02结构的几何组成分析--习题
- 格式:ppt
- 大小:1.58 MB
- 文档页数:38
第一章结构的几何构造分析六、练习题1.二元体规律1-1试对图1-59所示平面体系进行几何组成分析。
(南京工业大学2019)(b)a)(c)图1-59图1-60图1-611-2对图1-60所示体系进行几何组成分析。
(天津大学2017)1-3对图1-61所示体系作几何组成分析。
(苏州科技大学2016)1-4对图1-62所示平面体系进行几何组成分析,并指出超静定次数。
(青岛理工大学2016)图1-62图1-63图1-641-5对图1-63所示体系作几何组成分析。
(东南大学2014)2.两刚片规律1-6试对图1-64所示平面体系进行几何组成分析。
(南京工业大学2019)1-7对图1-65(a )(b )所示体系进行几何构造分析。
(青岛理工大学2019)图1-65图1-661-8求图1-66所示体系的计算自由度,并进行几何组成分析。
(华南理工大学2017)1-9对图1-67所示体系作几何组成分析。
(苏州科技大学2018、中国矿业大学2014、吉林建筑工程学院2013)图1-67图1-68图1-69 1-10图1-68所示体系的机动分析结论是。
(重庆交通大学2015)3.三刚片规律3.1三个铰都对应于有限点1-11对图1-69所示平面体系进行几何组成分析。
(南京工业大学2019)1-12对图1-70所示体系进行几何组成分析(各点均为铰结点)。
(长沙理工大学2017)图1-70图1-71 1-13图1-71所示体系的计算自由度W=,有个多余约束,为体系。
(哈尔滨工业大学2017)1-14试对图1-72所示平面体系进行几何组成分析。
(哈尔滨工业大学2015)图1-72图1-73图1-74 1-15计算图1-73所示杆件体系的计算自由度,并判断体系符合哪种几何组成规律?(北京工业大学2014)3.2一个无穷远瞬铰1-16对图1-74所示体系进行几何构成分析。
(西安交通大学2015)1-17图1-75所示为()。
(山东科技大学2018)A.无多余约束的几何不变体系;B.有多余约束的几何不变体系;C.瞬变体系;D.常变体系。
构造力学讲义第二章:平面系统几何构造剖析一.判断题1.几何可变系统在任何荷载作用下都不能够平衡。
()2.三个刚片由三个铰相连的系统必然是静定构造。
()3.有节余拘束的系统必然是超静定构造。
()4.有些系统是几何可变系统,但却有多与拘束存在。
()5.在任意荷载作用下,仅用静力平衡方程即可确定所有反力和内力的系统是几何不变系统。
()6.图 1-16 所示系统是几何不变系统。
()图 1-16图1-17图1-18 7.图 1-17 所示系统是几何不变系统。
()8.几何瞬变系统的计算自由度必然等于零。
()9.图 1-18 所示系统按三刚片法规剖析,三铰共线故为几何瞬变。
()10.图中链杆1和2的交点O可视为虚铰。
()1O22. 8节余拘束的系统必然是几何可变系统。
()2. 9只有无节余拘束的几何不变系统才能作构造。
()2.10 图示2-10 铰结系统是无节余拘束的几何不变系统。
()图 2-10题2-11 2.11图示2-11铰结系统是有节余拘束的几何不变系统。
()2.12图示2-12系统是无节余拘束的几何不变系统。
()题 2-12题2-132. 13图示系统是有节余拘束几何不变的超静定构造。
()2. 14图示系统在给定荷载下可保持平衡,因此,此系统可作为构造肩负荷载。
()2. 15图示系统是有节余拘束的超静定构造。
()题 2-14题2-15答案:1× ×3× √ √6×7√ ×9×10×;2.8 ××√× 2.12 ×2458× 2.14 × 2.15 ×二、剖析题:对以下平面系统进行几何组成剖析。
3、4、C BD C BDA A5、6、BAA BCDC D EE7、8、B C E F HE D D GF B GA C A K9、10、11、12、2345113、14、15、16、17、18、19、20、4513221、22、5678451423 23123、24、64512325、26、27、28、29、30、31、32、33、A B CFDE三、在以下系统中增加支承链杆,使之成为无节余拘束的几何不变系统。
