随机前沿模型(SFA)-原理解读
- 格式:doc
- 大小:115.50 KB
- 文档页数:4
空间面板随机前沿模型及技术效率估计空间面板随机前沿模型及技术效率估计林佳显, 龙志和, 林光平 1 12 ( 1. 华南理工大学经济与贸易学院, 广东广州510006; 摘要: 随机前沿模型是测算技术效率的重要方法之一。
通常,模型假设生产单元之间彼此独立,然而在技术扩散过程中,空间外部性起着重要作用。
文章结合随机前沿模型理论与空间经济计量分析方法,构建空间面板随机前沿模型, 同时考虑空间滞后因变量和空间误差自相关,并逐步放松模型设定条件, 首先考虑技术效率时变,接着引入技术无效率项的异方差性,之后考虑观察数据中潜在的截面异质性,分别以引入随机截面特有项和设定随机系数的形式来表示截面中图分类号: F064. 1 ----------------------------------- 精选公文范文,管理类,工作总结类,工作计划类文档,感谢阅读下载---------------------------------------- ~ 1 ~文献标识码: A 文章编号: 100022154 ( 2010 ) 05 20071 20 、引言随机前沿模型( SFM ) 的理论最初 A igne r、Love ll 和Schm id t (ALS) ( 1977 ) [ 2 ] [ 1 ] , Meeu sen 和V an den B roeck (MB ) ( 1977 ) 提出, 并很快成为计量经济学中一个引人注目的分支,被广泛应用于效率测算和生[ 3 ] 产率分析尤其是在Jond row 等( JLM S) ( 1982 )指出各个生产单元的技术无效率可以通过条件分布[ u |i vi - ui ] 的期望 E [ ui | vi - ui ] 或模M ode [ ui | vi - ui ] 来估算以后。
随机前沿分析( SFA ) 始于对生产最优化的研究, 经过30 多年的发展, 其在理论研究与实践应用方面都得到了深入的发展, 已被尝试性地应用于生产经济学以外的领域, 如劳动经济学、公共经济学以及金融经济学等。
基于SFA方法的中国智能制造业全要素生产率研究*申丹虹 崔张鑫内容摘要:本文基于随机前沿分析(SFA)和Malmquist法对我国2010—2018年的智能制造业①上市公司的全要素生产率进行了测算和分解,以探寻智能制造业的发展现状及存在的问题,从而找到提升路径。
结果表明:智能制造业目前还处于规模递减的状态,但是发展潜力很大。
智能制造业的全要素生产率年均增长为 5%,主要归因于技术水平的落后,说明智能与制造业的融合并没有消除“信息技术生产率悖论”的存在。
我国依然要加大对技术创新的投入并加强对高素质人才和管理人才的投入,推进要素的优化配置以及增加资本的投入从而促进制造业的高质量发展。
关键词:智能制造业;全要素生产率;Malmquist;随机前沿函数中图分类号:C812 文献标识码:A 文章编号:1004-7794(2021)01-0048-06DOI: 10.13778/ki.11-3705/c.2021.01.006一、引言和文献综述在互联网、大数据、云计算等技术不断发展的基础上,人工智能催生了一批新技术,引领着新一轮的科技革命和产业变革,各领域对人工智能的应用加速推进,在此背景下,人工智能和制造业的融合,可以为制造业的高质量发展提供新动能。
米晋宏等(2020)运用上市公司的数据实证研究分析了人工智能技术的应用对制造业产业结构的升级有促进作用[1]。
付文宇等(2020)通过2003—2018年30个省份的面板数据实证分析表明人工智能通过技术的创新和人才资本的积累效应促进了了制造业的升级[2]。
智能制造业是人工智能和制造业的深度融合。
目前,对于智能制造业全要素生产率的研究是热点话题。
葛金田(2019)提出生产率是衡量竞争力和经济可持续发展的重要影响因素,因而提高智能制造业全要素生产率极其重要[3]。
一些学者认为智能促进制造业全要素生产率的提升,刘亮等(2020)证伪了“信息技术生产率悖论”的存在,指出人工智能对中高技术行业生产率的提升效应强[4]。
stata随机前沿模型sfa方法随机前沿模型(Stochastic Frontier Analysis,简称SFA)是一种经济学方法,用于评估生产或效率的前沿水平和技术效率。
本文将介绍SFA方法的基本原理和应用领域,并探讨其在实际研究中的价值和局限性。
SFA方法最初由Aigner、Lovell和Schmidt在1977年提出,旨在解决生产要素利用效率评估中的随机误差和不可观测因素的问题。
