两个随机变量的函数的分布-完整版
- 格式:pdf
- 大小:2.33 MB
- 文档页数:24
§3.3 两个随机变量函数的分布在实际问题中,有些随机变量往往是两个或两个以上随机变量的函数. 例如,医学上考察某地区40岁以上的人群,用X 和Y 分别表示一个人的年龄和体重,Z 表示这个人的血压,并且已知Z 与X ,Y 的函数关系式),(Y X g Z = 我们希望通过),(Y X 的分布来确定Z 的分布. 在本节中,我们重点讨论两种特殊的函数关系: (1)Y X Z +=(2) },m ax{Y X Z =和},m in{Y X Z =,其中X 与Y 相互独立. 一、 离散型随机变量的函数的分布设),(Y X 是二维离散型随机变量,其概率分布为),2,1,(},{ ====j i p y Y x X P ijj i ,又),(y x g 是一个二元函数, 则(,)Z g X Y =也是一个一维离散型随机变量, 设),(Y X g Z =的所有可能取值为 ,2,1,=k z k , 则Z 的概率分布为(,){}{(,)}i j kk k ij g x y z P Z z P g X Y z P =====∑,,2,1 =k其中(,)i j kij g x y z P =∑是指若有一些(),i j x y 都使(,)i j k g x y z =,则将这些(),i j x y 对应的概率相加。
例1 设随机变量),(Y X 的概率分布如下表求(1)Z X Y =+的概率分布;(2)Z XY =的概率分布 解 由),(Y X 的概率分布可得把Z 值相同项对应的概率值合并得(1)Z X Y =+的概率分布为(2)Z XY =的概率分布例2 :若X 和Y 相互独立,且分别服从参数为21,λλ的泊松分布,求Y X Z +=的分布律.解:因,X Y 所有可能取值为012,,,,故Y X Z +=,X Y 所有可能取值为012,,,,事件{}{}Z n X Y n ==+=可以写成互不相容的事件{}X k Y n k ==-,(0,1,2,,)k n =之和,由,X Y 相互独立,所以有{}P Z n ={}P X Y n =+={}0nk P X k Y n k ====-∑,{}{}0n k P X k P Y n k ====-∑()1212!!kn k nk ee k n k λλλλ---==⋅-∑()()121201!!nk n kk ek n k λλλλ-+-==⋅-∑()()12120!!!!nk n kk e n n k n k λλλλ-+-==⋅-∑()1212!nk k n k nk e C n λλλλ-+-==⋅⋅∑()()1212!n en λλλλ-+=+()012n =,,,这表明Y X Z +=服从参数为12λλ+的泊松分布。
−∞ −∞3.5 两个随机变量的函数的分布一、知识点1、离散型随机变量(X , Y )的分布律P {X = x i , Y = y j } = p ij ,则Z = g (X , Y )的分布为:P {Z = z k } = P {g (X , Y ) = z k } = ∑g (x i ,y j )=z k p ij .2、连续型随机变量(X , Y )的概率密度为f (x , y ),则Z = g (X , Y )的分布函数为:F Z (z ) = P {Z ≤ z } = ∬g (x ,y )≤z f (x , y )dxdy ,f Z (z ) = F Z ′(z ).3、随机变量Z = X + Y 的分布: F Z (z ) = P (Z ≤ z ) = P ( X + Y ≤ z ) ,f Z (z ) =f Z (z ) = ∫+∞ f (x , z − x )dx ∫+∞ f (z − y , y )dy 特别,当X 与Y 相互独立时,f (z ) = f ∗ f =+∞f (x )f (z − x )dx = +∞ f (z − y )f (y )dy . Z X Y ∫−∞ X Y ∫−∞ X Y4、最值函数Z = max (X , Y ) , Z = min (X , Y ): X , Y 相互独立,F max (z ) = F X (z ) ∙ F Y (z )F min (z ) = 1 − [1 − F X (z )] ∙ [1 − F Y (z )]5、正态分布的推广性质:(1)两个独立的正态分布的和仍为正态分布(μ1 + μ2,σ2 + σ2). 1 2(2)n 个相互独立的正态分布的线性组合,仍服从正态分布,且μ = ∑i C i μi ,σ2 = ∑i C 2σ2. i i6、泊松分布可加性:X 1~π(λ1),X 2~π(λ2), X 1与X 2相互独立,则Z = X 1 + X 2~π(λ1 + λ2).7、二项分布可加性:X 1~B (n 1, p ), X 2~B (n 2, p ), X 1与X 2相互独立,则Z = X 1 + X 2~B (n 1 + n 2, p ).二、重点:1、求离散型随机变量函数的分布;2、求连续型随机变量函数的分布;3、重要公式和结论;4、Z = X + Y 和最值函数的概率分布.三、难点:Z = X + Y 和最值函数的概率密度及分布函数的求解.。