结构力学 平面体系的几何组成分析
- 格式:pptx
- 大小:526.54 KB
- 文档页数:35
一级注册结构工程师基础考试结构力学教程第一节平面体系的几何组成分析按照机械运动及几何学的观点,对平面结构或体系的组成情况进行分析,称为平面体系的几何组成分析。
一、名词定义(一)刚片和刚片系不会产生变形的刚性平面体称为刚片。
在体系的几何组成分析中,不考虑杆件微小的应变,这种不计应变的平面杆件就是刚片,由刚片组成的体系称为刚片系。
(二)几何可变体系和几何不变体系当不考虑材料的应变时,体系中各杆的相对位置或体系的形状可以改变的体系称为几何可变体系。
否则,体系就称为几何不变体系。
一般的实际结构,都必须是几何不变体系。
(三)自由度、约束和对象物体运动时的独立几何参数数目称为自由度。
例如一个点在平面内的自由度为2,一个刚片在平面内的自由度为3。
减少体系独立运动参数的装置称为约束,被约束的物体称为对象。
使体系减少一个独立运动参数的装置称为一个约束。
例如一根链杆相当于一个约束;一个连接两个刚片的单铰相当于二个约束;一个连接n个刚片的复铰相当于n—1个单铰;一个连接二个刚片的单刚性节点相当于三个约束;一个连接n个刚片的复刚性节点相当于n—1个单刚性节点。
一个平面体系的自由度w可按下式确定W=3n—2H—R其中n为体系中的刚片总数,H、R分别为体系中的单铰总数和支杆总数。
例如图1-1所示体系的自由度分别为1和0。
自由度大于零的体系一定是几何可变的。
自由度等于零及小于零的体系,可能是几何不变的也可能是几何可变的,要根据体系中的约束布置情况确定。
(a) (b)图1-1(四)必要约束和多余约束如果在体系中增加一个约束,体系减少一个独立的运动参数,则此约束称为必要约束。
如果在体系中增加一个约束,体系的独立运动参数并不减少,则此约束称为多余约束。
平面内一个无铰的刚性闭合杆(或称单闭合杆)具有三个多余约束。
(五)等效代替1.等效刚片几何组成分析时,一个内部几何不变的平面体系,可用一个相应的刚片来代替,此刚片称为等效刚片。
2.等效链杆几何组成分析时,一根两端为铰的非直线形杆件,可用一根相应的两端为铰的直线形链杆来代替,此直线形链杆称为等效链杆。
《结构力学》平面体系的几何组成分析知识重点及习题解析一、基本概念1.1、几何不变体系若不考虑材料变形,在任意荷载作用下几何形状和位置均能保持不变的体系。
1.2、几何可变体系即使不考虑材料变形,在很小的荷载作用下,也会发生机械运动而不能保持原有几何形状和位置的体系。
1.3、瞬变体系原可发生形状或位置的改变,但经微小位移后即转化为几何不变的体系。
1.4、刚片平面杆件体系中的几何不变的部分,也可以是一根杆件或大地等。
1.5、虚铰连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰,不过这个铰的位置随着链杆的转动而改变,这种铰称为虚铰。
1.6、自由度物体运动时可以独立变化的几何参数的数目,也即确定物体位置所需的独立坐标数目。
1.7、约束减少自由度的装置,称为联系或约束。
1.8、必要约束能改变体系自由度的约束,也即使体系成为几何不变而必须的约束。
1.9、多余约束不能减少体系自由度的约束。
1.10、计算自由度并非体系的真实自由度,而是体系的自由度数目减约束数目。
计算公式如下:W=3m-(2h+r)式中W一计算自由度;m一刚片数;h—单铰数,连接n个杆件的复铰相当于n-1个单铰;r—支座链杆数。
对于铰结链杆体系,还可用如下公式计算:W=2j-(b+r)式中j一结点数;b一杆件数二、几何不变体系的基本组成规则2.1、三刚片规则三个刚片用不在不同一条直线上的三个单铰两两铰连,组成的体系是几何不变的。
2.2、二刚片规则两个刚片用一个铰和一根不通过此铰的链杆相连,为几何不变体系;或者两个刚片用三根不全平行也不交于同一点的链杆相连,为几何不变体系。
2.3、二元体规则在一个体系上增加或拆除二元体,不会改变原有体系的几何构造性质。
三、几何构造与静定性的关系所谓体系的静定性,是指体系在任意荷载作用下的全部反力和内力是否可以根据静力平衡条件确定。
静定结构的几何构造特征是几何不变且无多余约束,而有多余约束的几何不变体系则是超静定结构。
结构力学多媒体课件2 平面体系的几何组成分析Geometric construction analysis基本要求:明确几何组成分析的目的,领会几何不变体系、几何可变体系、瞬变体系和刚片、约束、自由度等概念。
掌握几何不变体系的简单组成规则,能灵活运用三个规则对平面体系进行组成分析。
重点:几何不变体系的简单组成规则难点:如何正确应用几何不变体系的简单组成规则对平面体系进行几何组成分析,二元体的概念。
教学内容:﹡几何不变体系、几何可变体系及几何组成分析的目的﹡刚片、自由度和约束的概念﹡平面体系的计算自由度﹡无多余约束几何不变体系的组成规则﹡几何组成分析举例﹡结构的几何组成和静定性的关系§2-1 概述结构是由若干根杆件通过结点间的联接及与支座联接组成的。
结构是用来承受荷载的,因此必须保证结构的几何构造是不可变的。
问题:是不是若干杆件随意组合都能成为结构?1、几何不变体系和几何可变体系结构几何不变体系:体系受到任意荷载作用后,在不考虑材料变形的条件下,几何形状和位置保持不变的体系。
§2-1 概述1、几何不变体系和几何可变体系机构意荷载作用后,在不考虑材料变形的条件下,几何形状和位置可以改变的体系。
显然只有几何不变体系可作为结构,而几何可变体系是不可以作为结构的。
因此在选择或组成一个结构时必须掌握几何不变体系的组成规律。
§2-1 概述1、几何不变体系和几何可变体系P ∆瞬变体系:本来是几何可变,经微小位移后成为几何不变体系。
这是几何可变体系的一种特殊情况。
ααA BCP F NCA FNCBCPαsin2PF NCA=因此瞬变体系是不能作为结构使用的。
§2-1 概述1、几何不变体系和几何可变体系⎪⎩⎪⎨⎧⎩⎨⎧瞬变体系常变体系几何可变体系几何不变体系体系 (图1) P (图2) P P∆(图3)§2-1 概述2、几何组成分析几何组成分析(机动分析或构造分析)—判断一个杆系是否是几何不变体系,同时还要研究几何不变体系的组成规律。