42时域分析法直接积分法
- 格式:pptx
- 大小:824.15 KB
- 文档页数:43
midas时程荷载工况中几个选项的说明时程荷载工况中几个选项的说明动力方程式如下:在做时程分析时,所有选项的设置都与动力方程中各项的构成和方程的求解方法有关,所以在学习时程分析时,应时刻联想动力方程的构成,这样有助于理解各选项的设置。
另外,正如哲学家所言:运动是绝对的,静止是相对的。
静力分析方程同样可由动力方程中简化(去掉加速度、速度项,位移项和荷载项去掉时间参数)。
0.几个概念自由振动: 指动力方程中P(t)=0的情况。
P(t)不为零时的振动为强迫振动。
无阻尼振动: 指[C]=0的情况。
无阻尼自由振动: 指[C]=0且P(t)=0的情况。
无阻尼自由振动方程就是特征值分析方程。
简谐荷载: P(t)可用简谐函数表示,简谐荷载作用下的振动为简谐振动。
非简谐周期荷载: P(t)为周期性荷载,但是无法用简谐函数表示,如动水压力。
任意荷载: P(t)为随机荷载(无规律),如地震作用。
随机荷载作用下的振动为随机振动。
冲击荷载: P(t)的大小在短时间内急剧加大或减小,冲击后结构将处于自由振动状态。
1.关于分析类型选项目前有线性和非线性两个选项。
该选项将直接影响分析过程中结构刚度矩阵的构成。
非线性选项一般用于定义了非弹性铰的动力弹塑性分析和在一般连接中定义了非线性连接(非线性边界)的结构动力分析中。
当定义了非弹性铰或在一般连接中定义了非线性连接(非线性边界),但是在时程分析工况对话框中的分析类型中选择了“线性”时,动力分析中将不考虑非弹性铰或非线性连接的非线性特点,仅取其特性中的线性特征部分进行分析。
只受压(或只受拉)单元、只受压(或只受拉)边界在动力分析中将转换为既能受压也能受拉的单元或边界进行分析。
如果要考虑只受压(或只受拉)单元、只受压(或只受拉)边界的非线性特征进行动力分析应该使用边界条件>一般连接中的间隙和钩来模拟。
2.关于分析方法选项目前有振型叠加法、直接积分法、静力法三个选项。
这三个选项是指解动力方程的方法。
瞬态电磁场分析计算方法研究一、瞬态电磁场基础概念瞬态电磁场是指随着时间变化的电磁场,由于其具有复杂性和强烈的非线性特性,分析瞬态电磁场需要非常精细的计算方法。
电磁场由电荷和电流产生,当电荷和电流变化快速时,将产生强烈的瞬态电磁场。
一些重要的应用领域,例如雷达,无线电通信,电力系统和电子设备等,都需要研究瞬态电磁场,因为它们具有许多微弱同时又非常重要的效应。
二、瞬态电磁场计算方法计算瞬态电磁场的方法可以分为两种,即数值法和解析法。
数值法基于数值模拟,可以模拟各种物理现象,包括电荷和电流的变化以及其对电磁场的影响。
解析法则基于解析模型,通过解析电磁场的方程来计算电磁场的分布。
两种方法各有优缺点,需要根据应用需求选择合适的方法。
1. 数值法(1) 有限差分法在有限差分法中,将计算区域离散成网格,然后将瞬态电磁场方程数值化。
有限差分法是瞬态电磁场计算最常见也是最简单的方法,其精度可以通过增加网格的数目来提高。
有限差分法适用于简单的几何形状和小型模型。
(2) 有限元法有限元法可以处理不规则的几何形状和大型模型,其基本思想是将瞬态电磁场方程映射到连续的三角形或四边形元素上,然后用数学方法求解。
有限元法需要先进行预处理,即建立有限元模型、分解矩阵系数、处理边界条件等,因此计算复杂度较高。
(3) 时域积分法时域积分法可以直接处理瞬态电磁场方程,在时域内求解电流密度和电场分布,然后将其转换为频域的形式,在频域外推求得瞬态电磁场。
时域积分法适用于处理任意几何形状和复杂的电荷和电流形式,但计算复杂度很高。
2. 解析法(1) 分析解法分析解法是通过解析求解瞬态电磁场方程来计算电场的分布。
分析解法适用于特定的几何形状和边界条件,并且可以在较短的时间内得到解析解,因此适用于瞬态电磁场短时间内的快速计算,但不能用于计算较复杂的几何形状。
(2) 半解析解法半解析解法是结合有限元法和分析解法的优势而发展出来的一种方法。
