沪科版数学九年级下册专题复习六圆与锐角三角函数
- 格式:pptx
- 大小:2.54 MB
- 文档页数:5
沪科版九年级数学圆知识点圆是轴对称、中心对称图形。
对称轴是直径所在的直线。
同时,圆又是“正无限多边形”,而“无限”只是一个概念。
下面是我整理的沪科版九年级数学圆学问点,仅供参考希望能够关怀到大家。
沪科版九年级数学圆学问点1、圆是定点的距离等于定长的点的集合2、圆的内部可以看作是圆心的距离小于半径的点的集合3、圆的外部可以看作是圆心的距离大于半径的点的集合4、同圆或等圆的半径相等5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线7、到已知角的两边距离相等的点的轨迹,是这个角的平分线8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9、定理不在同始终线上的三点确定一个圆。
10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧11、推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
12、推论2:圆的两条平行弦所夹的弧相等13、圆是以圆心为对称中心的中心对称图形14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等15、推论:在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等16、定理:一条弧所对的圆周角等于它所对的圆心角的一半17、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等18、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径19、推论:假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形20、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角21、①直线L和⊙O相交dr p=②直线L和⊙O相切d=r③直线L和⊙O相离dr22、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线23、切线的性质定理:圆的切线垂直于经过切点的半径24、推论:经过圆心且垂直于切线的直线必经过切点25、推论:经过切点且垂直于切线的直线必经过圆心26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角27、圆的外切四边形的两组对边的和相等28、弦切角定理:弦切角等于它所夹的弧对的圆周角29、推论:假如两个弦切角所夹的弧相等,那么这两个弦切角也相等30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等31、推论:假如弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等34、假如两个圆相切,那么切点确定在连心线上35、①两圆外离dR+r②两圆外切d=R+r③两圆相交R-rdr)④两圆内切d=R-r(Rr)⑤两圆内含dr)36、定理:相交两圆的连心线垂直平分两圆的公共弦37、定理:把圆分成n(n≥3):⊙依次连结各分点所得的多边形是这个圆的内接正n边形⊙经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形38、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆39、正n边形的每个内角都等于(n-2)×180°/n40、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形41、正n边形的面积Sn=pr/2p表示正n边形的周长,r为边心距42、正三角形面积√3a2/4a表示边长43、假如在一个顶点四周有k个正n边形的角,由于这些角的和应为360°,因此k(n-2)180°/n=360°化为(n-2)(k-2)=444、弧长计算公式:L=n兀R/18045、扇形面积公式:S扇形=n兀R2/360=LR/2外公切线长=d-(R+r)初中数学实数的倒数、相反数和确定值学问点1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,假如a 与b互为相反数,则有a+b=0,a=—b,反之亦成立。
九年级下册沪教版数学知识点总结圆的确定1.圆是到定点的距离等于定长的点的集合。
2.圆的两要素是圆心和半径。
圆心确定圆的位置,半径确定圆的大小。
3.圆心相同的圆叫做同心圆。
半径相等的圆叫做等圆。
4.经过一点A 可以做无数个圆。
经过A 、B 可以作无数个圆。
经过不在同一直线上的三个点A 、B 、C 可以做1个圆。
5.三角形的外接圆的圆心叫做外心。
6.一个三角形有1个外接圆,一个圆有无数个内接三角形。
7.锐角三角形的外心在三角形的内部,直角三角形的外心在斜边的中点,钝角三角形的外心在三角形的外部。
8.经过四边形四个顶点的圆叫做四边形的外接圆。
经过多边形每个顶点的圆叫做多边形的外接圆。
圆心角、弧、弦、弦心距之间的关系(1)1.联接圆上任意两点间的线段叫做弦。
过圆心的弦就是直径。
2.直径的两个端点把圆分成两条弧,每条弧都叫做半圆。
大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。
3.从圆心到弦的距离叫做弦心距。
