沪教版 第13章 一次函数测试卷
- 格式:doc
- 大小:124.50 KB
- 文档页数:3
八年级数学第 13 章一次函数测试 (沪科版 )A 、 x 1B 、1 C 、 0 x 2D 、1x 2x 0班级 _________姓名 __________得分 ___________333一、填空(每题 4 分,计 32 分)三、解答题(每题 10 分,计 40 分)1、已知一次函数的图象经过( 2,5)和(- 1,- 1)两点,( 1)在给定坐标系中画出1、已知点( 3,m )与点( n ,- 2)对于坐标系原点对称,则 mn=_______这个函数图象;(2)求这个一次函数分析式2、点 A 为直线 y=-2x+2 上的一点,且到两坐标轴距离相等,那么 A 点坐标为 _____3、已知 y=3x+4 当 x_______时,函数值为正数4、函数函数 y1 x 1与 x 轴交点坐标为 _________4 85、某种积蓄的月利率是 0.25%,存入 200 元本金后,则本息和 y 元与所存月数 x 之间函数关系式为 _______________6、直线 y=- 3x -1 与坐标轴围成三角形面积为 ________ y2、某校需要刻录一批电脑光盘,若电脑企业刻录,每张需要 8 元(含空白光盘缠);7、在函数 y1的表达式中,自变量 x 取值范围是 ______________x 2若学校自刻,除租用刻录机需 120 元外每张还需成本费 4 元(含空白光盘缠),问刻28、若函数 yax b 图象如下图,录这批电脑光盘,到电脑企业刻录花费少?仍是自刻花费少?说明你的原因1则不等式 ax b 0 解集为 __________012x二、选择题(每题 4 分,计 28 分)1、假如直线 y (m 2)x (m 1) 经过第一、二、四象限,则 m 的取值范围是( )A 、 m<2B 、m>1C 、 m ≠2D 、1<m<22、一次函数 yx 4 和 y 2x 1的图象的交点个数为()A 、没有B 、一个C 、两个D 、无数个3、汽车由重庆驶往相距 400 千米的成都,假如汽车的均匀速度是 100 千米 /时,那么 汽车距成都的行程 s (千米)与行驶时间 t (小时)的函数关系用图象表示为 ( )S/kmS/kmS/kmS/km400400400400200200200200024t/h024t/h024t/h24t/hD AB C 4、已知函数 y 3x 1,当自变量 x 增添 m 时,相应函数值增添()A 、3m+1B 、3mC 、mD 、3m -1 5、若点 A (- 2, n )在 x 轴上,则 B (n -1, n+1)在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 6、m 为整数,点 P (3m -9,3-3m )是第三象限的点,则 P 点的坐标为( )A 、(- 3,- 3)B 、(- 3,- 2)C 、(- 2,- 2)D 、(- 2,- 3)y7、察看以下图象,能够得出不等式组3、有两条直线 y 1 ax b , y 2cx 5c ,学生甲解出它们的交点坐标为( 3,- 2),学生乙因把 c 抄错了而解出它们的交点坐标为 (3 , 1) ,求这两条直线分析式4 44、已知正比率函数 y k 1 x 的图象与一次函数 y k 2 x 9 的图象交于点 P ( 3,- 6)(1)求 k 1 , k 2 的值 ( 2)假如一次函数 y k 2 x 9 与 x 轴交于点 A ,求 A 点坐标3x 1 0 的解集是 ( ) 0.5x 1 011 1 2x3参照答案 :一、填空:1、-62、(2,2)或( 2, 2) 3、x> 4 4、(1,0) 5、y 0.25% x 2006、1 3 3 3 27、 x 2 8、 x 26二、选择题:1、D2、 B3、C4、B5、B6、A7、D三、解答题:1、(1)图略(2)y 2x 12、当刻录光盘数低于 30 时,由电脑企业刻录;当刻录光盘数高于30 时,学校自刻花费低;当刻录光盘数为 30 时,两方刻录花费同样3、两条直线分析式分别为y1 x 1 y2 1 x 54、(1)k1=-2 k2=14 4(2)A 的坐标为( 9, 0)。
沪科版八年级上册数学第十三章一次函数练习题一、单项选择题1、函数 y=3x﹣ 4 与函数 y=2x+3 的交点的坐标是()A.( 5, 6)B.( 7,﹣ 7)C.(﹣ 7,﹣ 17)D.( 7, 17)2、已知一次函数y=kx﹣ k,若 y 随 x 的增大而减小,则该函数的图象经过()A.第一,二,三象限B.第一,二,四象限C.第二,三,四象限D.第一,三,四象限3、函数 y=-x-1 的图像不经过()象限.A.第一B.第二C.第三D.第四4、若点 P(a, b)在第二象限内,则直线y=ax+b 不经过().A.第一象限B.第二象限C.第三象限D.