多周期随机型存储模型的特点需求量110页PPT
- 格式:ppt
- 大小:10.46 MB
- 文档页数:110
随机型存贮模型10.3.1 (s ,S)策略存贮模型现在我们假设供需过程可以分成若干阶段(每个阶段的时间长度相同,例如一个月或者一周),拖后时间L 为零,每个阶段对存贮货物的需求量u 是一个随机变量。
如果对于不同的阶段来说,销售、需求只是一种重复性的活动,我们就只要研究一个阶段的存储问题就可以了,因此称它为单阶段的随机存储模型,采用(s ,S )策略。
现设u 是一个离散型的随机变量,它取的数值分别为0≤i 1<i 2<…< i m 。
u 的概率分布为K K p i u P ==)( , k=1,2,…,m ,自然,应有∑=mK K p 1= 1 。
在每阶段初检查库存,若发现库存量低于规定的数量s ,就立即补充并把库存量提高到规定的数值S 。
在下面讨论中,我们就以一个阶段的时间长度作为单位时间。
(1)S 值的确定。
设在阶段初未进货时的库存量为g ,阶段初补充的数量为Q ,因而补充后的库存量Q g y +=。
假设这阶段的存贮费按这阶段末的库存量来计算,我们就可算得这阶段存贮费的期望值为∑≤-y i K K K p i y b )(。
假设这阶段缺货损失费也按这阶段末的缺货量来计算,于是我们可算得这阶段缺货损失费的期望值为∑〉-yi K K K p y i c )(。
因此,这个阶段(单位时间)内总费用的期望值为eQ a ++∑≤-y i K K K p i y b )(+∑〉-yi K K K p y i c )(。
我们采用边际分析法来确定S 的值。
现设阶段初进货后库存量为y 件是合理的,我们来分析一下再多进一件货物而使库存量为y +l 件的合理性。
对于多进的这一件货物,实际需要用它的概率为1 -∑≤yi K K p ,费用为购置费e ;实际不需用它的概率为∑≤yi K K p ,费用为购置费e 与存贮费b 之和e +b 。
所以多进这件货物的费用期望值为e(1 -∑≤yi KK p)+(e+b)∑≤yiKKp。