结构力学 第二章 几何组成分析(典型例题)
- 格式:doc
- 大小:136.00 KB
- 文档页数:4
[例题2-1-1]计算图示体系的自由度。
^ = 0 ,可变体(R (b)解:(R ^ = 3x3-2x2-5 = 0J7 = 3x5-3x2-2x2-5 = 0几何不变体系,无多余约束(&) J7 = 3x3-2x2-5 = 0几何可变体系[例题2-1-2]计算图示体系的自由度。
桁架几何不变体系,有多余约束。
^■ = 3xl0-2xl4-3=-ljy=2x6-10-3 = -l几何不变体系,有一个多余约束[例题 2-2-5]对图示体系进行几何组成分析。
二元体规 则。
^■ = 3x19-2x27-3=0J7=2xll-19-3 = 0几何不变体系,且无多余约束[例题 2-2-6]对图示体系进行几何组成分析。
两刚片规 则,三刚片规则。
[例题 2-2-7] 对图示体系进行几何组成分析。
三刚片规 则。
jy = 3x2-2xl-4 = 0 几何不变体系,且无多余约束 [例题 2-2-8] 对图示体系进行几何组成分析。
三刚片规则。
[例题 2-2-4]对图示体系进行几何组成分析。
两刚片规 则。
= 3x4-2x3-3-3=0 几何不变体系,且无多余约束 - XJ7 = 3xl5-2x21-3=0^=2x9-15-3=0几何不变体系,且无多余约束[例题 2-3-1 ]J7 = 3xl3-2xl7-5 = 0^=2x9-13-5=0几何瞬变体系= 3x3-2x2-5 = 0 几何瞬变体系 [例题 2-3-3] 对图示体系进行几何组成分析。
三刚片规 则。
几何瞬变体系[例题 2-3-4][例题 2-3-2]对图示体系进行几何组成分析。
两刚片规 则。
=2x8-12-4 = 0对图示体系进行几何组成分析。
两刚片规 则。
J7 = 3x4-2x4-4=0几何不变体系,且无多余约束[例题 2-3-5]对图示体系进行几何组成分析。
三刚片规 则。
对图示体系进行几何组成分析。
三刚片规 则。
J7 = 3x8-2x9-6 = 0jy=2x7-8-6 = 0几何不变体系,且无多余约束[例题 2-3-8] 对图示体系进行几何组成分析o 二元体规 则,三刚片规则。
第二章 结构的几何组成分析(一)单项选择题1.三刚片组成无多余约束的几何不变体系,其连接方式是 【 B 】A .以任意的三个铰相连B .以不在一条线上的三个铰相连C .以三对平行链杆相连D .以三个无穷远处的虚铰相连2.从一个无多余约束几何不变体系上去除二元体得到的新体系为 【 A 】 A .无多余约束的几何不变体系 B .有多余约束的几何不变体系 C .常变体系 D .瞬变体系 3.静定结构的几何组成是【 C 】A .瞬变体系B .常变体系C .无多余约束的几何不变体系D .有多余约束的几何不变体系 4.图示体系属于【 D 】A .无多余约束的几何不变体系B .有多余约束的几何不变体系C .瞬变体系D .常变体系5.图示体系是【 B 】A .瞬变体系B .常变体系C .无多余约束的几何不变体系D .有多余约束的几何不变体系 (二)填空题6.连接4个刚片的复铰相当于 6 个约束。
7.不能起到减少自由度作用的约束称为 多余约束 。
8.将三刚片组成无多余约束的几何不变体系,必要的约束数目是 6 。
9.在一个几何不变体系上加二元体后的新体系为 几何不变体系 。
10.图示体系的几何组成是 无多与约束的几何不变体系 。
(三)分析题11~15.对图示体系进行几何组成分析(要写出分析过程)。
题4图题5图题10图解:11.撤除支座约束,剩余部分为刚片Ⅰ和Ⅱ用既不完全平行又不完全相交的三根链杆1、2、3相连,故原体系为无多余约束的几何不变体系12题解:.撤除支座约束,去除二元体C -A -D 、C -B -E ,剩余部分为刚片Ⅰ(CDE )和Ⅱ(FGH )用既不完全平行又不完全相交的三根链杆1、2、3相连,故原体系为无多余约束的几何不变体系。
AB C DEF GH题12图AB CDE FC D E F 答11图 ⅠⅡ 1 2 3 D E F GH答12图 12313题解;.撤除支座约束,去除二元体D -C -E ,剩余部分为两刚片(杆AF 和BF )用两平行链杆相连,故原体系为有一个自由度的几何可变体系。
第二章 结构的几何组成分析2-1 分析图2-27所示平面桁架的几何不变性,并计算系统的多余约束数。
3571(a)(a)解:视杆为约束,结点为自由体。