第四象限5、如图表示某加工厂今年前 5 个月每个月生产某种产品的产量c(件)与时间A. 1 月至 3 月每个月产量逐月增t (月)之间的关系,则对这类产品来说,添,4、5 两月产量逐月减小该厂()B. 1 月至 3 月每个月产量逐月增添,4、 5 两月产量与 3 月持平C. 1 月至 3 月每个月产量逐月增添,4、 5 两月产量均停止生产6 、一次函数yx 4 和 y 2x 1D.1 月至 3 月每个月产量不变,4、5 两月均停止生产的图象的交点个数为()个A、没有B、一C、两D、无数7、若直线 y=3x+6 与坐标轴围成的三角形的面积为S,则 S等于().A. 6 B. 12 C.3 D. 24A.加油前油箱中节余油量y(升)与行驶时间t(小时)的函数关系是y=﹣ 8t+25B.途中加油 21 升C.汽车加油后还可行驶 4 小时8、张师D.汽车抵达乙地时油箱中还余油 6 升傅驾车从甲地到乙地,两地相距 500 千米,汽车出发前油箱有油 25 升,途中加油若干升,加油前、后汽车都以100 千米 / 小时的速度匀速行驶,已知油箱中节余油量 y(升)与行驶时间 t (小时)之间的关系以下图.以下说法错误的选项是().9、假如直线经过第一、二、四象限,则m 的取值范围是()A、 m<2B、m>1C、 m≠ 2D、 1<m<2A.甲、乙两人的速度相同B.甲先抵达终点10、甲、乙两人在一次百米赛C.乙用的时间短D.乙比甲跑的行程多跑中,行程 s(米)与赛跑时间t(秒)的关系以下图,则下列说法正确的选项是().11、一次函数y=kx+b 知足 x=0 时 y=-1;x=1 时, y=1,则一次函数的表达式为().A. y=2x+1 B. y=-2x+1 C.y=2x-1 D. y=-2x-112、如图 1,在矩形 ABCD中,动点 P 从点 B 出发,沿矩形的边由运动,设点 PA. 10 B. 16 C. 18 D.20 运动的行程为x,的面积为 y,把 y 看作 x 的函数,函数的图像如图 2 所示,则的面积为()13、一次函数的图像以下图,则以下结论正确的选项是()A.,B.,C.,D.,14、如图 1,在矩形中,动点从点出发,沿→→→方向运动至点处停止.设点运动的行程为,的面积为,假如对于的函数图象如图 2 所示,则当时,点应运动到().A.处B.处C.处D.处15、小李和小陆从 A 地出发,骑自行车沿同一条路行驶到 B 地,他们离出发地的距离 S(单位: km )和行驶时间 t(单位: h)之间的函数关系的图象以下图,依据图中的信息,有以下说法:(1)他们都行驶了 20 km;(2)小陆全程共用了 1.5h;(3)小李和小陆相遇后,小李的速度小于小陆的速度(4)小李在途中逗留了 0.5h 。
沪科版八年级数学上册一次函数测试卷A 卷一、 填空题1、函数224y x =+中,自变量x 的取值范围为 。
2、某中学今年为改善教学设备投资15万元,计划以后每年增加2万元,则年投资量y 与年数x 的函数关系式为 。
3、 一个正比例函数(32)y m x =-其函数图像经过第 二、第四象限,则m 的取值范围为 。
4、如果点(-2,1)在正比例函数y kx =的图像上,那么点(-1,2)是否也在该函数的图像上? 。
5、一次函数34y x =+的图像与x 轴的交点A 为 ,与y 轴的交点B 为 ,△AOB 的面积为6、函数33y x =-+的图像经过 ,y 随x 的增大而 ,函数7y =-的图像经过 象限,y 随x 的增大而 。
7、y -2与x 成正比例,当x =-2时,y =4,则x = 时,y =-4。
8、已知函数y=(1()32m x m ++-是一次函数,则m 的取值范围为_ ___。
9、已知一次函数Y=kx+b 与Y=2x+1平行,切经过点(-3,4),则k=___,b=____.10、一次函数Y=(m+4)x-5+2m,当Y 随x 的增大而增大,则m______,当Y 随x 的增大而减小,则m______,当此函数图象过原点时,m=_____.二、选择题1、下列函数(1)y +x =0 (2)y=-2x +1 (3)y=-1x(4)y=-x 2中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个2、李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕迟到,于是加快了骑车的速度,在以下给出的四个函数图象中(S 是距离,t 是时间),符合以上情况的是( )A B C D3、函数31-=x y 中,自变量x 的取值范围是(A )x >3 (B )x ≥3 (C )x ≤3 (D )x <34、下列各点,在一次函数112y x =-的图像上的是( )(A )(0,-1) (B )(-1,0) (C )(1,2) (D )(2,1)5、已知点(-1,y 1),(2,y 2)都在直线y=12 x +1上,则y 1 y 2大小关系是( ) (A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较6、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图像表示应为( )7、已知一次函数y=kx +b (k ≠0)的图像如图所示,当x<0时,y 的取值范围( )A )y >0 (B )y<0 (C )-2<y<0 (D )y <08、下列四个图像中不表示某一函数的是( )A B C D9、.已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )(A) (B) (C ) (D )10、已知一次函数y=ax+4与y=bx -2的图象在x 轴上相交于同一点,则的值是( )(A)4 (B)-2 (C) 12 (D)- 12一、填空题(10×3’=30’)1、 ,2、 ,3、 ,4、 ,、5、6、7、 8、 9、10、题号1 2 3 4 5 6 7 8 9 10答案 三、解答题(6×10’=60’)1、画一次函数y=2x-5和y=-3x 的图象.利用图像求方程组的解。