该方法将生产函数分为两个部分:前沿函数和误差项。
前沿函数描述了理论上的最大产出水平,而误差项则捕捉了技术效率的偏差。
通过估计前沿函数和技术效率,SFA方法可以提供对生产效率的准确评估。
SFA方法的应用领域广泛,包括农业、制造业、金融业等。
在农业领域,SFA方法可以评估农民的生产效率,帮助政府制定农业政策和资源配置。
在制造业领域,SFA方法可以评估企业的生产效率,发现潜在的改进空间。
在金融业领域,SFA方法可以评估银行的效率和绩效,指导银行经营和监管。
然而,SFA方法也存在一些局限性。
首先,SFA方法基于对生产函数的假设,需要满足一定的假定条件。
如果这些假定条件不成立,SFA 方法的结果可能失真。
其次,SFA方法对数据的要求较高,需要大样本和高质量的数据。
如果数据质量差或样本量小,SFA方法的结果可能不可靠。
此外,SFA方法对模型的选择和参数的估计也存在一定的主观性和不确定性。
为了提高SFA方法的准确性和可靠性,研究者可以采取一些改进措施。
首先,可以使用更加灵活的模型来捕捉生产函数的非线性关系和异方差性。
其次,可以使用面板数据模型,以提高数据的效率和可靠性。
此外,还可以引入其他变量或控制变量,以更全面地评估生产效率。
SFA方法是一种评估生产效率的重要工具。
通过估计前沿函数和技术效率,SFA方法可以帮助研究者和决策者更好地理解和改进生产过程。
然而,使用SFA方法时需要注意其局限性,并采取相应的改进措施,以提高评估结果的准确性和可靠性。
随机前沿模型(SFA )原理和软件实现一、SFA 原理在经济学中,常常需要估计生产函数或者成本函数。
生产函数f (x)的定义为:在给定投入x 情况下的最大产出。
但现实中的产商可能达不到最大产出的前沿,为了,假设产商i 的产量为:i i i y f (x ,)βξ= (1) 其中,β为待估参数;i ξ为产商i 的水平,满足i 01ξ<≤。
如果i =1ξ,则产商i 正好处于效率前沿。
同时,考虑生产函数还会受到随机冲击,故将方程(1)改写成:i v i i i y f (x ,)e βξ= (2) 其中,i v e 0>为随机冲击。
方程(2)意味着生产函数的前沿i v i f (x ,)e β是随机的,故此类模型称为“随机前沿模型”(stochastic frontier model )。
随机前沿模型最早由Aigner, Lovell and Schmidt(1977)提出,并在实证领域运用广泛,Kumbhakar and Lovell(2000)为该领域的研究写了一本著作,有兴趣的同学可以去参考。
假设o k 1i 1i ki f (x ,)e x x ββββ=(柯布道格拉斯生产函数,共有K 个投入品),则对方程(2)取对数可得:K i 0k ki i i k 1ln y =+ln x ln ββξν=++∑ (3)由于i 01ξ<≤,故i ln 0ξ≤。
定义i i u =-ln 0ξ≥,则方程3可以写成:Ki 0k ki i i k 1ln y =+ln x -u ββν=+∑ 其中,i u 0≥为“无效率”项,反映产商i 距离效率前沿面的距离。
混合扰动项i i i ενμ=-分布不对称,使用OLS 估计不能估计无效率项i u 。
为了估计无效率项i u ,必须对i i νμ、的分布作出假设,并进行更有效率的MLE (最大似然估计)估计。
一般,无效率项的分布假设有如下几种:(1) 半正态分布(2) 截断正态分布(3) 指数分布在一般的论文中,使用的最多的是半正态分布随机前沿模型可以很容易地用于估计成本函数,经过与生产函数的随机前沿模型类似的推导可得:Ki 0y i k ki i i k 1ln c =+lny ln P +u βββν=++∑其中,i c 为产商i 的成本,i y 为产出,ki P 为要素K 的价格,i u 为无效率项,i ν为成本函数的随机冲击。
随机前沿分析和包络数据分析SFA,DEA及运⾏结果先推荐读这篇⽂章:邹志庄教授计量研究汇结,三部分总结经济研究经验(昨⽇,计量哥推荐出去之后,由于未能够把邹⾄庄教授名字校正正确,对此向各位读者和Chow教授表⽰抱歉).正⽂在经济学中,技术效率是指在既定的投⼊下产出可增加的能⼒或在既定的产出下投⼊可减少的能⼒。
常⽤度量技术效率的⽅法是⽣产前沿分析⽅法。
所谓⽣产前沿是指在⼀定的技术⽔平下,各种⽐例投⼊所对应的最⼤产出集合。
⽽⽣产前沿通常⽤⽣产函数表⽰。
前沿分析⽅法根据是否已知⽣产函数的具体的形式分为参数⽅法和⾮参数⽅法,前者以随机前沿分析(StochasticFrontierAnalysis,下⽂简称SFA)为代表,后者以数据包络分析(DataEnvelopeAnalysis,下⽂简称DEA)为代表。