它可以处理较复杂的几何形状,并且通过使用分析解法来处理区域内的一些部分,再用数值方法来处理其他部分。
有限元各种时域计算方法有限元方法(FEM)是数值分析中一种常用的工程计算方法,用于求解连续介质的力学问题。
在时域情况下,FEM可以用于求解动力学问题,其中物体的响应随时间变化。
下面介绍几种常用的有限元时域计算方法:1. 爆炸分析方法(Explosion Analysis Method):用于模拟爆炸、冲击等快速载荷作用下的结构动力响应。
该方法将爆炸过程分解为多个离散时间步骤,并使用显式时间积分方法求解结构动力方程。
通过该方法可以得到结构的位移、速度、加速度等动态响应结果。
2. 频率域响应谱(Frequency Domain Response Spectrum):将时域问题转化为频域问题进行求解。
根据结构的固有频率和阻尼比,可以建立系统的频率响应函数,进而得到结构在特定载荷下的响应。
这种方法适用于大规模结构问题,可以有效地简化计算的复杂性。
3. 时间有限差分法(Time Finite Difference Method):该方法将时域问题转化为差分格式,用一系列离散时间步骤来近似连续时间。
通过在空间和时间上进行网格划分,可以利用差分格式求解结构动力方程。
这种方法对于线性和非线性问题都适用,并且可以实现高精度的模拟结果。
4. 显式时间积分法(Explicit Time Integration Method):该方法使用显式格式对结构动力方程进行时间积分,通过预测和修正的过程求解结构的动态响应。
显式时间积分法具有计算效率高的优点,适用于稳定性良好的问题,但在处理非线性和不稳定问题时可能出现数值耗散和不稳定现象。
5. 隐式时间积分法(Implicit Time Integration Method):与显式时间积分法相反,隐式时间积分法使用隐式格式进行时间积分,从而提高数值稳定性。
通过迭代求解非线性方程组,可以得到结构的准确动态响应。
隐式时间积分法对于非线性和不稳定问题的求解较为稳定,但计算效率较低。
以上是几种常用的有限元时域计算方法,每种方法都有各自的特点和适用范围。
时程分析法时程分析法又称直接动力法,在数学上又称步步积分法。
顾名思义,是由初始状态开始一步一步积分直到地震作用终了,求出结构在地震作用下从静止到振动以至到达最终状态的全过程。
它与底部剪力法和振型分解反应谱法的最大差别是能计算结构和结构构件在每个时刻的地震反应(内力和变形)。
当用此法进行计算时,系将地震波作为输入。
一般而言地震波的峰值应反映建筑物所在地区的烈度,而其频谱组成反映场地的卓越周期和动力特性。
当地震波的作用较为强烈以至结构某些部位强度达到屈服进入塑性时,时程分析法通过构件刚度的变化可求出弹塑性阶段的结构内力与变形。
这时结构薄弱层间位移可能达到最大值,从而造成结构的破坏,直至倒塌。
作为高层建筑和重要结构抗震设计的一种补充计算,采用时程分析法的主要目的在于检验规范反应谱法的计算结果、弥补反应谱法的不足和进行反应谱法无法做到的结构非弹性地震反应分析。
时程分析法的主要功能有:1)校正由于采用反应谱法振型分解和组合求解结构内力和位移时的误差。
特别是对于周期长达几秒以上的高层建筑,由于设计反应谱在长周期段的人为调整以及计算中对高阶振型的影响估计不足产生的误差。
2)可以计算结构在非弹性阶段的地震反应,对结构进行大震作用下的变形验算,从而确定结构的薄弱层和薄弱部位,以便采取适当的构造措施。
3)可以计算结构和各结构构件在地展作用下每个时刻的地震反应(内力和变形),提供按内力包络值配筋和按地震作用过程每个时刻的内力配筋最大值进行配筋这两种方式。
总的来说,时程分析法具有许多优点,它的计算结果能更真实地反映结构的地震反应,从而能更精确细致地暴露结构的薄弱部位。
时程分析法有关的几个问题:1、恢复力特性曲线;恢复力特性曲线应用于计算必须模型化,常用的有双线型模型与退化三线型模型;退化三线型模型(附图)能较好地反映以弯曲破坏为主的钢筋混凝土构件的的特性,所以适用于此类构件计算。
2、结构计算模型及分析方法;3、地震波的选用;4、时程分析计算结果的处理。