初中数学沪科版第十三章一次函数综合测试考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、选择题7.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是 ( )A.﹣2B.-1C.0D.22.下列各数可能是一个三角形的边长的是().A.1,3,5B.3,4,5C.2,2,4D.9.如图,已知OP平分∠AOB,∠AOB=,CP,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是A.B.C.D.5.一个多边形的内角是1440°,求这个多边形的多数是()A.7B.8C.9评卷人得分D.108.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整,若调整木条的夹角时不破坏此木框,则任两螺丝的距离的最大值是 ( )A.5B.7C.8D.103.在△ABC内取一点P使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线交点()A.高B.角平分线C.中线D.垂直平分线6.如图,在△ABC中,AB=AC,∠ABC与∠ACB的平分线相交于O点,过O点作DE//BC,分别交AB、AC于D、E,则图中等腰三角形共有A.2个B.3个C.4个D.5个7.如图,在△与△中,已有条件还需要添加两个条件才能使△≌△.不能添加的一组条件是A.∠=∠,B.,C.∠∠, ∠=∠D.∠∠,9.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为【】A.16B.18C.20D.16或205.如果一个多边形的内角和等于720°,那么这个多边形是().A.四边形B.五边形C.六边形D.七边形22.如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)BO=DO.27.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某家电商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益Z(元)会相应降低且Z与x之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为___________元.(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益w(元)最大,政府应将每台补贴款额x定为多少并求出总收益w的最大值.23.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间 x(小时)之间的函数图像.(1)求甲车返回过程中y与x之间的函数解析式,并写出x的取值范围;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.(10分)24.在五边形ABCDE中,∠A=135°,AE⊥ED,AB∥CD,∠B=∠D,试求∠C的度数.15.直角三角形斜边上的高与中线分别是5和6,则它的面积是__________.12.已知如图,在△ABC中,∠B=∠C,FD⊥BC于点D,DE⊥AB ,于点E,∠AFD=158°,则∠EDF=__________。
第十三章 一次函数单元测试题一.选择题(每小题3分,共30分)1.下列各函数中,x 逐渐增大y 反而减少的函数是( )A .13y x =-B .13y x =C .41y x =+D .41y x =-2.下面哪个点不在函数23y x =-+的图象上( )A .(-5,13)B .(0.5,2)C .(3,0)D .(1,1)3.已知直线y =x +b ,当b <0时,直线不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.直线y =kx 过点(3,4),那么它还通过点( )A .(3,-4)B .(4,3)C .(-4,-3)D .(-3,-4)5.一次函数y =kx +b 的图象经过点(2,1)和点(0,3),那么这个函数表达式为( )A .132y x =-B .y =-x +3C .y =3x - 2D .y =-3x +26.如果直线y =kx +b 经过一.二.四象限,则有( )A .k >0,b >0B .k >0,b <0C .k <0,b <0D .k <0,b >07.