圆心角、弧、弦、弦心距之间的关系(2)1.在同圆或等圆中,如果圆心角相等,那么所对的劣弧或优弧相等,所对的弦相等,所对的弦心距相等。
2.在同圆或等圆中,如果两个圆心角、两条优劣弧、两条弦、或两条弦心距,这四组量中有一组量相等,那么它们所对应的其余三组量也相等。
圆心角、弧、弦、弦心距之间的关系(3)1.角平分线上的点到角两边的距离相等。
垂径定理(1)1.垂径定理:如果圆的直径垂直于弦,那么这条直径平分这条弦,并且平分这条弦所对的弧。
(推论:弦心距平分弦)垂径定理(2)1.如果圆的直径平分炫(这条弦不是直径),那么这条直径垂直这条弦,并且平分这条弦所对弧。
2.如果圆的直径平分弧,那么这条直径垂直平分这条弧所对的弦。
3.如果一条直线是弦的垂直平分线,那么这条直线过圆心,并且平分这条弦所对的弧。
4.如果一条直线平分弦和它所对的一条弧,那么这条直线过圆点,并且垂直这条弦。
5.如果一条直线垂直于弦,并且平分弦所对的一条弧,那么这条直线过圆点,并且平分这条弦。
锐角三角函数知识点1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角, 则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、特殊角的三角函数值5、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
6、正切的增减性:当0°<α<90°时,tan α随α的增大而增大。
1、解直角三角形的概念:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的概念。
2、应用举例:①仰角:视线在水平线上方的角; ②俯角:视线在水平线下方的角。
对边邻边C③坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即h i l =。
坡度一样写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi l α==。
④从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角别离是:45°、135°、225°。
⑤指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4:OA 、OB 、OC 、OD 的方向角别离是:北偏东30°(东北方向),南偏东45°(东南方向),南偏西60°(西南方向),北偏西60°(西北方向)。
锐角三角函数练习一、选择题一、把Rt △ABC 各边的长度都扩大2倍得Rt △A ′B ′C ′,那么锐角A 、A ′的正弦值的关系为( ). A .sinA =sinA ′ B . sinA =2sinA ′ C .2sinA =sinA ′ D .不能确信二、在Rt △ABC 中,∠C =90°,若AB =5,AC =4,则sinA 的值是( )A . 35B . 45C . 34D . 433、如图,△ABC 的极点都是正方形网格中的格点,则sin ∠BAC 等于( ) A .23 B .55C . 105D .134、若是∠α是等腰直角三角形的一个锐角,则COS α的值是( )A.12 B.22C.1D.25、如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,若56AC =,65AB =,则tan ∠ACD 的值为( )A.5B.55 C.306 D.6:i h l=hlαDCBA六、计算tan 602sin 452cos30+-的结果是( )A .2B.2C .1D .2313-.7、如图,已知等腰梯形ABCD 中,AB ∥CD ,∠A=60°,AB=10,CD=3,则此梯形的周长为( ) A . 25 B . 26 C . 27 D . 28.8、如图,小明利用一个含60°角的直角三角板测量一栋楼的高度,已知他与楼之间的水平距离BD 为10m ,眼高AB 为 (即小明的眼睛距地面的距离),那么这栋楼的高是( )A .(81035+)m B . C . 103m D .103835⎛⎫+ ⎪ ⎪⎝⎭m九、如图,已知AB 是半圆O 的直径,弦AD 、BC 相交于点P ,若∠DPB=α,那么CDAB 等于( )A .sin αB .COS αC .tan αD .1tan α二、填空题10. 在Rt △ABC 中,∠C=90°,a 、b 、c 别离是∠A 、∠B 、∠C 的对边,若b=3a ,则tanA= .11. 在△ABC 中,∠C =90°,cosA =3,c =4,则a =_______.12. 如图,P 是∠α的边OA 上一点,且P 点坐标为(2,3),则sin α=______ . 13.已知:α是锐角,tan α=724,则cos α=_______. 14.在Rt △ABC 中,两边的长别离为3和4,求最小角的正弦值为 15.tan 230°+2sin60°-tan45°·sin90°-tan60°+cos 230°=____________.16.如图,已知Rt △ABC 中,AC=3,BC= 4,过直角极点C 作CA 1⊥A B ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,如此一直做下去,取得了一组线段CA 1,A 1C 1,12C A ,…,则CA 1= ,=5554C A A C 三、解答题17、如图,在△ABC 中,∠ABC=90°,BD ⊥AC 于D ,∠CBD=α,AB=3,•BC=4,•求tan α的值.E DC B A 第8题图 αPD CA 第9题图 αy xP(2,3)O A1八、先化简,再求值:+1,其中,tan 60x = .1九、如图,在Rt △ABC 中,CD 、CE 别离为斜边AB 上的高和中线,BC=a ,AC=b (b>a ),若tan ∠DCE=12,求a b 的值.20、如图,Rt △ABC 中,∠C=90°,D 为CA 上一点,∠DBC=30°,DA=3,tanA 的值.2一、已知:如图,在山脚的C 处测得山顶A 的仰角为︒45,沿着坡度为︒30 的斜坡前进400米到D 处(即︒=∠30DCB ,400=CD 米),测得A 的仰角为︒60,求山的高度AB 。
