此时,称Y服从自由度为1的χ2-分布。
变限函数求导公式:
b(x)
f
(t)dt
f b(x)b(x)
f a(x) a(x).
a(x)
例3:设r.v.X~U(0,1),求Y=eX的概率密度.
1, 0 x 1, 解:因r.v.X~U(0,1),故X的概率密度为:fX (x) 0, 其它.
如图, fX (x)的非零段将整个 x轴分为三部分:
(-∞,0),[0,1),[1,+ ∞); 从而,整个y轴相应地也被分为三 部分: (-∞,1),[1,e),[e,+ ∞).
因此,应就y分为上述三个区 间来求Y的分布函数.
(1) 当y<1时,再分为两种情形:
a) 当y≤0时,
FY (y) PY y P eX y
P() 0;
b) 当0< y<1时,
fY
(
y)
1 y
,
1 y e,
0, 其它.
注意:本题是重要题型,必须熟练掌握。
方法2 公式法(y=g(x)为单调可导函数)
定理:设连续型随机变量X的概率密度为
f X (x)( x )
函数g(x)处处可导且有恒有 g(x) 0(g(x) 0)
则Y=g(X)是连续型随机变量,且其概率密度为
◆如果Y各可能取值中存在多个值相等,则Y取该值的概 率为这些相等值对应的X取值的概率之和.
例如,当 yk g(xi ) g(x j ) g(xm ),
则由基本事件互斥性与概率可加性得:
PY yk P X xi P X xj P X xm
例1:设r.v.X的分布列为:
X
-1
012
P 0.2 0.3 0.1 0.4