关于正比例函数y =-2x ,下列结论中正确的是( )A .图象过点(-1,-2)B .图象过第一.三象限C .y 随x 的增大而减小D .不论x 取何值,总有y <08.已知一次函数y =kx -k ,若y 随x 的增大而减小,则该函数的图象经过( )A .第一.二.三象限B .第一.二.四象限C .第二.三.四象限D .第一.三.四象限9.汽车由重庆驶往相距400千米的成都.如果汽车的平均速度是100千米/小时,那么汽车距离成都的路程s (千米)与行驶时间t (小时)的函数关系的图象表示为( )A. B. C. D.10.甲.乙两人赛跑,所跑路程与时间的关系如图2所示(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四个信息,其中错误的是( )A .这是一次1500m 赛跑B .甲.乙两人中先到达终点的是乙C .甲.乙同时起跑D .甲在这次赛跑中的速度为5m/s二.填空题(每小题4分,共32分)11.已知函数(1)1y k x k =++-,当k 时,它为一次函数,当k 时,它为正比例函数.12.直线1y x =+与直线22y x =-的交点坐标是 .13.一次函数1y x =-+的图象经过点P (m ,m -1),则m = .14.A ,B 两地的距离是160k m ,若汽车以平均每小时80k m 的速度从A 地开往B 地,则汽车距B 地的路程y (k m )与行驶的时间x (h )之间的函数关系式为 .15.一次函数y kx b =+中,y 随x 的增大而减小,且kb >0,则它的图象一定不经过第象限.16.直线y kx b =+过点(2,-1),且与直线132y x =+相交于y 轴上同一点,则其函数表达式为 .17.某一次函数图象过点(-1,5),且函数y 的值随自变量x 的值的增大而增大,请你写出一个符合上述条件的函数表达式 .18.若三点A (0,3),B (-3,0)和C (6,y )共线,则y =三.解答题(本题共58分,19题10分,20题11分,21题12分,22题12分,23题13分)19.如图3所示,直线m 是一次函数y =kx +b 的图象.(1)求k .b 的值;(2)当12x =时,求y 的值;(3)当y =3时,求x 的值.20.某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元.(1)求出y与x的函数关系式(纯利润=总收入-总支出);(2)当y=106000时,求该厂在这个月中生产产品的件数.21.某文具店出售书包和文具盒,书包每个定价30元,文具盒每个定价5元,该店制定两种优惠方案:①买一个书包赠送一个文具盒;②按总价九折付款。
沪科版八年级数学上册《12.3一次函数与二元一次方程》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.直线y =3x -1与y =x+3的交点坐标是 ( ) A .(2,5)B .(1,4)C .(-2,1)D .(-3,0)2.如图,已知函数y =ax -3和y =kx 的图象交于点P(2,-1),则关于x ,y 的方程组3y ax y kx =-⎧⎨=⎩的解是( )A .21x y =⎧⎨=-⎩B .12x y =-⎧⎨=⎩C .21x y =⎧⎨=⎩D .21x y =-⎧⎨=⎩3.无论实数m 为何值,直线y x m =-与直线23y x =-+的交点都不可能出现在平面直角坐标系中的( ) A .第一象限B .第二象限C .第三象限D .第四象限4.在直角坐标系中A (2,0)、B (-3,-4)、O (0,0),则△AOB 的面积( ) A .4B .6C .8D .35.一次函数()50y kx k =+≠的图象与正比例函数()0y mx m =≠的图象都经过点(-3,2),则方程组5y kx y mx =+⎧⎨=⎩的解为( ) A .32x y =⎧⎨=⎩B .32x y =-⎧⎨=-⎩C .23x y =⎧⎨=-⎩D .32x y =-⎧⎨=⎩6.如图所示,在平面直角坐标系中,直线124y x =+分别与x 轴,y 轴交于A ,B 两点,以线段OB 为一条边向右侧作矩形OCDB ,且点D 在直线2y x b =-+上,若矩形OCDB 的面积为20,直线124y x =+与直线2y x b =-+交于点P .则P 的坐标为( )A .522,33⎛⎫ ⎪⎝⎭B .1731,33⎛⎫ ⎪⎝⎭C .()2,8D .()4,127.如图,一次函数y kx b =+的图象与x 轴交于点()2,0,与1y x =+的图象交于点()1,2P ,则下列说法正确的是( )A .关于x ,y 的方程组1y x y kx b =+⎧⎨=+⎩的解是1,2x y =⎧⎨=⎩ B .方程0kx b +=的解是2x =- C .方程1kx b x +=+的解是2x = D .不等式1kx b x +<+的解集是1x <8.函数y kx =与1y x =-的图象交点坐标为()2,a ,则关于x ,y 的方程组01kx y x y -=⎧⎨-=⎩的解为( )A .23x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .32x y =⎧⎨=⎩D .33x y =⎧⎨=⎩9.