构造力学习题第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图2-7~2-15 试对图示体系进展几何组成分析。
假设是具有多余约束的几何不变体系,那么需指明多余约束的数目。
题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图题2-13图题2-14图题2-15图题2-16图题2-17图题2-18图题2-19图题2-20图题2-21图2-11=W2-1 9-W=2-3 3-W=2-4 2-W=2-5 1-W=2-6 4-W=2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系2-9、2-10、2-15具有一个多余约束的几何不变体系2-11具有六个多余约束的几何不变体系2-13、2-14几何可变体系为2-18、2-19 瞬变体系2-20、2-21具有三个多余约束的几何不变体系第3章静定梁和静定平面刚架的内力分析3-1 试作图示静定梁的内力图。
〔a〕〔b〕(c) (d)习题3-1图3-2 试作图示多跨静定梁的内力图。
〔a〕〔b〕(c)习题3-2图3-3~3-9 试作图示静定刚架的内力图。
习题3-3图习题3-4图习题3-5图习题3-6图习题3-7图习题3-8图习题3-9图3-10 试判断图示静定构造的弯矩图是否正确。
(a)(b)(c)(d)局部习题答案3-1〔a 〕m kN M B ⋅=80〔上侧受拉〕,kN F RQB 60=,kN F L QB 60-=〔b 〕m kN M A ⋅=20〔上侧受拉〕,m kN M B ⋅=40〔上侧受拉〕,kN F RQA 5.32=,kN F L QA 20-=,kN F LQB 5.47-=,kN F R QB 20=(c)4Fl M C =〔下侧受拉〕,θcos 2F F L QC =3-2 (a)0=E M ,m kN M F ⋅-=40〔上侧受拉〕,m kN M B ⋅-=120〔上侧受拉〕〔b 〕m kN M RH ⋅-=15(上侧受拉),m kN M E ⋅=25.11〔下侧受拉〕〔c 〕m kN M G ⋅=29(下侧受拉),m kN M D ⋅-=5.8(上侧受拉),m kN M H ⋅=15(下侧受拉) 3-3 m kN M CB ⋅=10〔左侧受拉〕,m kN M DF ⋅=8〔上侧受拉〕,m kN M DE ⋅=20〔右侧受拉〕 3-4 m kN M BA ⋅=120〔左侧受拉〕3-5 m kN M F ⋅=40〔左侧受拉〕,m kN M DC ⋅=160〔上侧受拉〕,m kN M EB ⋅=80(右侧受拉) 3-6 m kN M BA ⋅=60〔右侧受拉〕,m kN M BD ⋅=45〔上侧受拉〕,kN F QBD 46.28=3-7 m kN M C ⋅=70下〔左侧受拉〕,m kN M DE ⋅=150〔上侧受拉〕,m kN M EB ⋅=70(右侧受拉) 3-8 m kN M CB ⋅=36.0〔上侧受拉〕,m kN M BA ⋅=36.0〔右侧受拉〕 3-9 m kN M AB ⋅=10〔左侧受拉〕,m kN M BC ⋅=10〔上侧受拉〕 3-10 〔a 〕错误 〔b 〕错误 〔c 〕错误 〔d 〕正确第4章 静定平面桁架和组合构造的内力分析4-1 试判别习题4-1图所示桁架中的零杆。
[例题2-1-1]计算图示体系的自由度。
,可变体系.(a) (b)解:(a)几何不变体系,无多余约束(b )几何可变体系[例题2-1—2]计算图示体系的自由度。
桁架几何不变体系,有多余约束. 解:几何不变体系,有两个多余约束[例题2-1-3]计算图示体系的自由度。
桁架自由体。
解:几何不变体系,无多余约束[例题2-1—4]计算图示体系的自由度。
,几何可变体系。
解:几何可变体系[例题2-1—5]计算图示体系的自由度。
刚架自由体。
解:几何不变体系,有6个多余约束[例题2-2—1]对图示体系进行几何组成分析。
两刚片规则.几何不变体系,且无多余约束[例题2-2-2]对图示体系进行几何组成分析。
两刚片规则。
几何不变体系,且无多余约束[例题2-2-3]对图示体系进行几何组成分析。
