非负数a 的算术平方根,也就是说,a (a ≥0)是一个非负数,它的平方等于a .即有: (1)a ≥0(a ≥0);(2)2)(a =a (a ≥0).形如a (a ≥0)的式子叫做二次根式.注意: 在二次根式a 中,字母a 的取值范围,必须满足a ≥0,即被开方数必须是非负数。