《九章算术》中记载了如何用算筹来表示二元一次方程组的解法,可以用图象法来解方程组.如图,一次函数11y k x b =+的图象1l 与22y k x b =+的图象2l 相交于点P ,则方程组1122,y k x b y k x b =+⎧⎨=+⎩的解是( )A .32x y =-⎧⎨=-⎩B .2,3x y =⎧⎨=-⎩C .3,2x y =⎧⎨=⎩D .3,2x y =-⎧⎨=⎩10.若用图象法解二元一次方程组y kx by mx n =+⎧⎨=+⎩时所画的图象如图所示,则该方程组的解是( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=-⎩C .13x y =-⎧⎨=⎩D .22x y =⎧⎨=⎩二、填空题11.若直线y =x +h 与y =2x +3的交点在第二象限,则h 的取值范围是 .12.如图,直角坐标系中,直线2y x =+和直线y ax c =+相交于点P (m ,3),则方程组2y x y ax c =+⎧⎨=+⎩的解为 .13.直线13y ax =+与2y x b =-+的图象如图所示,则方程组3y ax y x b =+⎧⎨=-+⎩的解是 .14.已知32x y =⎧⎨=-⎩和21x y =⎧⎨=⎩是二元一次方程3ax by +=-的两个解.则一次函数y ax b =+的图象与y 轴交点坐标是 .15.两条直线y=11k x b +和y=22k x b +相交于点A(-2,3),则方程组1122y k x b y k x b =+⎧⎨=+⎩的解是16.在平面直角坐标系内,若两条直线1:2l y x =--和2:2l y x b =-的交点在第三象限的角平分线上,则b 的值为 .17.若直线2y x =-向上平移a 个单位后,与直线1y x =+的交点在第一象限,则符合条件的a 值可以是 .(写出满足题意的一个值)18.已知直线1l :y 3x b =-+与直线2l :y kx 1=+在同一坐标系中的图象交于点()1,2-,那么方程组3x y by kx 1+=⎧-=⎨⎩的解是 .19.如图,函数y ax =和y kx b =+的图象相交于点()21A -,,可知关于x 的不等式ax kx b <+的解集为2x >-,那么关于x 、y 的二元一次方程组00ax y kx y b -=⎧⎨-+=⎩的解为 .20.在平面直角坐标系中,O 为坐标原点,若直线y =x +3分别与x 轴,直线y =-2x 交于点A ,B ,则△AOB 的面积为 .三、解答题21.已知学校、文具店、图书馆依次在同一条直线上,学校离图书馆2300m ,文具店离图书馆1800m .某天小华步行从学校出发去图书馆,当他匀速走了12min 后,想起要去买彩笔,于是按原路匀速返回,走了8min到达刚经过的文具店,在文具店停留了10min ,买彩笔后,匀速走了18min 到达图书馆.下面图中x 表示时间,y 表示离图书馆的距离.图像反映了这个过程中小华离图书馆的距离与时间之间的对应关系.请根据相关信息,回答下列问题: (1)△填表:小华离开学校的时间/min 6 10 20 26 小华离图书馆的距离/m18501800△填空:学校到文具店的距离为______m ;小华从文具店出发到图书馆的速度为______m /min . △当2048x ≤≤时,请直接写出小华离图书馆的距离y 关于时间x 的函数解析式;(2)有同学小强与小华同时从学校出发去图书馆,小强匀速走了46min 到达图书馆,那么小强去图书馆的途中遇到小华时离图书馆的距离是多少?(直接写出结果即可)22.临汾市某公园翻修后,推出了游船项目,为大众提供了一个可以玩桌游、商业等活动的场合.这个项目有甲、乙两种消费卡,已知甲、乙两种消费卡的费用y (元)与消费次数x (次)的函数关系如图所示.根据图中信息,解答下列问题:(1)分别求出选择甲、乙两种消费卡y关于x的函数解析式;(2)点B的坐标为______,点B表示的实际意义为____________.23.2024年4月18日,西安市教育局召开全市践行“三个课堂”现场推进会.为了加强“三个课堂”建设,使“立德树人”在课堂深耕厚植,某校建成了一处劳动实践基地,计划将其全部用来种植蔬菜.经调查发现,某种蔬菜的种植成本y(元/平方米)与其种植面积x(平方米)之间的函数关系如图所示,请根据图中信息,解答下列问题:(1)请求出图中AB段y与x之间的函数关系式;(2)当这种蔬菜每平方米的种植成本不超过26元时,种植蔬菜的面积最大为多少平方米?24.某校为迎接县中学生篮球比赛,计划购买A 、B 两种篮球共20个供学生训练使用.若购买A 种篮球6个,则购买两种篮球共需费用720元;若购买A 种篮球12个,则购买两种篮球共需费用840元. (1)A 、B 两种篮球共需单价各多少元?(2)设购买A 种篮球x 个且A 种篮球不少于8个,所需费用为y 元,试确定y 与x 的关系式.25.一辆客车与一辆出租车分别从甲、乙两地同时出发,相向而行.