f (t) h(t)
f ( ) h(t )d
=
3u
(
)
2e3(t
)u
(t
)d
=
t 3 2e-3(t- )d
0
0
2(1 e3t ) =
0
t0 t0 t0 t0
= 2(1 e3t )u(t)
§3.3 连续系统的冲激响应
单位冲激响应:零状态下, f(t)=δ(t)的响应,简称冲激响应 h(t)
齐次方程
y(n) (t) an1 y(n1) (t) a1 y (t) a0 y(t) 0
y(n) (t) an1 y(n1) (t) a1 y (t) a0 y(t) 0
齐次解yh(t)的形式
sn an1sn1 a1s a0 0
(1) 特征根是不等实根s1, s2, , sn
h(t) ce3tu(t)
??:dh(t) 3h(t) d (t) (t)
dt
dt
② n=m时,有
h(t) c(t) n cieit u(t)
i1
③ n<m时,h(t)中还包含冲激函数的导数。
例1 已知某线性时不变系统的动态方程式为
dy(t) 3y(t) 2 f (t), t 0 dt
2. yf (t):初始状态为零,仅由f(t)产生的响应
f (t)
卷积法
f (kD)
δ(t)
系统 h(t)
D 0 D 2D
kD (k 1)D
连续信号表示为冲激信号的迭加
(t ) h(t )
t
f ( ) (t ) f ( )h(t )
f (t) f ( ) (t )d
y f (t)
f(t) f1(t) f2(t) f1()f2(t )d