数的开方与二次根式讲义
- 格式:doc
- 大小:63.50 KB
- 文档页数:4
开方及二次根式知识点全文共四篇示例,供读者参考第一篇示例:开方是数学中常见的运算符号,表示一个数的平方根。
而二次根式则是指包含开方的代数式。
在学习数学过程中,掌握开方及二次根式的知识是非常重要的。
本文将就开方及二次根式的相关知识进行详细介绍。
我们来看看开方的定义。
对于一个非负实数a,如果实数b满足b 的平方等于a,即b²=a,那么b就是a的平方根,记作√a,其中√符号称为根号。
如果a是一个负数,那么它的平方根定义为复数,可以表示为±√(-a),其中±表示取正负号。
开方的运算可以用来求解方程、计算距离等实际问题,是数学中的重要工具。
在代数中,我们经常会遇到二次根式,即含有开方的代数式。
如√2、√3等都属于二次根式。
二次根式通常可以简化,使其形式更加简洁。
简化二次根式的方法是利用数的乘法性质,将开方中的被开方数进行因式分解,找到一个完全平方数因子,然后将其提出开方符号。
对于√12,可以找到一个完全平方数的因子4,即√12=√(4*3)=2√3。
这样就化简成了更加简洁的形式。
在进行运算时,需要注意开方及二次根式的运算规则。
首先是同底数相乘的运算法则,即√a*√b=√(a*b),这条规则适用于任意实数a、b。
其次是开方的乘法公式,即√a±√b=√(a±2√(a*b)±√b),这个公式在计算开方时经常会用到。
如果要进行开方的除法运算,可以采用类似的方法,将被开方数分解成较小的因子,然后进行化简。
运用这些运算规则,可以更加方便地进行开方及二次根式的运算。
除了基本的开方运算,还有一些特殊的开方,如立方根、四次根等。
立方根表示一个数的三次方根,记作³√a,其运算规则与平方根类似。
比如³√8=2,因为2³=8。
四次根则表示一个数的四次方根,记作⁴√a,其运算规则也可以类似的推出。
这些特殊的开方可以在数学问题中发挥重要作用,例如求解立方程等。
数的开方与二次根式讲义编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(数的开方与二次根式讲义)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为数的开方与二次根式讲义的全部内容。
数的开方与二次根式讲义〖知识点〗平方根、立方根、算术平方根、二次根式、二次根式性质、最简二次根式、同类二次根式、二次根式运算、分母有理化〖大纲要求〗1。
理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。
会求实数的平方根、算术平方根和立方根(包括利用计算器及查表);2。
了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式.掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。
内容分析1.二次根式的有关概念(1)二次根式式子)0a叫做二次根式.注意被开方数只能是正数或O.a((2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.(3)同类二次根式化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式.2.二次根式的性质 ).0;0();0;0();0(),0(||);0()(22>≥=≥≥⋅=⎩⎨⎧<-≥==≥=b a b a b a b a b a ab a a a a a a a a a3.二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.(2)三次根式的乘法二次根式相乘,等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.(3)二次根式的除法二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.〖考查重点与常见题型〗1.考查平方根、算术平方根、立方根的概念。
数的开方与二次根式讲义
〖知识点〗
平方根、立方根、算术平方根、二次根式、二次根式性质、最简二次根式、 同类二次根式、二次根式运算、分母有理化 〖大纲要求〗
1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。
会求实数的平方根、算术平方根和立方根(包括利用计算器及查表);
2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。
掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;
3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。
内容分析
1.二次根式的有关概念 (1)二次根式
式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或O .
(2)最简二次根式
被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式. (3)同类二次根式
化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式.
2.二次根式的性质 ).
0;0();0;0();
0(),
0(||);
0()(22>≥=≥≥⋅=⎩⎨
⎧<-≥==≥=b a b
a b
a
b a b a ab a a a a a a a a a
3.二次根式的运算 (1)二次根式的加减
二次根式相加减,先把各个二次根式化成最简二次根式,再把同类三次根式分别合并. (2)三次根式的乘法
二次根式相乘,等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=
⋅b a ab b a
二次根式的和相乘,可参照多项式的乘法进行. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.
(3)二次根式的除法
二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.