设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,1y 和2y 关于x 的函数图像如图所示:(1)根据图像,直接写出1y 、2y 关于x 的函数图像关系式; (2)试计算:何时两车相距300千米?参考答案1.A2.A 3.C 4.A 5.D 6.A 7.A 8.B 9.D 10.A 11.32<h <312.13x y =⎧⎨=⎩13.21x y =-⎧⎨=⎩14.30,7⎛⎫- ⎪⎝⎭15.16.-117.2(答案不唯一) 18.{x 1y 2==- 19.21x y =-⎧⎨=⎩20.321.(1)△1550,1800;△500,100;△()()1800203010048003048x y x x ⎧≤≤⎪=⎨-+<≤⎪⎩(2)1550m22.(1)20y x =甲 10100y x =+乙(2)()10,200;当消费10次时,两种消费卡消费一样,都是200元23.(1)图中AB段y与x之间的函数关系式为1625y x=+(2)种植蔬菜的面积最大为500平方米24.(1)A种篮球每个50元,B种篮球每个30元;(2)y=20x+600(8≤x≤20)25.(1)1100(08)y x x=≤≤2160800y x=-+(05)x≤≤(2)2513h或5513h。
沪科版八年级数学上册第13章测试题(含答案)(考试时间:120分钟满分:150分)分数:__________一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.以下列各组线段的长为边,能组成三角形的是(B)A.1 cm,2 cm,3 cm B.1 dm,5 cm,6 cmC.1 dm,3 cm,3 cm D.2 cm,4 cm,7 cm2.如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是(B)A.20°B.30°C.70°D.80°第2题图第4题图3.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是(A)A B C D4.如图,下列推理错误的是(D)A.因为AB∥CD,所以∠A=∠1B.因为AD∥BC,所以∠A+∠B=180°C.因为∠1=∠C,所以AD∥BCD.因为∠A=∠C,所以AB∥CD5.下列四个命题中,真命题有(A)①两条直线被第三条直线所截,内错角相等;②如果∠1和∠2是对顶角,那么∠1=∠2;③三角形的一个外角大于任何一个内角;④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个6.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是(C) A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角7.锐角三角形中任意两个锐角的和必大于(D)A.120°B.110°C.100°D.90°8.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC等于(C)A.42°B.66°C.69°D.77°第8题图第9题图9.★如图所示,已知∠1=60°,∠A+∠B+∠C+∠D+∠E+∠F=(C)A.180°B.360°C.240°D.200°10.★(东至县期末)已知:如图△ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,BD=2DC,S△BGD=8,S△AGE=3,则△ABC的面积是(B)A.25 B.30 C.35 D.40二、填空题(本大题共4小题,每小题5分,满分20分)11.把命题“任意两个直角都相等”改写成“如果……那么……”的形式是如果两个角都是直角,那么这两个角相等.12.已知一个三角形三个内角度数的比是2∶4∶6,则其最小内角的度数是30° .13.★(六安裕安区期末)如图,在△ABC中,AD是∠BAC的角平分线,E为AD上一点,且EF⊥BC于点F,若∠C=35°,∠DEF=15°,则∠B的度数为65° .第13题图第14题图14.★如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,若∠BDC15.写出下列命题的逆命题,并判断是真命题,还是假命题.(1)如果a+b=0,那么a=0,b=0;(2)等角的余角相等;(3)如果一个数的平方是9,那么这个数是3.解:(1)如果a +b =0,那么a =0,b =0的逆命题是如果a =0,b =0,那么a +b =0,此逆命题为真命题.(2)等角的余角相等的逆命题是余角相等的两个角相等,此逆命题为真命题.(3)如果一个数的平方是9,那么这个数是3的逆命题是如果一个数是3,那么这个数的平方是9,此逆命题为真命题.16.如图,CD 是∠ACB 的平分线,DE ∥BC ,∠AED =70°,求∠EDC 的度数.解:∵DE ∥BC , ∴∠ACB =∠AED =70°. ∵CD 平分∠ACB , ∴∠BCD =12∠ACB =35°.又∵DE ∥BC ,∴∠EDC =∠BCD =35°.