1九年级下册锐角三角函数专题讲义一.知识框架二.锐角三角函数 1.Rt △ABC 中:(1)∠A 的对边与斜边的比值是∠A 的正弦,记作sinA = ∠A 的对边斜边(2)∠A 的邻边与斜边的比值是∠A 的余弦,记作cosA = ∠A 的邻边斜边(3)∠A 的对边与邻边的比值是∠A 的正切,记作tanA = ∠A 的对边∠A 的邻边2.特殊角的三角函数:A sinA cosA tanA 30°12 32 33 45°22 22 160° 321232基础训练:例1.把Rt △ABC 各边的长度都扩大2倍得Rt △A ′B ′C ′,那么锐角A 、A ′的正弦值的关系为( )A . sinA =sinA ′B . sinA =2sinA ′C . 2sinA =sinA ′D . 不能确定例2.在Rt △ABC 中,∠C =90°,若AB =5,AC =4,则sinB 的值是( )A . 35B . 45C . 34D . 43练习1.在△ABC 中,∠C=90°,BC=2,2sin 3A =,则边AC 的长是( )AB .3C .43D练习2.如图,△ABC 中,AB=25,BC=7,CA=24.求sinA 的值25247C BA练习3.等腰△ABC 中,AB=AC=5,BC=6,求sinA 、sinB练习4.在Rt △ABC 中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,若b=3a ,则tanA=练习5.在△ABC 中,∠C =90°,cosA=4,c =2,则a =练习6.如果a ∠是等腰直角三角形的一个锐角,则cos α的值是( )A.12B.2C.13练习7.如图,P 是∠α的边OA 上一点,且P 点坐标为(2,3), 则sin α= ,cos α= ,tan α=练习8.在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,若56AC =,65AB =,则tan ∠ACD 的值为( )A.5B.5 C.30D.6例3.计算:sin30°·sin60°+sin45°练习9.计算tan 602sin 452cos30+-o o o 的结果是( )A .2B .2C .1D .2313-练习10.计算:()0132sin 452007tan 30--⋅+-oo能力拓展例1.如图,小明利用一个含60°角的直角三角板测量一栋楼的高度,已知他与楼之间的水平距离BD为10m ,眼高AB 为1.6m (即小明的眼睛距地面的距离),那么这栋楼的高是( )A .(81035+)m B .21.6m C . 103m D .10385⎛⎫+ ⎪ ⎪⎝⎭m例2.如图,已知AB 是半圆O 的直径,弦AD 、BC 相交于点P ,若∠DPB=α,那么CDAB等于( ) A .sin α B .COS α C .tan α D .1tan ααy x P(2,3)O AE DCBAαPDA4例3.如图,Rt △ABC 中,∠C=90°,D 为CA 上一点,∠DBC=30°,DA=3,AB=19,试求cosA 与tanA的值例4.如图,△ABC 的顶点都是正方形网格中的格点,则sin ∠BAC 等于( )A . 23B .55C . 105D .13中考链接:(2008昆明,9,3分)如图,在Rt △ABC 中,∠A = 900,AC = 6cm ,AB = 8cm ,把AB 边翻折,使AB边落在BC 边上,点A 落在点E 处,折痕为BD ,则sin ∠DBE 的值为( )A .13B .310C .37373D .1010(2011昆明,9,3分)如图,在Rt △ABC 中,∠ACB=90°,BC=3,AC=15,AB 的垂直平分线ED 交BC 的延长线与D 点,垂足为E ,则sin ∠CAD =( )A 、错误!未找到引用源。
介绍:数学是一门重要的科学学科,其中的三角函数是数学学习中的重要内容之一、九年级数学的三角函数是高中数学的基础,掌握好这一章的知识点对于高中数学的学习是非常重要的。
下面将对九年级数学三角函数全章的知识点进行整理,以帮助同学们更好地掌握这一章的内容。
一、角的概念及角的度量:1.角的概念:角是由两条射线公共端点形成的图形。
2. 角的度量:常用的角度单位有度(°)和弧度(rad),其中360°=2π rad。
3.角的分类:按角的大小可以分为锐角、直角、钝角和平角。
4.角的度数转化:常用的度数转化公式有:弧度制转角度制:θ(度)=θ(弧度)×180°/π;角度制转弧度制:θ(弧度)=θ(度)×π/180°。
二、三角函数的定义及其关系:1. 弧度制中的三角函数:根据单位圆上点的坐标值定义三角函数。
正弦函数(sinθ)、余弦函数(cosθ)和正切函数(tanθ)。
2.角度制中的三角函数:将角度制下的三角函数定义转化为弧度制。
3.三角函数的关系:正切函数与正弦函数和余弦函数之间的关系,正切函数的定义域和值域等。
三、三角函数的图像:1.正弦函数的图像特点:周期为2π,函数值范围为[-1,1],在[0,2π]区间上是增函数。
2.余弦函数的图像特点:周期为2π,函数值范围为[-1,1],在[0,2π]区间上是减函数。
