随机型存储模型
- 格式:ppt
- 大小:323.00 KB
- 文档页数:26
两种随机存贮管理模型的建立和求解摘 要:本文建立了仓库容量有限条件下单品种、多品种的允许缺货随机存贮模型。
采用连续的时间变量更合理地描述了问题,简化了模型的建立。
模型的求解是一个以分段的平均损失费用函数作为目标的带约束最优化问题。
针对题目中的具体数据对随机量送货滞后时间的密度函数进行了估计,解出了单品种、多品种条件下最优订货点的值和存贮方案。
通过分情况讨论把单品种存贮模型推广为多品种(m 种)存贮模型,论证了目标函数的独立变量为21m -个,使模型更加清晰、求解方便。
类比控制论中的相关理论提出了一定条件下多品种存贮的最优性原理,给出了证明,指出该原理简化模型和验证模型求解结果的作用。
讨论了销售速率具有随机性时的存贮模型,实际当中调整修正订货点的方法,以及仓库最大存贮量的一种预测办法。
最后指出了模型的优缺点。
0问题重述工厂生产需定期地定购各种原料,商家销售要成批地购进各种商品。
无论是原料或商品,都有一个怎样存贮的问题。
存得少了无法满足需求,影响利润;存得太多,存贮费用就高。
因此说存贮管理是降低成本、提高经济效益的有效途径和方法。
问题1 某商场销售的某种商品。
市场上这种商品的销售速率假设是不变的,记为r ;每次进货的订货费为常数1c 与商品的数量和品种无关;使用自己的仓库存贮商品时,单位商品每天的存贮费用记为2c ,由于自己的仓库容量有限,超出时需要使用租借的仓库存贮商品,单位商品每天的存贮费用记为3c ,且32c c ≤;允许商品缺货,但因缺货而减少销售要造成损失,单位商品的损失记为4c ;每次订货,设货物在X 天后到达,交货时间X 是随机的;自己的仓库用于存贮该商品的最大容量为0Q ,每次到货后使这种商品的存贮量q 补充到固定值Q 为止,且Q Q <0;在销售过程中每当存贮量q 降到L 时即开始订货。
请你给出求使总损失费用达到最低的订货点*L (最优订货点)的数学模型。
问题 2 现给出来自某个大型超市的关于三种商品的真实数据,按你的模型分别计算出这三种商品各自相应的最优订货点*L 。
随机存储问题的(s,S)概率模型作者:高云峰来源:《商场现代化》2008年第33期[摘要] 随机模型作为一种概率模型,在问题中如果必须考虑随机因素对研究对象的影响时,有着不可替代的优势。
本文研究随机存储问题,针对问题本身特点,在合理假设基础上,建立了随机存储问题的(s,S)概率模型,进行求解,并给出评注。
[关键词] 存储问题随机变量(s,S)随机存储策略一、随机存储问题简介存储论是运筹学的重要分支之一,现实生活中到处都可以碰到存储问题。
如某商场购进某种批发商品,买的数量越多,价格越便宜,获利越大,但买得越多,占用资金越多,占用库存越大,且如果太多还会造成积压,又要削价处理,人力物力都受损,如果一次进货太少,价格高,订货费增加,又易发生缺货现象,失去销售机会而减少利润,这就产生了进多少商品使商场获利最大的问题,也就是一个存储问题。
又如某工厂按现有人员编制每年可生产一定数量的某种产品,而生产这种产品需用一定数量的某种原材料,这种原材料不需每日供应,但不得缺货,缺货将导致停工待料,影响生产计划,每次订购原材料需要费用,定购次数越多,费用越大,但为节约订购费用又不能订购次数太少,订购次数少,势必每次订购原材料多,每月的原材料保管费就增大,那么最佳的订购量和订货次数又是多少呢?这仍是存储问题。
像商品进货这类问题,由于需求具有随机性,称这类存储问题为随机存储问题;像工厂进原材料这类问题,需求是确定的,这类问题称为确定性存储问题。
二、(s,S)型随机存储问题提出及分析商店在一周内的销售量是随机的,每逢周末经理要根据存货的多少决定是否订购货物,以供下周销售。
适合经理采用的一种简单的策略是制定一个下界s和一个上界S,当周末存货量不少于s时就不订货,当存货少于s时则订货,且订货量使得下周初的存量达到S。
这种策略称为(s,S)随机存储策略。
为使问题简化,只考虑订货费、储存费、缺货费和商品购进价格,存储策略的优劣以总费用为标准。