四、(本大题共2小题,每小题8分,满分16分) 17.在△ABC 中,AB =9,BC =2,AC =x.(1)求x 的取值范围;(2)若△ABC 的周长为偶数,且AC 取值为正整数,则△ABC 的周长为多少? 解:(1)由题意知,9-2<x <9+2,即7<x <11. (2)∵7<x <11,且AC 取值为正整数, ∴x 的值是8或9或10,∴△ABC 的周长为:9+2+8=19(舍去) 或9+2+9=20或9+2+10=21(舍去). 即该三角形的周长是20.18.在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式).如图,在△ABC 中,已知∠ADE =∠B ,∠1=∠2,FG ⊥AB 于点G.求证:CD ⊥AB.证明:∵∠ADE =∠B.(已知)∴ DE ∥BC .( 同位角相等,两直线平行 ) ∵DE ∥BC ,(已证)∴ ∠1=∠DCF .( 两直线平行,内错角相等 ) 又∵∠1=∠2,(已知)∴ ∠DCF =∠2 .( 等量代换 )∴CD ∥FG ,( 同位角相等,两直线平行 )∴ ∠BDC =∠BGF .(两直线平行,同位角相等) ∵FG ⊥AB ,(已知) ∴∠FGB =90°.(垂直的定义) 即∠CDB =∠FGB =90°,∴CD ⊥AB.(垂直的定义)五、(本大题共2小题,每小题10分,满分20分)19.如图,在△ABC 中,∠1=100°,∠C =80°,∠2=12∠3,BE 平分∠ABC.求∠4的度数.解:∵∠1=∠3+∠C ,∠1=100°, ∠C =80°, ∴∠3=20°. ∵∠2=12∠3,∴∠2=10°,∴∠ABC =180°-100°-10°=70°. ∵BE 平分∠BAC , ∴∠ABE =35°.∵∠4=∠2+∠ABE ,∴∠4=45°.20.如图,它是一个大型模板,设计要求BA 与CD 相交成20°角,DA 与CB 相交成40°角,现测得∠A =145°,∠B =75°,∠C =85°,∠D =55°,就断定这块模板是合格的,这是为什么?解:延长DA ,CB ,相交于F , ∵∠C +∠ADC =85°+55°=140°,∴∠F=180°-140°=40°;延长BA,CD相交于E,∵∠C+∠ABC=85°+75°=160°,∴∠E=180°-160°=20°,故合格.六、(本题满分12分)21.如图,AC平分∠DCE,且与BE的延长线交于点A.(1)如果∠A=35°,∠B=30°,则∠BEC=________(直接在横线上填写度数);(2)小明经过改变∠A,∠B的度数进行多次探究,得出∠A,∠B,∠BEC三个角之间存在固定的数量关系,请你用一个等式表示出这个关系,并说明理由.解:(1)∵∠A=35°,∠B=30°,∴∠ACD=∠A+∠B=65°.又∵AC平分∠DCE,∴∠ACE=∠ACD=65°,∴∠BEC=∠A+∠ACE=35°+65°=100°.故答案为100°.(2)关系式为:∠BEC=2∠A+∠B.理由:∵AC平分∠DCE,∴∠ACD=∠ACE.∵∠BEC=∠A+∠ACE=∠A+∠ACD,∵∠ACD=∠A+∠B,∴∠BEC=∠A+∠A+∠B=2∠A+∠B.七、(本题满分12分)22.如图所示,在平面直角坐标系中,线段AB的端点A在y轴上,端点B在x轴上,BF平分∠ABO并与△ABO的外角平分线AE所在的直线交于点F.(1)求∠F的大小;(2)当点A,点B分别在y轴的正半轴和x轴的正半轴上移动时,其他条件不变,(1)中结论还成立吗?说说你的理由.解:(1)∵BF平分∠ABO,AE平分∠BAG,∴∠ABF =12∠ABO ,∠BAE =12∠BAG.∵∠BAG =∠ABO +∠AOB ,∴∠BAE =12(∠ABO +∠AOB )=12∠AOB +∠ABF ,∵∠BAE =∠F +∠ABF , ∴∠F =12∠AOB =45°.(2)(1)中结论成立,理由如下:∵BF 平分∠ABO ,AE 平分∠BAG , ∴∠ABF =12∠ABO ,∠BAE =12∠BAG ,∵∠BAG =∠ABO +∠AOB , ∴∠BAE =12(∠ABO +∠AOB )=12∠AOB +∠ABF , ∵∠BAE =∠F +∠ABF , ∴∠F =12∠AOB =45°.八、(本题满分14分)23.如图①,已知线段AB ,CD 相交于点O ,连接AD ,CB ,我们把形如图①的图形称之为“8字形”.如图②,在图①的条件下,∠DAB 和∠BCD 的角平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于点M ,N ,试解答下列问题:(1)在图①中,请直接写出∠A ,∠B ,∠C ,∠D 之间的数量关系; (2)在图②中,若∠D =40°,∠B =36°,试求∠P 的度数;(3)如果图②中∠D 和∠B 为任意角时,其他条件不变,试问∠P 与∠D ,∠B 之间存在着怎样的数量关系(直接写出结论即可).解:(1)在△AOD 中,∠AOD =180°-∠A -∠D , 在△BOC 中,∠BOC =180°-∠B -∠C. ∵∠AOD =∠BOC ,(对顶角相等)∴180°-∠A -∠D =180°-∠B -∠C , ∴∠A +∠D =∠B +∠C.