两刚片规则。
几何不变体系,且无多余约束[例题2-2—4]对图示体系进行几何组成分析。
两刚片规则。
几何不变体系,有一个多余约束[例题2—2—5]对图示体系进行几何组成分析.二元体规则.几何不变体系,且无多余约束[例题2-2—6]对图示体系进行几何组成分析.两刚片规则,三刚片规则.几何不变体系,且无多余约束[例题2-2-7]对图示体系进行几何组成分析。
三刚片规则。
几何不变体系,且无多余约束[例题2-2-8]对图示体系进行几何组成分析.三刚片规则.几何不变体系,且无多余约束[例题2-3-1]对图示体系进行几何组成分析.两刚片规则。
几何瞬变体系[例题2—3—2]对图示体系进行几何组成分析。
两刚片规则。
几何瞬变体系[例题2-3-3]对图示体系进行几何组成分析。
三刚片规则。
几何瞬变体系[例题2—3-4]对图示体系进行几何组成分析。
三刚片规则。
几何不变体系,且无多余约束[例题2-3-5]对图示体系进行几何组成分析.三刚片规则.几何不变体系,且无多余约束[例题2-3—6]对图示体系进行几何组成分析。
二元体规则,三刚片规则.几何瞬变体系[例题2-3-7]对图示体系进行几何组成分析。
题15.7试对图示体系进行几何组成分析。
解 (1)计算自由度。
体系的自由度为W- 2j -6-r=2×8-9-7=0(2)几何组成分析。
首先把三角形A CD和BCE分别看做刚片I和刚片Ⅱ,把基础看做刚片I,则三个刚片用不共线的三个铰A、B、C分别两两相联,组成一个大的刚片。
在这个大的刚片上依次增加二元体12、DGF、CHG、EIH、IJ3。
最后得知整个体系为几何不变,且无多余约束。
题15.8试对图示体系进行几何组成分析。
解 (1)计算自由度。
体系的自由度为W- 3m - 2h -r=3×6-2×7—4=0(2)几何组成分析。
刚片AF和AB由不共线的单铰A以及链杆DH相联,构成刚片I,同理可把BIC EG部分看做刚片Ⅱ,把基础以及二元体12、34看作刚片I,则刚片I、Ⅱ、Ⅲ由不共线的三个铰F、B、G两两相联,构成几何不变体系,且无多余约束。
题15.9试对图示体系进行几何组成分析。
解 (1)计算自由度。
体系的自由度为W- 3m - 2h -r=3×14 -2×19 -4一O(2)几何组成分析。
在刚片HD上依次增加二元体DCJ、CBI、BAH构成刚片I,同理可把DMG部分看做刚片Ⅱ,把基础看做刚片I,则刚片I、Ⅱ、Ⅲ由不共线的单铰D,虚铰N、O 相联,构成几何不变体系,且无多余约束。
题15.10试对图示体系进行几何组成分析。
解 (1)计算自由度。
体系的自由度为W-2j—b-r=2×7—11-3一O(2)几何组成分析。
由于AFG部分由基础简支,所以可只分析A FG部分。
可去掉二元体B AC 只分析B FGC部分。
把三角形BDF、CEG分别看做附片I和I,刚片I和I由三根平行的链杆相联,因而整个体系为瞬变。
题15.11试对图示体系进行几何组成分析。
《结构力学》平面体系的几何组成分析知识重点及习题解析一、基本概念1.1、几何不变体系若不考虑材料变形,在任意荷载作用下几何形状和位置均能保持不变的体系。
1.2、几何可变体系即使不考虑材料变形,在很小的荷载作用下,也会发生机械运动而不能保持原有几何形状和位置的体系。
1.3、瞬变体系原可发生形状或位置的改变,但经微小位移后即转化为几何不变的体系。
1.4、刚片平面杆件体系中的几何不变的部分,也可以是一根杆件或大地等。
1.5、虚铰连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰,不过这个铰的位置随着链杆的转动而改变,这种铰称为虚铰。
1.6、自由度物体运动时可以独立变化的几何参数的数目,也即确定物体位置所需的独立坐标数目。
1.7、约束减少自由度的装置,称为联系或约束。
1.8、必要约束能改变体系自由度的约束,也即使体系成为几何不变而必须的约束。
1.9、多余约束不能减少体系自由度的约束。
1.10、计算自由度并非体系的真实自由度,而是体系的自由度数目减约束数目。
计算公式如下:W=3m-(2h+r)式中W一计算自由度;m一刚片数;h—单铰数,连接n个杆件的复铰相当于n-1个单铰;r—支座链杆数。
