讲连续型随机变量分布及随机变量的函数的分布
- 格式:pdf
- 大小:248.82 KB
- 文档页数:13
第七讲连续型随机变量(续)及 随机变量的函数的分布3. 三种重要的连续型随机变量 (1)均匀分布设连续型随机变量X 具有概率密度)5.4(,,0,,1)(⎪⎩⎪⎨⎧<<-=其它b x a ab x f则称X 在区间(a,b)上服从均匀分布, 记为X~U(a,b).X 的分布函数为)6.4(.,1,,,,0)(⎪⎪⎩⎪⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F(2)指数分布设连续型随机变量X 的概率密度为)7.4(,,0,0,e1)(/⎪⎩⎪⎨⎧>=-其它x x f x θθ其中θ>0为常数, 则称X 服从参数为θ的指数分布.容易得到X 的分布函数为)8.4(.,0,0,1)(/⎩⎨⎧>-=-其它x e x F x θ如X 服从指数分布, 则任给s,t>0, 有第二章 随机变量及其分布§4 连续型随机变量及其概率密度1=2P{X>s+t | X > s}=P{X > t} (4.9) 事实上}.{e ee)(1)(1}{}{}{)}(){(}|{//)(t X P s F t s F s X P t s X P s X P s X t s X P s X t s X P t s t s >===-+-=>+>=>>⋂+>=>+>--+-θθθ性质(4.9)称为无记忆性.指数分布在可靠性理论和排队论中有广泛的运用. (3)正态分布设连续型随机变量X 的概率密度为)10.4(,,e21)(222)(∞<<-∞=--x x f x σμσπ其中μ,σ(σ>0)为常数, 则称X 服从参数为μ,σ的正态分布或高斯(Gauss)分布, 记为X~N(μ,2σ).显然f(x)≥0, 下面来证明1d )(=⎰+∞∞-x x f令t x =-σμ/)(, 得到dx edx et x 22)(2222121-∞+∞---∞+∞-⎰⎰=πσπσμ.1d 21d 21)11.4(π2d d e,,d d ,d e22)(20222/)(22/2222222======⎰⎰⎰⎰⎰⎰⎰∞∞--∞∞---∞-+∞∞-+∞∞-+-∞∞--x ex e r r I u t eI t I t x r u t t πσπθσμπ于是得转换为极坐标则有记f(x)具有的性质:f (x )的图形:1.50.5.(1).曲线关于x=μ对称. 这表明对于任意h>0有P{μ-h<X ≤μ}=P{μ<X ≤μ+h}. (2).当x=μ时取到最大值.π21)(σμ=f x 离μ越远, f(x)的值越小. 这表明对于同样长度的区间, 当区间离μ越远, X 落在这个区间上的概率越小。
概率论与数理统计教案-随机变量及其分布一、教学目标1. 了解随机变量的概念及其重要性。
2. 掌握随机变量的分布函数及其性质。
3. 学习离散型随机变量的概率分布及其数学期望。
4. 理解连续型随机变量的概率密度及其数学期望。
5. 能够运用随机变量及其分布解决实际问题。
二、教学内容1. 随机变量的概念及分类。
2. 随机变量的分布函数及其性质。
3. 离散型随机变量的概率分布:二项分布、泊松分布、超几何分布等。
4. 连续型随机变量的概率密度:正态分布、均匀分布、指数分布等。
5. 随机变量的数学期望及其性质。
三、教学方法1. 采用讲授法,系统地介绍随机变量及其分布的概念、性质和计算方法。
2. 利用案例分析,让学生了解随机变量在实际问题中的应用。
3. 借助数学软件或图形计算器,直观地展示随机变量的分布情况。
4. 开展小组讨论,培养学生合作学习的能力。
四、教学准备1. 教学PPT课件。
2. 教学案例及实际问题。
3. 数学软件或图形计算器。
4. 教材、辅导资料。
五、教学过程1. 导入:通过生活实例引入随机变量的概念,激发学生的学习兴趣。
2. 讲解随机变量的定义、分类及其重要性。
3. 讲解随机变量的分布函数及其性质,引导学生理解分布函数的概念。
4. 讲解离散型随机变量的概率分布,结合实例介绍二项分布、泊松分布、超几何分布等。
5. 讲解连续型随机变量的概率密度,介绍正态分布、均匀分布、指数分布等。
6. 讲解随机变量的数学期望及其性质,引导学生掌握数学期望的计算方法。
7. 案例分析:运用随机变量及其分布解决实际问题,提高学生的应用能力。
8. 课堂练习:布置适量练习题,巩固所学知识。
10. 作业布置:布置课后作业,巩固课堂所学。
六、教学评估1. 课堂提问:通过提问了解学生对随机变量及其分布的理解程度。
2. 课堂练习:检查学生解答练习题的情况,评估学生对知识的掌握程度。
3. 课后作业:布置相关作业,收集学生作业情况,评估学生对知识的运用能力。
一、概述连续型随机变量的函数的分布是概率论与数理统计领域一个重要的研究课题。
在实际应用中,我们经常需要分析具有一定概率分布的随机变量经过某种函数变换后的分布情况。
这不仅对于了解随机变量的性质和规律具有重要意义,还在实际问题的求解中起到了关键作用。
在本文中,我们将首先对连续型随机变量和随机变量的函数进行简要介绍,然后深入探讨连续型随机变量的函数的分布,并总结相关的分布思政。
二、连续型随机变量的基本概念1. 连续型随机变量的定义连续型随机变量是指一个随机变量在其取值范围内任意取值的概率分布是连续分布的随机变量。
具体来说,如果一个随机变量取值范围为无限区间,那么我们称其为连续型随机变量。
2. 连续型随机变量的密度函数对于连续型随机变量X,其概率密度函数f(x)定义为在任意实数x 上有f(x)≥0,并且在整个实数轴上的积分等于1,即∫f(x)dx=1。
三、随机变量的函数随机变量的函数是指对于一个已知的随机变量X,我们可以利用某个函数Y=g(X)来构造一个新的随机变量Y。
其中,g(X)即为随机变量X 的函数。
四、连续型随机变量的函数的分布1. 变量变换法则对于连续型随机变量X,其函数Y=g(X)的密度函数fY(y)的计算可以利用变量变换法则进行。
变量变换法则的基本思想是对Y的一个小区间与X的一个小区间之间的关系建立对应关系,然后通过变量代换计算概率密度函数fY(y)。
2. 实例分析通过一个实例来分析连续型随机变量的函数的分布。
假设X~U(0,1)表示在[0,1]上均匀分布的连续型随机变量,求Y=X^2的概率密度函数。
我们可以利用变量变换法则来计算Y的概率密度函数。
五、连续型随机变量的函数的分布思政在实际应用中,连续型随机变量的函数的分布思政具有重要的意义。
我们可以通过对分布思政的深入理解,更好地应用在现实问题的分析与求解过程中。
六、总结本文主要对连续型随机变量的函数的分布进行了介绍和分析,并总结了相关的分布思政。