故答案为∠A +∠D =∠B +∠C.(2)记∠DAP =∠1,∠PCM =∠2. ∵∠D =40°,∠B =36°,∴∠OAD +40°=∠OCB +36°,∴∠OCB -∠OAD =4°.∵AP ,CP 分别是∠DAB 和∠BCD 的角平分线, ∴∠1=12∠OAD ,∠2=12∠OCB.又∵∠1+∠D =∠2+∠P , ∴∠P =∠1+∠D -∠2 =12(∠OAD -∠OCB )+∠D =12×(-4°)+40° =38°.(3)结论:2∠P =∠B +∠D. 记∠DAP =∠1,∠PCM =∠2. 根据“8字形”数量关系,∠OAD +∠D =∠OCB +∠B , ∠1+∠D =∠2+∠P ,∴∠OCB -∠OAD =∠D -∠B ,∠2-∠1=∠D -∠P.∵AP ,CP 分别是∠DAB 和∠BCD 的角平分线, ∴∠1=12∠OAD ,∠2=12∠OCB ,∴∠2-∠1=12(∠D -∠B )=∠D -∠P ,整理得,2∠P =∠B +∠D.。
《第13章 一次函数》测试卷
(满分:100分 时间:60分钟)
姓名 得分
一、选择题(每题3分,共30分)
1.过点(2,3)的正比例函数解析式是( ) A.23y x = ; B.6y x = ; C.21y x =- ; D.32
y x = ; 2.直线y =-x +2和直线y =x -2的交点P 的坐标是( )
A. (2,0)
B. (-2,0)
C. (0,2)
D. (0,-2)
3.下列函数中,当x>0时,y 随x 的增大而减小的是( )
A.x y =
B.2+=x y
C.2+-=x y
D.2x y =
4.一次函数y=ax+b 的图像如图所示,则下面结论中正确的是( )
A .a <0,b <0
B .a <0,b >0
C .a >0,b >0
D .a >0,b <0
5.如图,直线b kx y +=与x 轴交于点(-4 , 0),则y > 0时,x 的取值范围是( )
A .x >-4
B .x >0
C .x <-4
D .x <0
(第4题) (第5
6.直线 y=43
x +4与 x 轴交于 A ,与y 轴交于B, O 为原点,则△AOB 的面积为( ) A .12 B .24 C .6 D .10
7.关于正比例函数y=-2x,下列结论正确的是( )
A .图像必经过点(-1,-2)
B .图像经过第一、三象限
C .y 随x 的增大而减小 D.不论x 取何值,总有y<0
8.一次函数y=kx+6,y 随x 的增大而减小,则一次函数的图象不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
9. 无论m 取任何非零实数,一次函数y=mx-(3m+2)的图象过定点( )
A 、(3,2)
B 、(3,-2)
C 、(-3,2)
D 、(-3,-2)
10.一次函数a x y +=2,b x y +-=的图象都经过A (-2,0),且与y 轴分别交于B 、C 两点,则
△ABC 的面积为( )
A.4
B.5
C.6
D.7
二、填空题(每题5分,共20分)
11.已知一次函数y=kx+5过点P(-1,2),则k= 。
12.直线2132
y x =-+不经过第 象限。
13.函数y=kx-4的图象平行于直线y=-2x ,则函数的表达式为 。
14.已知直线y=kx+b 经过点(3,-1)和点(-6,5),k= ,b= 。
三、解答题(每题10分,共50分)
15.已知y 是x 的一次函数,根据下表写出函数表达式,并填空。
16.已知正比例函数y=k 1x 的图像与一次函数y=k 2x-9的图像交于点P(3,-6).
(1)求k 1、k 2的值;
(2)如果一次函数y=k 2x-9的图像与x 轴交于点A ,求点A 的坐标.
17.已知一次函数y kx b =+,当x 4=-时y 的值是9,当x 2=时y 的值为-3。
⑴求这个函数的解析式;
⑵在直角坐标系内画出这个函数的图象。
18.已知函数1)32(-++=m x m y ,
⑴若函数图象经过原点,求m 的值;
⑵若函数图象在y 轴上的截距为3-,求m 的值;
⑶若函数图象平行于直线1+=x y ,求m 的值;
⑷若该函数的值y 随自变量x 的增大而减小,求m 的取值范围。
19.一次函数y=(2a+4)x —(3—b ),当a ,b 为何值时:
⑴ y 随x 的增大而增大?
⑵ 图象经过二、三、四象限?
⑶ 图象与y 轴交点在x 轴上方?
⑷ 图象过原点?
《第13章 一次函数》测试卷答案
一、选择题
1.D ; 2.A ; 3.C ; 4.A ; 5.A ; 6.C ; 7.C ; 8.C ; 9.B ; 10.C 。
二、填空题:
11.3; 12.三; 13.42--=x y ; 14.k=32-
,b=1; 三、解答题:
15.7,17,61,12-=x y ;
16.⑴k 1=-2,k 2=1;⑵(9,0);
17.⑴12+-=x y ;⑵图略;
18.⑴1=m ,⑵2-=m ,⑶1-=m ,⑷2
3-<m ; 19.⑴2->a ,⑵3,2<-<b a ,⑶3,2>-≠b a ,⑷3,2=-≠b a 。