C =11,N =7×2=14f =11-7×2+3=0该桁架布局合理,不存在有应力的杆,故为无多余约束的几何不变系。
(b)(b)解:视杆和铰支座为约束,结点为自由体。
C =9+2+1=12,N =6×2=12f =12-6×2=0该桁架布局合理,不存在有应力的杆,故为无多余约束的几何不变系。
(c)(c)解:视杆和铰支座为约束,结点为自由体。
C =10+2×2=14,N =6×2=12f=14-12=2该桁架为有两个多余约束的几何不变系。
1217(d)(d)解:视杆和铰支座为约束,结点为自由体。
C =30+3=33,N =17×2=34f=33-34=-1故该桁架为几何可变系。
8(e)(e)解:视杆为约束,结点为自由体。
C =13,N =8×2=16f=13-16+3=0将1-2-3-4、5-6-7-8看作两刚片,杆3-6、杆2-7、杆4-5相互平行,由两刚片原则知,为瞬时可变系统。
6(f)(f)解:视杆和固定铰支座为约束,结点为自由体。
C =22+3×2=28,N =14×2=28f=28-28=0将12-13-14、7-11-12、1-2-3-4-5-6-7-8-9-10看作三刚片,三刚片由铰7、铰12、铰14连结,三铰共线,故该桁架为瞬时可变系统。
(g)(g)解:视杆和固定铰支座为约束,结点为自由体。
C=24+4×2=32,N=16×2=32f=32-32=0由于杆15-14-3、杆12-11-4、杆9-5相交于一点,故该桁架为瞬时可变系。
(h)(h)解:视杆和固定铰支座为约束,结点为自由体。
C=12+2×2=16,N=8×2=16f=16-16=0该桁架布局合理,加减二元体之后,无有应力的杆,故该桁架为无多余约束的几何不变系。
第二章结构的几何组成分析2-1分析图2-27所示平面桁架的几何不变性,并计算系统的多余约束数。
(a)(a)解:视杆为约束,结点为自由体。
C=11,N=7×2=14f =11-7×2+3=0该桁架布局合理,不存在有应力的杆,故为无多余约束的几何不变系。
(b)(b)解:视杆和铰支座为约束,结点为自由体。
C=9+2+1=12,N=6×2=12f =12-6×2=0该桁架布局合理,不存在有应力的杆,故为无多余约束的几何不变系。
(c)(c)解:视杆和铰支座为约束,结点为自由体。
C=10+2×2=14,N=6×2=12f=14-12=2该桁架为有两个多余约束的几何不变系。
1217(d)(d)解:视杆和铰支座为约束,结点为自由体。
C =30+3=33,N =17×2=34f=33-34=-1故该桁架为几何可变系。
(e)(e)解:视杆为约束,结点为自由体。
C =13,N =8×2=16f=13-16+3=0将1-2-3-4、5-6-7-8看作两刚片,杆3-6、杆2-7、杆4-5相互平行,由两刚片原则知,为瞬时可变系统。
6 (f)(f)解:视杆和固定铰支座为约束,结点为自由体。
C =22+3×2=28,N =14×2=28f=28-28=0将12-13-14、7-11-12、1-2-3-4-5-6-7-8-9-10看作三刚片,三刚片由铰7、铰12、铰14连结,三铰共线,故该桁架为瞬时可变系统。
(g)(g)解:视杆和固定铰支座为约束,结点为自由体。
C=24+4×2=32,N=16×2=32f=32-32=0由于杆15-14-3、杆12-11-4、杆9-5相交于一点,故该桁架为瞬时可变系。
(h)(h)解:视杆和固定铰支座为约束,结点为自由体。
C=12+2×2=16,N=8×2=16f=16-16=0该桁架布局合理,加减二元体之后,无有应力的杆,故该桁架为无多余约束的几何不变系。
第2章平面体系的几何构造分析典型例题1. 对图2.1a体系作几何组成分析。
图2.1分析:图2.1a等效图2.1b(去掉二元体)。
对象:刚片Ⅰ、Ⅱ和Ⅲ;联系:刚片Ⅰ、Ⅲ有虚铰A(杆、2);刚片Ⅱ、Ⅲ有虚铰C(无穷远)(杆3、4);刚片Ⅰ、Ⅱ有虚铰B(杆5、6);结论:三铰共线,几何瞬变体系。
2. 对图2.2a体系作几何组成分析。
图2.1分析:去掉二元体(杆12、杆34和杆56图2.1b),等效图2.1c。
对象:刚片Ⅰ和Ⅱ;联系:三杆:7、8和9;结论:三铰不共线,无多余约束的几何不变体系。
3. 对图2.3a体系作几何组成分析。
图2.3 分析:图2.3a对象:刚片Ⅰ(三角形原则)和大地Ⅱ;联系:铰A和杆1;结论:无多余约束的几何不变体系。
对象:刚片Ⅲ(三角形原则)和大地Ⅱ;联系:杆2、3和4;结论:无多余约束的几何不变体系。