3.正切函数的图像特点:周期为π,函数值的定义域是除其奇数个π的整数倍点的集合,无界。
4.三角函数的平移和伸缩:对函数图像进行平移和伸缩操作。
四、基本三角函数的性质:1.三角函数的基本关系式:余弦函数与正弦函数、正切函数与余切函数的基本关系式。
2.三角函数的基本性质:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数,余切函数是奇函数。
3.三角函数的诱导公式:正弦函数与余弦函数之间的诱导公式。
五、三角函数的应用:1.三角函数的概念应用:角度的概念与问题的应用。
第7章锐角三角函数7.6 第2课时与圆有关的问题知识点与圆有关的问题1.如图7-6-14,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA=30°,则OB的长为( )A.4 3 B.4 C.2 3 D.27-6-147-6-152.某资料曾记载一种计算地球与月球之间距离的方法,如图7-6-15,假设赤道上有一点C,∠ACB=90°,可以测量∠A的度数,则AB等于( )A.ACcos A B.AC·cos AC.ACsin A D.AC·sin A3.小李到公园游玩时去坐大型摩天轮,摩天轮的半径为20 m,匀速转动一周需要12 min,小李乘坐最底部的车厢(离地面1 m),经过2 min后到达点Q(如图7-6-16所示),则此时他离地面的高度是( )A.10 m B.11 mC. 2 m D.(2+1)m7-6-167-6-174.如图7-6-17,某航天飞船在地球表面点P的正上方A处,从A处观测地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞船距离地球的最近距离AP及P,Q两点间的地面距离分别是( )A.Rsinα,παR180B.Rsinα-R,(90-α)πR180C.Rsinα-R,(90+α)πR180D.Rcosα,(90-α)πR1805.小聪有一块含有30°角的三角尺,他想只利用量角器来测量较短直角边的长度,于是他采用如图7-6-18的方法,小聪发现点A处的三角尺读数为12 cm,点B处的量角器的读数为74°,由此可知三角尺的较短直角边的长度约为________cm.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)7-6-187-6-196.林业员为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工作原理如图7-6-19.现已知∠BAC =53°8′,AB =0.5米,则这棵大树的直径约为________米.(参考数据:tan53°8′≈1.33,tan26°34′≈0.50,结果精确到0.1米)7.如图7-6-20是放置在桌面上的地球仪截面图,半径OC 所在的直线与桌面垂直,垂足为E ,点A ,B 为地球仪的南、北极,直线AB 与桌面交于点D ,所成的∠EDB 为53°,量得DE =15 cm ,AD =14 cm ,求半径OA 的长.(参考数据: sin53°≈0.80, cos53°≈0.60, tan53°≈1.33) 图7-6-208.如图7-6-21,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图②.已知铁环的半径为25 cm ,设铁环中心为O ,铁环钩与铁环的相切点为M ,铁环与地面的接触点为A ,∠MOA=α,且sin α=35.若人站立点C 与点A 的水平距离AC 等于55 cm ,则铁环钩MF 的长度为( )图7-6-21A .46 cmB .48 cmC .50 cmD .52 cm9.如图7-6-22表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示3点30分时,分针垂直于桌面,点A 距桌面的高度为10厘米.如图②,若此钟面显示3点45分时,点A 距桌面的高度为16厘米,则钟面显示3点50分时,点A 距桌面的高度为________厘米.图7-6-227-6-2310.一颗位于地球上空的气象卫星S ,对地球上某区域的天气情况进行监测,如图7-6-23,当卫星S 位于地球表面上点A 的正上方时,其监测区域的最远点为B .已知被监测区域中,A ,B 两点间的地表距离(即AB ︵的长)约为1730 km ,则卫星S 距地球表面的高度SA 约是________km.(结果取整数,π取3.14,地球的半径约为6400 km)11.某新农村乐园设置了一个秋千场所,如图7-6-24所示,秋千拉绳OB 的长为3 m ,静止时,踏板到地面的距离BD 的长为0.6 m(踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为h m ,成人的“安全高度”为2 m .(计算结果精确到0.1 m)(1)当摆绳OA 与OB 成45°夹角时,恰为儿童的安全高度,则h ≈________m ;(2)某成人在玩秋千时,摆绳OC 与OB 的最大夹角为55°,此人是否安全(参考数据:2≈1.41, sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)?图7-6-2412.如图7-6-25,有两条公路OM,ON相交成30°角,沿公路OM方向离点O80米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以点P为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近,噪声影响越大.