⽬前,我国学者已将这两种⽅法⼴泛应⽤于各个领域,但在使⽤过程中也存在⼀些问题,尤其对于SFA。
⽽SFA与DEA各有其利弊,不能简单地认为⼀种⽐另⼀种好,必须根据具体问题和实际度量结果做出判断。
因此如何正确合理地使⽤这两种⽅法是⽬前⾯临的主要问题。
针对上述情况,本⽂将⾸先简要总结SFA与DEA中最常⽤的模型;然后分别指出使⽤中⼀些关键的地⽅和常见的问题;最后⽐较分析这种两种⽅法。
1 SFA模型在经济学中,技术效率的概念应⽤⼴泛。
Koopmans⾸先提出了技术效率的概念,他将技术有效定义为:在⼀定的技术条件下,如果不减少其它产出就不可能增加任何产出,或者不增加其它投⼊就不可能减少任何投⼊,则称该投⼊产出为技术有效的。
Farrell⾸次提出了技术效率的前沿测定⽅法,并得到了理论界的⼴泛认同,成为了效率测度的基础。
在实际应⽤中,前沿⾯是需要确定的。
其确定⽅法主要两种:⼀种是通过计量模型对前沿⽣产函数的参数进⾏统计估计,并在此基础上,对技术效率进⾏测定,这种⽅法被称为效率评价的“统计⽅法”或“参数⽅法”;另⼀种是通过求解数学中的线性规划来确定⽣产前沿⾯,并进⾏技术效率的测定,这种⽅法被称为“数学规划⽅法”或“⾮参数⽅法”。
我国能源效率的地区差异及影响因素--基于异质性随机前沿边界模型的实证分析张东辉;宋锋华【摘要】在异质性随机边界模型的分析框架下,基于我国大陆27个省、市、自治区1985—2012年的面板数据,对各省份能源利用的技术效率进行测算,并对能源效率地区差异、影响因素进行分析。
结果表明:我国的能源利用的技术效率整体水平不高,效率损失约为30%,但随着时间的推移呈现出技术效率逐渐上升的趋势;技术效率区域差距明显,东部区域最高,中部和西部区域的技术效率水平相近。
制定差异化产业结构、能源结构、产权结构和对外开放等目标,有利于技术效率水平的提高和缩小地区间的效率差距。
%Within the framework of heterogeneous random boundary models, this paper made an empirical study using the 1985 to 2012 panel data from the 27 provinces and regions to work out the technical efficiency of energy use of the regions,as well as the energy efficiency of regional differences and the influence factors. The results show that the technical efficiency of energy use in China is not high in general with a 30%efficiency loss, but rising gradually with the time. It varies considerably with region, with the eastern region having the best performance, and the central and western regions similarto each other. Differentiated goals in industrial structure, energy structure, property right structure and opening to the public is conducive to use the technical efficiency better and reduce the gap in efficiency between the regions.【期刊名称】《厦门理工学院学报》【年(卷),期】2015(000)002【总页数】8页(P52-59)【关键词】能源效率;地区差异;影响因素;技术效率;技术异质性;随机前沿模型【作者】张东辉;宋锋华【作者单位】新疆财经大学经济学院,新疆乌鲁木齐830012;新疆财经大学经济学院,新疆乌鲁木齐830012【正文语种】中文【中图分类】F124.5当前,我国的能源利用效率水平低于发达国家,甚至落后于巴西等部分发展中国家。
随机前沿模型(SFA )原理和软件实现
一、SFA 原理
在经济学中,常常需要估计生产函数或者成本函数。
生产函数f (x)的定义为:在给定投入x 情况下的最大产出。