〖考查重点与常见题型〗
1.考查平方根、算术平方根、立方根的概念。
有关试题在试题中出现的频率很高,习题类型多为选择题或填空题。
2.考查最简二次根式、同类二次根式概念。
有关习题经常出现在选择题中。
3.考查二次根式的计算或化简求值,有关问题在中考题中出现的频率非常高,在选择题和中档解答题中出现的较多。
考查题型
1.下列命题中,假命题是( )
(A )9的算术平方根是3 (B )16的平方根是±2
(C )27的立方根是±3 (D )立方根等于-1的实数是-1 2.在二次根式45, 2x 3
, 11,
54, x
4
中,最简二次根式个数是( ) (A ) 1个 (B )2个 (C )3个 (D )4个 (2)下列各组二次根式中,同类二次根式是( ) (A )136,3 2 (B )35,15 (C )1
2
12,
1
3
(D )8,23
3. 化简并求值,a+ab ab+b +ab -b
a -ab
,其中a =2+3,b =2- 3
4.2+1的倒数与2-3的相反数的和列式为 ,计算结果为 5.(-14)2的算术平方根是 ,27的立方根是 ,
4
9
的算术平 方根是 ,
49
81
的平方根是 . 考点训练:
1.如果x 2
=a ,已知x 求a 的运算叫做 ,其中a 叫做x 的 ;已知a 求x 的运算叫做 ,其中x 叫做a 的 。
2.(- 2 )2
的平方根是 ,9的算术平方根是 , 是-64的立方根。
3.当a<0时,化简∣a ∣+a 2
+3a 3 = 。
4.若 5.062 =2.249,50.62 =7.114,x =0.2249,则x 等于( ) (A )5.062 (B )0.5062 (C )0.005062 (D )0.05062 5.设x 是实数,则(2x +3)(2x -5)+16的算术平方根是( ) (A )2x -1 (B )1-2x (C )∣2x -1∣ (D )∣2x +1∣ 6.x 为实数,当x 取何值时,下列各根式才有意义: (1)-3x -2 ( )(2)x 2
+5 ( )(3)1
x
2 ( ) (4)
1
3
1-x
( )(5)1
1-x +2 ( )(6)x +-x ( )
7.等式
3-x x +2 =3-x
x +2
成立的条件是( )
(A )-2<x ≤3 (B )-2≤x ≤3 (C )x>-2 (D )x ≤3 8.计算及化简: (1)(-727
)2 (2)ab 2(c +1)2 (3)0.01×64
0.36×324
(4)2a 2
3b
b 3
a 4-
b 2
a 4 (b>1) (5)
x
x -3y
x 2
y -6xy 2
+9y
3
x
(x>3y )
(6)(48 -60.5 )(4 3 +18 )-(2 3 -3 2 )2
(7)已知方程4x2
-2ax+2a-3=0无实数根,
化简4a2
-12a+9 +|a-6|
解题指导 1.下列命题:(1)任何数的平方根都有两个(2)如果一个数有立方根,那么它一定有平方根(3)算术平方根一定是正数(4)非负数的立方根不一定是非负数,错误的个数为( ) (A )1 (B )2 (C )3 (D )4
2.已知30.5 =0.794,35 =1.710,350 =3.684,则3
5000 等于( ) (A )7.94 (B )17.10 (C )36.84 (D )79.4 3.当1<x<2时,化简∣1-x ∣+4-4x +x 2
的结果是( ) (A )-1 (B )2x -1 (C )1 (D )3-2x 4.(x -2)2
+(2-x )2
的值一定是( ) (A )0 (B )4-2x (C )2x -4 (D )4 5.比较大小: (1)3
15
11
4
(2)7 - 2 2 2 -1 (3)35 -34 34 -33 6.化简:a
a -2b
a 2
b -4ab 2
+4b
3
a
()
7.计算:(32 +0.5 -2
1
3
)-(18 -1
5
75 ) 8.已知a =
3-23+2 ,b =3+23-2
,求a 2-5ab +b 2
的值。
9.计算:945 ÷3
15 ×3
2
223 10.化简:632-23
11.设
5+15-1
的整数部分为a,小数部分为b,求a2+12 ab+b2
的值。
独立训练
1. 2 - 3 的倒数是 ; 2 - 3 的绝对值是 。
2.8 的有理化因式是 ,x -y 的有理化因式是 。
3.1x -x -1 与1
x -1+x
的关系是 。
4.三角形三边a =750 ,b =472 ,c =298 ,则周长是 。
5.直接写出答案:
(1) 3 · 2 ÷30 = ,(2)4xy 2x = ,(3)( 3 -2)8( 3 +2)8
= 。
6.如果 a - b 的相反数与 a + b 互为倒数,那么( )
(A )a 、b 中必有一个为0 (B )∣a ∣=∣b ∣(C )a =b +1 (D )b =a +1
7.如果(2-x)2
+(x -3)2
=(x -2)+(3-x ),那么x 的取值范围是( ) (A )x ≥3 (B )x ≤2 (C )x>3 (D )2≤x ≤3 8.把(a -b )
-1a -b
化成最简二次根式,正确的结果是( ) (A )b -a (B )a -b (C )-b -a (D )-a -b 9.化简-3x x -
1x
+4x 3
的结果必为( ) (A )正数 (B )负数 (C )零 (D )不能确定 10.计算及化简: (1)(5
8
27
·113 ·354 ) (2)18 +22-1
-412
-2( 2 +1)0
(3)(3x 2 x y -25 3xy +13 xy 2 )÷x 2 x y (4) a a -b
a 2
-ab
a 3-2a 2b+ab
2
(a>b ) 11.已知x+3x+2 =13+2+1 ,求x-32x -4 ÷(5
x -2 -的值x -2)。
12.先化简,再求值:( x+2xy +y x +y + 1x - y )+ x- y+1
x
其中x=2 - 3 ,y=2 + 3
13.设11-6 2 的整数部分为m ,小数部分为n ,求代数式m +n +2
n
的值。
14.试求函数t=2--3x2
+12x-9 的最大值和最小值。
15.如果a+b+|c-1 -1|=4a-2 +2b+1 -4,那么a+2b-3c的值。