已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时,卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.图7-6-2513.五一期间,小明和同学一起到游乐场游玩,游乐场的大型摩天轮的半径为20 m,旋转1周需要10 min.小明乘坐最底部的车厢(离地面约0.5 m)开始1周的观光.请探索下列问题:(1)摩天轮启动多长时间后,小明到达观光的最高点?此时小明离地面的高度是多少?(2)从最底部开始,经过多长时间,小明离地面的高度第一次达到10 m(精确到0.01 min)?(3)在旋转一周的过程中,小明有多长时间保持在离地面20 m以上的空中(精确到0.01 min)?/ 教 师 详 解 详 析 /第7章 锐角三角函数7.6 第2课时 与圆有关的问题1.B2.A [解析] 在Rt △ABC 中,因为∠C =90°,所以cos A =AC AB ,所以AB =AC cos A. 3.B [解析] 过点Q 作QB ⊥EF ,交EF 于点B ,作QC ⊥AO 于点C .∵QB ⊥EF ,QC ⊥AO ,OA ⊥EF ,∴∠ACQ =∠ABQ =∠OAB =90°,∴四边形ACQB 是矩形,∴AC =BQ .∵转动一周需要12 min ,∴∠COQ =212×360°=60°, ∴∠CQO =30°,∴OC =12OQ =10 m , ∴BQ =AC =OA -OC =20+1-10=11(m).故选B.4.B [解析] 连接OQ ,根据切线的性质可知OQ ⊥AQ .在Rt △AOQ 中,sin ∠QAP =OQ AO,所以AO =R sin α,所以AP =AO -PO =R sin α-R ,lPQ ︵=n πR 180=(90-α)πR 180.5.9 [解析] 如图所示,连接圆心O和点B,则OA=OB.由题意可知∠BOC=2∠CAB=74°,∴在Rt△ABC中,∠BAC=37°.∵AB=12,tan∠BAC=BCAB,∴BC=AB tan37°≈12×0.75=9.∴短直角边的长度约为9 cm.6.0.5 [解析] 由题意可知∠OAB =12∠BAC =26°34′, ∴OB =AB ·tan ∠OAB =0.5·tan26°34′≈0.25(米),∴这棵大树的直径为2OB ≈0.5(米).7.解:在Rt △ODE 中,DE =15 cm ,∠ODE =53°,∵ cos ∠ODE =DE OD, ∴OD ≈150.60=25(cm), ∴OA =OD -AD ≈25-14=11(cm).答:半径OA 的长约为11 cm.8.C [解析] 过点M 作与AC 平行的直线,与OA ,FC 分别相交于点H ,N .在Rt △OHM 中,∠OHM =90°,OM =25,HM =OM ·sin α=15,∴OH =20,MB =HA =25-20=5.∵铁环钩与铁环相切,∴∠MOH +∠OMH =∠OMH +∠FMN =90°,∴∠FMN =∠MOH =α,∴FN MF =sin α=35,∴FN =35MF . 在Rt △FMN 中,∠FNM =90°,MN =BC =AC -AB =55-15=40.∵△FMN 为直角三角形,∴MF 2=FN 2+MN 2,即MF 2=(35MF )2+402,解得FM =50(负值已舍去),∴铁环钩MF 的长度为50 cm ,故选C.9.19 [解析] ∵当钟面显示3点30分时,分针垂直于桌面,点A距桌面的高度为10厘米,∴AD =10厘米.∵钟面显示3点45分时,点A 距桌面的高度为16厘米,∴A ′C =16厘米,∴AO =A ″O =6厘米.∵钟面显示3点50分时,∠A ″OA ′=30°,∴FA ″=3厘米,∴点A ″距桌面的高度为16+3=19(厘米).故答案为19.10.242[解析] 如图所示,连接OB ,可知OB ⊥SB ,即△BOS 为直角三角形,要求出SA ,必须先求SO .设∠BOS =n °,由题意得1730=6400πn 180, 即1730≈6400×3.14·n 180, 解得n ≈15.5.在Rt △OBS 中,cos ∠BOS =OB OS, ∴OS ≈OBcos15.5°=6400cos15.5°≈6641.6(km), ∴SA =SO -AO ≈242(km),即卫星S 距地球表面的高度约是242 km.11.解:(1)如图,过点A 作AN ⊥OB 于点N .在Rt △ANO 中,∠ANO =90°, ∴cos ∠AON =ON OA,∴ON=OA· cos∠AON.∵OA=OB=3 m,∠AON=45°,∴ON=3· cos45°≈2.12(m),∴ND =OB +BD -ON ≈3+0.6-2.12≈1.5(m),∴h =ND ≈1.5 m .故答案为1.5.(2)如图,过点C 作CM ⊥FD ,交FD 的延长线于点M ,作CE ⊥OD 于点E .在Rt △CEO 中,∠CEO =90°,∴cos ∠COE =OE OC, ∴OE =OC ·cos ∠COE .∵OC =OB =3 m ,∠COE =55°,∴OE =3·cos55°≈1.71(m),∴ED =OB +BD -OE ≈3+0.6-1.71≈1.9(m),∴CM =ED ≈1.9 m.∵成人的“安全高度”为2 m ,∴此人是安全的.12.解:(1)过点A 作ON 的垂线段,交ON 于点P .如图①,在Rt △AOP 中,∠APO =90°,∠POA =30°,OA =80米,所以AP =80×sin30°=80×12=40(米), 即对学校A 的噪声影响最大时,卡车P 与学校A 的距离是40米.(2)以点A 为圆心,50米长为半径画弧,交ON 于D ,E 两点.如图②,在Rt △ADP 中,∠APD =90°,AP =40米,AD =50米,所以DP =AD 2-AP 2=502-402=30(米).