但现实中的产商可能达不到最大产出的前沿,为了,假设产商i 的产量为:
i i i y f (x ,)βξ= (1) 其中,β为待估参数;i ξ为产商i 的水平,满足i 01ξ<≤。
如果i =1ξ,则产商i 正好处于效率前沿。
同时,考虑生产函数还会受到随机冲击,故将方程(1)改写成:
i v i i i y f (x ,)e βξ= (2)
其中,i v e 0>为随机冲击。
方程(2)意味着生产函数的前沿i v i f (x ,)e β是随机的,故此类模型称为“随机前沿模型”(stochastic frontier model )。
随机前沿模型最早由Aigner, Lovell and Schmidt(1977)提出,并在实证领域运用广泛,Kumbhakar and Lovell(2000)为该领域的研究写了一本著作,有兴趣的同学可以去参考。
假设o k
1i 1i ki f (x ,)e x x ββββ=L (柯布道格拉斯生产函数,共有K 个投入品),则对方程(2)取对数可得:
K i 0k ki i i k 1ln y =+ln x ln ββξν=++∑ (3)
由于i 01ξ<≤,故i ln 0ξ≤。
定义i i u =-ln 0ξ≥,则方程3可以写成:
K
i 0k ki i i k 1ln y =+ln x -u ββν=+∑ 其中,i u 0≥为“无效率”项,反映产商i 距离效率前沿面的距离。
混合扰动项i i i ενμ=-分布不对称,使用OLS 估计不能估计无效率项i u 。
为了估计无效率项i u ,必须对i i νμ、的分布作出假设,并进行更有效率的MLE (最大似然估计)估计。
一般,无效率项的分布假设有如下几种:
(1)半正态分布
(2)截断正态分布
(3)指数分布
在一般的论文中,使用的最多的是半正态分布
随机前沿模型可以很容易地用于估计成本函数,经过与生产函数的随机前沿模型类似的推导可得:
K
i 0y i k ki i i k 1ln c =+lny ln P +u βββν=++∑ 其中,i c 为产商i 的成本,i y 为产出,ki P 为要素K 的价格,i u 为无效率项,i ν为成本函数的随机冲击。
注意混合误差项的形式(符号)。
对于成本函数,i u =0意味着产商达到最低成本的效率前沿;
反之,如果i u 0>,则产商需付出更高的成本。
i u 是否存在的检验
使用随机前沿模型的前提是无效率项i u 存在,此假定可以通过检验
“220u 1u H : =0 vs H : >0σσ”来判断是否成立。
使用单边的广义似然比检验。
二、软件实现
软件是由Tim Coelli 开发的一款专门用于完成随机前沿分析的软件,它可以用最大似然估计随机前沿成本模型和随机前沿生产模型,下面简单介绍一下该软件的使用方法,更加详细的说明可以参考英文指导《A Guide to FRONTIER Version : A Computer Program for Stochastic Frontier Production and Cost Function Estimation 》
用于输入数据,是一个纯文本文件,数据文件的格式必须是3+K[+p]列。
第一列是评价体系的序号;
第二列是时期t ;
第三列是因变量;
第四列之后是K个自变量;
[+p]仅当选择TE EFFECTS MODEL模型输入。
设置命令
11=ERROR COMPONENTS MODEL, 2=TE EFFECTS MODEL
选择模型
DATA FILE NAME
数据文件
OUTPUT FILE NAME
结果存储文件
2 1=PRODUCTION FUNCTION, 2=COST FUNCTION
选择生产模型(1)还是成本模型(2)
n LOGGED DEPENDENT VARIABLE (Y/N)
变量是不是已经进行了对数运算
25 NUMBER OF CROSS-SECTIONS
评价体系数目
1 NUMBER OF TIME PERIODS
时期数目
25 NUMBER OF OBSERVATIONS IN TOTAL
总记录数目
2 NUMBER OF REGRESSOR VARIABLES (Xs)
自变量个数
Y MU (Y/N) [OR DELTA0 (Y/N) IF USING TE EFFECTS MODEL]假设U的分布。
Y表示截断分布,N表示半正态分布
n ETA (Y/N) [OR NUMBER OF TE EFFECTS REGRESSORS (Zs)] y 表示时变模型,n表示非时变模型。
n STARTING VALUES (Y/N)选择n
其他设置保持不变。