山东省滕州市羊庄中学2016年八年级上册全册复习用题(有答案)
- 格式:doc
- 大小:1.88 MB
- 文档页数:10
八年级上册全册全套试卷复习练习(Word版含答案)一、八年级数学三角形填空题(难)1.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.【答案】720°.【解析】【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】这个正多边形的边数为36060︒︒=6,所以这个正多边形的内角和=(6﹣2)×180°=720°,故答案为720°.【点睛】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180 (n≥3)且n为整数);多边形的外角和等于360度.2.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是_____.【答案】92°.【解析】【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【详解】由折叠的性质得:∠C'=∠C=46°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠C',则∠1=∠2+∠C+∠C'=∠2+2∠C=∠2+92°,则∠1﹣∠2=92°.故答案为:92°.【点睛】考查翻折变换(折叠问题),三角形内角和定理,熟练掌握折叠的性质是解题的关键.3.一个多边形的内角和是外角和的72倍,那么这个多边形的边数为_______. 【答案】9【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n 边形,根据题意得,(n-2)•180°=72×360°, 解得:n=9.故答案为:9.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°. 4.如图,在ABC ∆中,AD 是BC 边上的高,AE 平分BAC ∠,若130∠=,220∠=,则B ∠=__________.【答案】50°【解析】【分析】由角平分线的定义和已知可求出∠BAC ,由AD 是BC 边上的高和已知条件可以求出∠C,然后运用三角形内角和定理,即可完成解答.【详解】解:∵AE 平分BAC ∠,若130∠=∴BAC ∠=2160∠=;又∵AD 是BC 边上的高,220∠=∴C ∠=90°-270∠= 又∵BAC ∠+∠B+∠C=180°∴∠B=180°-60°-70°=50°故答案为50°.【点睛】本题考查了角平分线、高的定义以及三角形内角和的知识,考查知识点较多,灵活运用所学知识是解答本题的关键.5.如图所示,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A点时,(1)左转了____次;(2)一共走了_____米.【答案】11120【解析】∵360÷30=12,∴他需要走12−1=11次才会回到原来的起点,即一共走了12×10=120米.故答案为11,120.6.如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.【答案】35【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,再根据角平分线的定义可得∠OBC=12∠ABC,∠OCE=1 2∠ACE,然后整理可得∠BOC=12∠BAC.【详解】解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,∴∠OBC=12∠ABC,∠OCE=12∠ACE,∴12(∠BAC+∠ABC )=∠BOC+12∠ABC , ∴∠BOC =12∠BAC , ∵∠BAC =70°,∴∠BOC =35°,故答案为:35°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.二、八年级数学三角形选择题(难)7.如图,ABC ∆中,100ABC ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则EFD ∠ 的度数为( )A .80°B .60°C .40°D .20°【答案】C【解析】【分析】 连接FB ,根据三角形内角和和外角知识,进行角度计算即可.【详解】解:如图连接FB ,∵AEF AFE ∠=∠,CFD CDF ∠=∠,∴AEF AFE EFB EBF ∠=∠=∠+∠,CFD CDF BFD FBD ∠=∠=∠+∠∴AFE CFD EFB EBF BFD FBD ∠+∠=∠+∠+∠+∠,即AFE CFD EFD EBD ∠+∠=∠+∠,又∵180AFE EFD DFC ∠+∠+∠=︒,∴2180EFD EBD ∠+∠=︒,∵100ABC ∠=︒,∴180100=402EFD ︒-︒∠=︒, 故选:C .【点睛】此题考查三角形内角和和外角定义,掌握三角形内角和为180°,三角形一个外角等于不相邻两内角之和是解题关键.8.如图,∠ABC = ∠ACB ,BD 、CD 分别平分△ABC 的内角 ∠ABC 、外角 ∠ACP ,BE 平分外角 ∠MBC 交 DC 的延长线于点 E ,以下结论:①∠BDE =12∠BAC ;② DB ⊥BE ;③∠BDC + ∠ACB = 90︒ ;④∠BAC + 2∠BEC = 180︒ .其中正确的结论有( )A .1 个B .2 个C .3 个D .4 个【答案】D【解析】【分析】 根据角平分线的定义、三角形的内角和定理、三角形的外角的性质、判断即可.【详解】① ∵BD、CD 分别平分△ABC 的内角∠ABC、外角∠ACP,∴∠ACP=2∠DCP ,∠ABC=2∠DBC ,又∵∠ACP=∠BAC+∠ABC,∠DCP=∠DBC+∠BDC,∴∠BAC=2∠BDE,∴∠BDE =12∠BAC∴①正确;②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥DB,故②正确,③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确,④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确,即正确的有4个,故选D【点睛】此题考查三角形的外角性质,平行线的判定与性质,三角形内角和定理,解题关键在于掌握各性质定理9.已知,如图,AB∥CD,则图中α、β、γ三个角之间的数量关系为()A.α-β+γ=180°B.α+β-γ=180° C.α+β+γ=360° D.