π
度 为
,k ∈ Z
周 期 的 一 半
变式:求函数 的单调区间. 变式 求函数 y=2sin(-x )的单调区间 的单调区间
解: y = 2 sin(− x) = −2 sin x Q
函数在 [ −
π
2
π
2
+2kπ, 2 +2kπ],k∈Z 上单调递减 π π ∈
3π 2
π
思考:令 思考 令t=-x,则y=2sint 则
Q
函数在 [
+2kπ, π
+2kπ],k∈Z上单调递增 π ∈
不通过求值,比较大小: 例3 不通过求值,比较大小: (1) sin 20 , sin170 (3) sin(− 23π ) 5 解(2) Q ,
0
0
(2) sin( −
)
π
18
), sin( −
π
10
)
π π π π Q 又 y=sinx 在[− , ]上是增函数 − <− <− < 2 2 2 10 18 2 π π sin( − ) < sin(− ) 方法归纳: 方法归纳:利用
再看正弦函数,由诱导公式 一) 再看正弦函数 由诱导公式(一 由诱导公式
sin( x + 2kπ ) = sin x, k ∈ Z
即自变量x的值每增加或减少 即自变量 的值每增加或减少 值重复出现(函数值不变 函数值不变)! 值重复出现 函数值不变
的整数倍,正弦函数的 2π 的整数倍 正弦函数的
一般地,对于函数 如果存在一个非零常数 一般地 对于函数f(x),如果存在一个非零常数 使得定义域 对于函数 如果存在一个非零常数T,使得定义域 内的每一个 值都满足: 每一个x值都满足 内的每一个 值都满足