计算电磁学简介一. 计算电磁学的重要性在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段。
在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。
解析解的优点在于:①可将解答表示为己知函数的显式,从而可计算出精确的数值结果;②可以作为近似解和数值解的检验标准;③在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值结果所起的作用。
这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。
当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。
20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。
简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。
相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。
原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。
近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。
二. 电磁问题的分析过程电磁工程问题分析时所经历的一般过程为:三. 计算电磁学的分类(1) 时域方法与谱域方法电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。
时域方法对Maxwell方程按时间步进后求解有关场量。
最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。
时程分析法时程分析法又称直接动力法,在数学上又称步步积分法。
顾名思义,是由初始状态开始一步一步积分直到地震作用终了,求出结构在地震作用下从静止到振动以至到达最终状态的全过程。
它与底部剪力法和振型分解反应谱法的最大差别是能计算结构和结构构件在每个时刻的地震反应(内力和变形)。
当用此法进行计算时,系将地震波作为输入。
一般而言地震波的峰值应反映建筑物所在地区的烈度,而其频谱组成反映场地的卓越周期和动力特性。
当地震波的作用较为强烈以至结构某些部位强度达到屈服进入塑性时,时程分析法通过构件刚度的变化可求出弹塑性阶段的结构内力与变形。
这时结构薄弱层间位移可能达到最大值,从而造成结构的破坏,直至倒塌。
作为高层建筑和重要结构抗震设计的一种补充计算,采用时程分析法的主要目的在于检验规范反应谱法的计算结果、弥补反应谱法的不足和进行反应谱法无法做到的结构非弹性地震反应分析。
时程分析法的主要功能有:1)校正由于采用反应谱法振型分解和组合求解结构内力和位移时的误差。
特别是对于周期长达几秒以上的高层建筑,由于设计反应谱在长周期段的人为调整以及计算中对高阶振型的影响估计不足产生的误差。
2)可以计算结构在非弹性阶段的地震反应,对结构进行大震作用下的变形验算,从而确定结构的薄弱层和薄弱部位,以便采取适当的构造措施。
3)可以计算结构和各结构构件在地展作用下每个时刻的地震反应(内力和变形),提供按内力包络值配筋和按地震作用过程每个时刻的内力配筋最大值进行配筋这两种方式。
总的来说,时程分析法具有许多优点,它的计算结果能更真实地反映结构的地震反应,从而能更精确细致地暴露结构的薄弱部位。
时程分析法有关的几个问题:1、恢复力特性曲线;恢复力特性曲线应用于计算必须模型化,常用的有双线型模型与退化三线型模型;退化三线型模型(附图)能较好地反映以弯曲破坏为主的钢筋混凝土构件的的特性,所以适用于此类构件计算。
2、结构计算模型及分析方法;3、地震波的选用;4、时程分析计算结果的处理。
时域分析法时域分析法(TDA)是一种极其重要的系统工程的分析、设计和控制的一种方法,它是基于时间建模的数学系统分析方法。