第3章静定结构的受力分析典型题1. 求图3.1结构的内力图。
图3.1解(1)支座反力(单位:kN)由整体平衡,得=100.= 66.67,=-66.67.(2)内力(单位:kN.m制)取AD为脱离体:,,;,,。
取结点D为脱离体:,,取BE为脱离体:3,,。
取结点E为脱离体:,,(3)内力图见图3.1b~d。
2. 判断图3.2a和b桁架中的零杆。
图3.2分析:判断桁架零杆的常用方法是找出桁架中的L型结点和T型结点。
如果这两种结点上无荷载作用.那么L型纪点的两杆及T型结点的非共线杆均为零杆。
解:图3.2a:考察结点C、D、E、I、K、L,这些结点均为T型结点,且没有荷载作用,故杆件CG、DJ、EH、IJ、KH、LF 均为零杆。
考察结点G和H,这两个结点上的两竖向链杆均已判断为零杆,故这两个结点的受力也已成为T型结点的情形.由于没有荷载作用,故杆件AG、BH也为零杆。
整个结构共有8根零杆.如图3.2c虚线所示。
图3.2b:考察结点D,为“K”型结点且无荷载作用,故;对称结构对称荷载(A支座处的水平反力为零),有,故杆件DE和DF必为零杆。
[例题2-1-1]
计算图示体系的自由度。
,可变体系。
(a)(b)
解:
(a)
几何不变体系,无多余约束
(b)
几何可变体系
[例题2-1-2]
计算图示体系的自由度。
桁架几何不变体系,有多余约束。
解:
几何不变体系,有两个多余约束
[例题2-1-3]
计算图示体系的自由度。
桁架自由体。
解:
几何不变体系,无多余约束
[例题2-1-4]
计算图示体系的自由度。
,几何可变体系。
解:
几何可变体系
[例题2-1-5]
计算图示体系的自由度。
刚架自由体。
解:
几何不变体系,有6个多余约束
[例题2-2-1]
对图示体系进行几何组成分析。
两刚片规则。
几何不变体系,且无多余约束
[例题2-2-2]
对图示体系进行几何组成分析。
两刚片规则。
几何不变体系,且无多余约束
[例题2-2-3]
对图示体系进行几何组成分析。
两刚片规则。
几何不变体系,且无多余约束
[例题2-2-4]
对图示体系进行几何组成分析。
两刚片规则。
几何不变体系,有一个多余约束
[例题2-2-5]
对图示体系进行几何组成分析。
二元体规则。
几何不变体系,且无多余约束
[例题2-2-6]
对图示体系进行几何组成分析。
两刚片规则,三刚片规则。
几何不变体系,且无多余约束
[例题2-2-7]
对图示体系进行几何组成分析。
三刚片规则。
几何不变体系,且无多余约束
[例题2-2-8]
对图示体系进行几何组成分析。
三刚片规则。
几何不变体系,且无多余约束[例题2-3-1]
对图示体系进行几何组成分析。
两刚片规则。
几何瞬变体系
[例题2-3-2]
对图示体系进行几何组成分析。
两刚片规则。
几何瞬变体系
[例题2-3-3]
对图示体系进行几何组成分析。
三刚片规则。
几何瞬变体系
[例题2-3-4]
对图示体系进行几何组成分析。
三刚片规则。
几何不变体系,且无多余约束
[例题2-3-5]
对图示体系进行几何组成分析。
三刚片规则。
几何不变体系,且无多余约束
[例题2-3-6]
对图示体系进行几何组成分析。
二元体规则,三刚片规则。
几何瞬变体系
[例题2-3-7]
对图示体系进行几何组成分析。
三刚片规则。
几何不变体系,且无多余约束
[例题2-3-8]
对图示体系进行几何组成分析。
二元体规则,三刚片规则。
几何瞬变体系
[例题2-3-9]
对图示体系进行几何组成分析。
二元体规则,三刚片规则。
几何瞬变体系
[例题2-3-10]
对图示体系进行几何组成分析。
三刚片规则。
几何不变体系,且无多余约束
[例题2-3-11]
对图示体系进行几何组成分析。
三刚片规则。
几何不变体系,且无多余约束
[例题2-3-12]
对图示体系进行几何组成分析。
三刚片规则。
几何瞬变体系
几何不变体系,有一个多余约束[例题2-3-13]
对图示体系进行几何组成分析。
两刚片规则。
几何不变体系,有一个多余约束
[例题2-3-14]
对图示体系进行几何组成分析。
三刚片规则。
几何不变体系,且无多余约束
[例题2-3-15]
对图示体系进行几何组成分析。
两刚片规则,三刚片规则。
几何不变体系,且无多余约束
[例题2-3-16]
对图示体系进行几何组成分析。
三刚片规则。
几何不变体系,且无多余约束
[例题2-3-17]
对图示体系进行几何组成分析。
两刚片规则。