同理可得EP =30米,所以DE =60米.又因为18千米/时=5米/秒,所以605=12(秒). 故卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.13.[解析] (1)如图①,延长BO 交⊙O 于点E ,则点E 为观光的最高点,此时小明恰好旋转半个圆周,所以经过5 min ,此时离地面40.5 m ;(2)由题意可知,摩天轮每分钟旋转36°,欲求旋转时间,需求旋转角∠BOC .在Rt △ODC 中,OD =20.5-10=10.5(m),OC =20 m ,故∠BOC 的度数可求,进而求得旋转时间t =∠BOC 的度数36°; (3)将第(2)题中的10 m 改为20 m ,求得旋转时间为t ′,故在20 m 以上的空中的时间为(10-2t ′)min.解: (1)如图①,延长BO 交⊙O 于点E ,则点E 为观光的最高点,小明从点B 到达点E 恰好旋转了半个圆周,则摩天轮启动5 min 后,小明到达观光的最高点,此时小明离地面的高度为40.5 m.(2)如图②,设点C为小明离地面10 m 处的位置,过点C作CD⊥OB,垂足为D,∴OD=20+0.5-10=10.5(m),∴cos ∠DOC =OD OC =10.520, 解得∠DOC ≈58.332°.∵摩天轮每分钟旋转36°,∴t =58.33236≈1.62(min). 则从最底部开始,经过约1.62 min 后,小明离地面的高度第一次达到10 m.(3)如图②,设点C 为小明离地面20 m 处的位置,∴OD =20+0.5-20=0.5(m),∴cos ∠DOC =OD OC =0.520, 解得∠DOC ≈88.567°.∴10-2×88.56736≈5.08(min). 答:在旋转一周的过程中,小明约有5.08 min 保持在离地面20 m 以上的空中. 感谢您的支持,我们会努力把内容做得更好!。
锐角三角函数:知识点一:锐角三角函数的定义: 一、 锐角三角函数定义:如图所示,在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA ∠A 的余弦可表示为:cosA∠A 的正切可表示为:tanA ,它们称为∠A 的锐角三角函数①斜边)(sin =A =______,②斜边)(cos =A =______,③的邻边A A ∠=)(tan =______,【特别提醒:1、sinA 、cosA 、tanA 表示的是一个整体,是两条线段的比,没有单位,这些比值只与 有关,与直角三角形的 无关。
2、取值范围 <sinA< , <cosA< ,tanA> 例1. 锐角三角函数求值:在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______,sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______.典型例题:类型一:利用直角三角形求值1.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3.求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR .2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,⋅=∠43sin AOC 求:AB 及OC 的长.类型二. 利用角度转化求值:1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .2. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为( ) A .12 B .32C .35D .455.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23 B .32 C .34 D .436. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( )A.34 B.43C.35D.45A D ECB F7. 如图6,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若1tan 5DBA ∠= ,则AD 的长为( )A .2B .2C .1D .22D C B A Oyx第8题图类型三. 化斜三角形为直角三角形1. 如图,在△ABC 中,∠A=30°,∠B=45°,AC=23,求AB 的长.2.如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)3. ABC 中,∠A =60°,AB =6 cm ,AC =4 cm ,则△ABC 的面积是 ( )A.23 cm 2B.43 cm 2C.63 cm 2D.12 cm 2类型四:利用网格构造直角三角形1.如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ) A .12B .55 C .1010D .2552.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______. 3.如图,A 、B 、C 三点在正方形网络线的交点处,若将ABC ∆绕着点A 逆时针旋转得到''B AC ∆,则'tan B 的值为 ( )A.41 B. 31 C.21D. 14.正方形网格中,AOB ∠如图放置,则tan AOB ∠的值是( )A .55B.2 5 5 C.12D. 2 CB A ABO知识点二:特殊角的三角函数值当 时,正弦和正切值随着角度的增大而 余弦值随着角度的增大而例1.