它具有准确、有效和灵活的特性,被广泛应用于工程领域,包括电气工程、机械工程、生物工程、计算机工程、航空航天等领域。
时域分析可以研究许多复杂的系统,可以从数学上描述系统,从而给出系统的性能参数。
时域分析首先将工程系统转化为一组数学模型,然后采用积分、微分和变换方法对模型进行分析,从而分析出工程系统的性能参数和特性。
它可以研究复杂的非线性系统,而且它已经被广泛应用于工程领域,例如机械系统、电气系统、热系统、控制系统、汽车工程、上海等。
时域分析的基本思想是根据系统的动态建立模型,然后计算出系统的动态特性、性能参数等。
它可以研究系统的时间响应、频率响应和稳定性等关键特性,并可以从数学上描述系统。
与其它系统分析方法相比,时域分析具有以下优点:1、准确性高:时域分析可以精确分析出系统的时变特性。
由于它可以从数学上描述系统,所以它可以更加精确地研究系统的动态特性。
2、解决复杂的非线性系统:时域分析可以把复杂的非线性系统用一组简单的数学方程式来描述,从而分析子系统的性能参数和特征。
3、灵活性高:时域分析可以根据系统的不同要求来调整模型,从而更好地符合系统的特性。
4、适用性强:时域分析是一种现代系统分析模型,它可以用于许多不同类型的系统,包括机械系统、电气系统、计算机系统等。
时域分析可以应用于研究各种类型的系统,它比其它系统分析方法更有优势,不仅可以研究非线性系统,而且可以更准确、更有效地研究系统的性能参数。
由于时域分析的多种优点,它已广泛应用于工程领域,并取得了许多实际的成果。
总之,时域分析是一种极其重要的系统工程分析、设计和控制的一种方法,它具有准确、有效和灵活的特性,被广泛应用于工程领域,可以用于研究复杂的非线性系统,而且它可以从数学上描述系统,从而给出系统的性能参数。
关于相位噪声的分析大家都知道,相位噪声是频率域的概念,这里我们就先讲一下时域分析和频域分析:频域是描述信号在频率方面特性时用到的一种坐标系。
对任何一个事物的描述都需要从多个方面进行,每一方面的描述仅为我们认识这个事物提供部分的信息。
对于一个信号来说,它也有很多方面的特性,如信号强度随时间的变化规律(时域特性),信号是由哪些单一频率的信号合成的(频域特性)。
时域分析与频域分析是对模拟信号的两个观察面。
时域分析是以时间轴为坐标表示动态信号的关系;频域分析是把信号变为以频率轴为坐标表示出来。
一般来说,时域的表示较为形象与直观,频域分析则更为简练,剖析问题更为深刻和方便。
目前,信号分析的趋势是从时域向频域发展。
然而,它们是互相联系,缺一不可,相辅相成的。
抖动测量一直被称为示波器测试测量的最高境界。
传统最直观的抖动测量方法是利用余辉来查看波形的变化。
后来演变为高等数学概率统计上的艰深问题,抖动测量结果准还是不准的问题就于是变得更加复杂。
时钟的特性可以用频率计测量频率的稳定度,用频谱仪测量相噪,用示波器测量TIE抖动、周期抖动、cycle-cycle抖动。
关于相位噪声分析仪的更多信息请和小安联系,QQ894 959 252;联系电话: 189 **** ****但是更深层次的时域测量方法和频域测量方法的原理, TIE抖动和相噪抖动之间关系的推导推导,我们在网上搜集为大家提供一篇高人提供的文档,希望对仍然纠结在这些问题迷雾中的朋友们有所启发:抖动是衡量时钟性能的重要指标,抖动一般定义为信号在某特定时刻相对于其理想位置的短期偏移。
这个短期偏移在时域的表现形式为抖动(这里的抖动专指时域抖动),在频域的表现形式为相噪。
本文主要探讨下时钟抖动和相噪以及其测量方法,以及两者之间的关系。
1、抖动介绍抖动是对时域信号的测量结果,反映了信号边沿相对其理想位置偏离了多少。
抖动有两种主要成分:确定性抖动和随机抖动。
确定性抖动是可以重复和预测的,其峰峰值是有界的,通常意义上的DJ是指其pk-pk值;随机抖动是不能预测的定时噪声,分析时一般使用高斯分布来近似表征,理论上可以偏离中间值无限大,所以随机抖动是没有峰到峰边界的,通常意义上的RJ指标是指其RMS 值,可以根据其RMS值推算其在一定误码率时的值。