对于铰结链杆体系,还可用如下公式计算:W=2j-(b+r)式中j一结点数;b一杆件数二、几何不变体系的基本组成规则2.1、三刚片规则三个刚片用不在不同一条直线上的三个单铰两两铰连,组成的体系是几何不变的。
2.2、二刚片规则两个刚片用一个铰和一根不通过此铰的链杆相连,为几何不变体系;或者两个刚片用三根不全平行也不交于同一点的链杆相连,为几何不变体系。
2.3、二元体规则在一个体系上增加或拆除二元体,不会改变原有体系的几何构造性质。
三、几何构造与静定性的关系所谓体系的静定性,是指体系在任意荷载作用下的全部反力和内力是否可以根据静力平衡条件确定。
静定结构的几何构造特征是几何不变且无多余约束,而有多余约束的几何不变体系则是超静定结构。
第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。
( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。
( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。
( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。
()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。
(2)错误。
0W 是使体系成为几何不变的必要条件而非充分条件。
(3)错误。
(4)错误。
只有当三个铰不共线时,该题的结论才是正确的。
(5)错误。
CEF 不是二元体。
(6)错误。
ABC 不是二元体。
(7)错误。
EDF 不是二元体。
习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。
习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。
习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。
几何组成分析试题一、是非判断:1.在一个平面体系上增加二元体不会改变体系的计算自由度。
( )2.若平面体系的计算自由度W =0,则该体系为无多余约束的几何不变体系或瞬变体系,而不可能为常变体系。
( )3.平面铰接杆件体系的计算自由度W=2j-b-r ,式中j 表示体系中的单铰的个数。
( )4.若平面体系的计算自由度W<0,则该体系不可能是静定结构。
( )5.图题1-1(a)所示体系去掉二元体AB 、AC 后,成为图(b)的几何可变体系,故原体图(a)系为几何可变体系。
( )题1-1图 6.图题1-2(a)所示体系依次去掉二元体AB 、AC 及BD 、BE 后,成为图(b)所示体系,故原体系是无多余约束的几何不变体系。
( )7.图题1-3(a)所示体系,刚片AB 、CD 之间只用链杆1、2相连,故为几何可变体系。
( )题1-2图 题1-3图 8.图题1-4(a)所示体系,依结点1、2、3、4的顺序去掉4个二元体后,就只剩下地基,故原体系是无多余约束的几何不变体系。
( )题1-4图 题2-1图 题2-2图 二、填空1.如图2-1所示体系为具有 个多余约束的几何不变体系。
2.如图2-2所示体系为 体系。
3.如图2-3所示体系为 体系。
题2-3图 题2-4图 题2-5图(a) (b)A B CA BD E C C D AB C D 1 2(a )(b ) 1 2341 2 34 ⅠⅡ Ⅲ4.如图2-4所示刚片Ⅰ、Ⅱ、Ⅲ由铰A 及链杆1、2、3、4连接,若铰A 与及链杆1共线,则所组成体系为 体系;若铰A 与及链杆1不共线,则所组成体系为 体系。
5.如图2-5所示体系为 体系。
题2-6图 题2-7图 题2-8图6.如图2-6所示体系为 体系。
7.如图2-7所示体系为 体系。
8.如图2-8所示体系为 体系。
三~五、试对图三~五所示体系进行几何组成分析。
题三图 题四图题五图六、填充题 1 几何构造分析的目的有三:其一是检查所给体系的__________特性,其二根据几何构造的次序寻求__________分析的途径,其三是超静定次数确定。