求下列各式的值.1.计算:︒-︒+︒30cos 245sin 60tan 22.计算:3-1+(2π-1)0-33tan30°-tan45°3.计算:030tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+ 4.计算: tan 45sin 301cos 60︒+︒-︒例2.求适合下列条件的锐角α . (1)21cos =α (2)33tan =α (3)222sin =α (4)33)16cos(6=- α(5)已知α 为锐角,且3)30tan(0=+α,求αtan 的值(6)在ABC ∆中,0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数.例3. 三角函数的增减性 1.已知∠A 为锐角,且sin A <21,那么∠A 的取值范围是 A. 0°< A < 30° B. 30°< A <60° C. 60°< A < 90° D. 30°< A < 90° 2. 已知A 为锐角,且030sin cos <A ,则 ( )A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90°锐角α30°45°60°sin αcos αtan α类型五:三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.2.已知:如图,Rt △ABC 中,∠C =90°,3==BC AC ,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD ;(2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .3. 已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,31tan =∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .4. 如图,在Rt △ABC 中,∠C=90°,53sin =B ,点D 在BC 边上,DC= AC = 6,求tan ∠BAD 的值.5.(本小题5分)如图,△ABC 中,∠A=30°,3tan 2B =,43AC =.求AB 的长.DCBAACB知识点三:解直角三角形:1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示): 在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c ,①三边之间的等量关系:________________________________.②两锐角之间的关系:__________________________________. ③边与角之间的关系:==B A cos sin ______;==B A sin cos _______;==BA tan 1tan _____;==B A tan tan 1______.④直角三角形中成比例的线段(如图所示).在Rt △ABC 中,∠C =90°,CD ⊥AB 于D .CD 2=_________;AC 2=_________; BC 2=_________;AC ·BC =_________.例1.在Rt △ABC 中,∠C =90°.(1)已知:32=a ,2=b ,求∠A 、∠B ,c ; (2)已知:32sin =A ,6=c ,求a 、b ;(3).已知:△ABC 中,∠A =30°,∠B =60°,AC =10cm .求AB 及BC 的长.类型六:解直角三角形的实际应用 仰角与俯角1.如图,从热气球C 处测得地面A 、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( ) A . 200米 B . 200米 C . 220米 D . 100()米 2. 在一次数学活动课上,海桂学校初三数学老师带领学生去测万泉河河宽,如图13所示,某学生在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31︒的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45︒的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31°≈53,sin31°≈21)图13ABCD 45° 30°3 .如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,已知小聪和树都与地面垂直,且相距33米,小聪身高AB 为1.7米,求这棵树的高度.A BCD E4.一数学兴趣小组为测量河对岸树AB 的高,在河岸边选择一点C ,从C 处测得树梢A 的仰角为45°,沿BC 方向后退10米到点D ,再次测得点A 的仰角为30°.求树高.(结果精确到0.1米.参考数据:2 1.414≈,3 1.732≈)5.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC=75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒)坡度与坡角1.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .1003mC .150mD .503m2.数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB 的高度.如图,老师测得升旗台前斜坡FC 的坡比为i =1:10,学生小明站在离升旗台水平距离为35m (即CE =35m )处的C 点,测得旗杆顶端B 的仰角为α,已知tan α=37,升旗台高AF =1m ,小明身高CD =1.6m ,请帮小明计算出旗杆AB 的高度.3.如图,有两条公路OM ,ON 相交成30°角,沿公路OM 方向离O 点80米处有一所学校A ,当重型运输卡车P 沿道路ON 方向行驶时,在以P 为圆心、50米长为半径的圆形区域内部会受到卡车噪声的影响,且卡车P 与学校A 的距离越近噪声影响越大,若已知重型运输卡车P 沿道路ON 方向行驶的速度为18千米/时. (1)求对学校A 的噪声影响最大时,卡车P 与学校A 的距离;(2)求卡车P 沿道路ON 方向行驶一次给学校A 带来噪影响的时间.30°80米OMNAP4.如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC =4米,AB =6米,中间平台宽度DE =1米,EN 、DM 、CB 为三根垂直于AB 的支柱,垂足分别为N 、M 、B ,∠EAB =31°,αABD CEF i FC =1:10DF ⊥BC 于F ,∠CDF =45°.求DM 和BC 的水平距离BM 的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)5.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由。
九年级下册数学锐角三角函数知识点九年级下册数学锐角三角函数知识点在我们平凡无奇的学生时代,是不是听到知识点,就立刻清醒了?知识点是指某个模块知识的重点、核心内容、关键部分。
掌握知识点是我们提高成绩的关键!以下是店铺精心整理的九年级下册数学锐角三角函数知识点,希望能够帮助到大家。
九年级下册数学锐角三角函数知识点1锐角三角函数的定义锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。
正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边余割等于斜边比对边正切与余切互为倒数它的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
另一种定义是在直角三角形中,但并不完全。
现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
由于三角函数的周期性,它并不具有单值函数意义上的`反函数。
它有六种基本函数(初等基本表示):函数名正弦余弦正切余切正割余割在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y(斜边为r,对边为y,邻边为x。
)以及两个不常用,已趋于被淘汰的函数:正矢函数versinθ =1-cosθ余矢函数coversθ =1-sinθ锐角三角函数的性质1、锐角三角函数定义锐角角A的正弦,余弦和正切都叫做角A的锐角三角函数2、互余角的三角函数间的关系。
sin(90°-α)=cosα, cos(90°-α)=sinα,tan(90°-α)=cotα, cot(90°-α)=tanα.3、同角三角函数间的关系平方关系:sin2α+cos2α=1倒数关系:cotα=(或tanα·cotα=1)商的关系:tanα= , cotα=.(这三个关系的证明均可由定义得出)4、三角函数值(1)特殊角三角函数值(2)0°~90°的任意角的三角函数值,查三角函数表。
初三数学知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查2-32y=-2x 22y=3(x+4)22y=3x2y=-2(x-3)2两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
锐角三角函数 一、锐角三角函数 1、正弦:在△ABC 中,∠C=90°,我们把锐角A 的对边与斜边的叫做∠A 的正弦,记做sinA 。
2、余弦:在△ABC 中,∠C=90°,我们把锐角A 的邻边与斜边的叫做∠A 的余弦,记做cosA 。
3、正切:在△ABC 中,∠C=90°,我们把锐角A 的对边与邻边的叫做∠A 的正切,记做tanA 。
4、余切:在△ABC 中,∠C=90°,我们把锐角A 的邻边与对边的叫做∠A 的余切,记做cotA 。
[注]:0°、30°、45°、60°、90°特殊角的三角函数值二、解直角三角形1、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
2、依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法) [注]:(1)三角形面积公式:111sin sin sin 222S ab C bc A ca B ===. (2)正弦定理 :2sin sin sin a b cR A B C ===. (3)余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-三、实际应用1、仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
概率一、随机事件和概率 1、 事件的分类:(1)不可能事件:事件一定不会发生 (2)必然事件:事件一定会发生(2)随机事件:事件有可能发生,也有可能不发生2、概率:对于一个事件A ,我们把刻画其发生可能性的大小的数值叫做事件A 的概率,记做:P(A)特点:每次试验结果只有有限个;各种结果出现的可能性相等。