α-β-γ=90°【答案】B【解析】【分析】延长CD交AE于点F,利用平行证得β=∠AFD;再利用三角形外角定理及平角定义即可得到答案.【详解】如图,延长CD交AE于点F∵AB∥CD∴β=∠AFD∵∠FDE+α=180°∴∠FDE=180°-α∵γ+∠FDE=∠ADF∴γ+180°-α=β∴α+β-γ=180°故选B【点睛】本题考查平行线的性质以及三角形外角定理的应用,熟练掌握相关性质定理是解题关键.10.能够铺满地面的正多边形组合是()A.正三角形和正五边形B.正方形和正六边形C.正方形和正五边形D.正五边形和正十边形【答案】D【解析】【分析】正多边形的组合能否铺满地面,关键是要看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【详解】解:A、正五边形和正三边形内角分别为108°、60°,由于60m+108n=360,得m=6-95 n,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;B、正方形、正六边形内角分别为90°、120°,不能构成360°的周角,故不能铺满,故此选项错误;C、正方形、正五边形内角分别为90°、108°,当90n+108m=360,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;D、正五边形和正十边形内角分别为108、144,两个正五边形与一个正十边形能铺满地面,故此选项正确.故选:D.【点睛】此题主要考查了平面镶嵌,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.11.已知非直角三角形ABC中,∠A=45°,高BD与CE所在直线交于点H,则∠BHC的度数是()A.45°B.45° 或135°C.45°或125°D.135°【答案】B【解析】【分析】①△ABC是锐角三角形时,先根据高线的定义求出∠ADB=90°,∠BEC=90°,然后根据直角三角形两锐角互余求出∠ABD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;②△ABC是钝角三角形时,根据直角三角形两锐角互余求出∠BHC=∠A,从而得解.【详解】①如图1,△ABC是锐角三角形时,∵BD、CE是△ABC的高线,∴∠ADB=90°,∠BEC=90°,在△ABD中,∵∠A=45°,∴∠ABD=90°-45°=45°,∴∠BHC=∠ABD+∠BEC=45°+90°=135°;②如图2,△ABC是钝角三角形时,∵BD、CE是△ABC的高线,∴∠A+∠ACE=90°,∠BHC+∠HCD=90°,∵∠ACE=∠HCD(对顶角相等),∴∠BHC=∠A=45°.综上所述,∠BHC的度数是135°或45°.故选B.【点睛】本题主要考查了三角形的内角和定理,三角形的高线,难点在于要分△ABC是锐角三角形与钝角三角形两种情况讨论,作出图形更形象直观.12.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35°B.40°C.45°D.55°【答案】C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【详解】解:如图,根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3-∠1=95°-50°=45°,∵a∥b,∴∠2=∠4=45°.故选C.【点睛】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.三、八年级数学全等三角形填空题(难)13.如图,∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E ,F,AB=11,AC=5,则BE=______________.【答案】3【解析】如图,连接CD,BD,已知AD是∠BAC的平分线,DE⊥AB,DF⊥AC,根据角平分线的性质可得DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,即可得AE=AF,又因DG是BC的垂直平分线,所以CD=BD,在Rt△CDF和Rt△BDE中,CD=BD,DF=DE,利用HL定理可判定Rt△CDF≌Rt△BDE,由全等三角形的性质可得BE=CF,所以AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,又因AB=11,AC=5,所以BE=3.点睛:此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,正确作出辅助线,利用数形结合思想是解决问题的关键.14.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A 时,点F运动的路径长是________.【答案】8【解析】【分析】作FG⊥BC于点G,DE’⊥AB于点E’,易证E点和E’点重合,则∠FGD=∠DEP=90°;由∠EDB+∠PDF=90°可知∠EDP+∠GFD=90°,则易得∠EPD=∠GDF,再由PD=DF易证△EPD≌△GDF,则可得FG=DE,故F点的运动轨迹为平行于BC的线段,据此可进行求解.【详解】解:作FG⊥BC于点G,DE’⊥AB于点E’,由BD=4、BE=2与∠B=60°可知DE⊥AB,即∠∵DE’⊥AB,∠B=60°,∴BE’=BD×1=2,2∴E点和E’点重合,∴∠EDB=30°,∴∠EDB+∠PDF=90°,∴∠EDP+∠GFD=90°=∠EDP+∠DPE,∴∠DPE=∠GFD∵∠DEP=∠FGD=90°,FD=GP,∴△EPD≌△GDF,∴FG=DE,DG=PE,∴F点运动的路径与G点运动的路径平行,即与BC平行,由图可知,当P点在E点时,G点与D点重合,∵DG=PE,∴F点运动的距离与P点运动的距离相同,∴F点运动的路径长为:AB-BE=10-2=8,故答案为8.【点睛】通过构造垂直线段构造三角形全等,从而确定F点运动的路径,本题有一些难度.15.如图,Rt△ABC中,∠C=90°.E为AB中点,D为AC上一点,BF∥AC交DE的延长线于点F.AC=6,BC=5.则四边形FBCD周长的最小值是______.【答案】16【解析】四边形FBCD周长=BC+AC+DF;当DF BC时,四边形FBCD周长最小为5+6+5=1616.如图,Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF;⑤S四边形AEDF=14AD2,其中正确结论是_____(填序号)【答案】①②③【解析】【分析】先由ASA证明△AED≌△CFD,得出AE=CF,DE=FD;再由全等三角形的性质得到BE+CF=AB,由勾股定理求得EF与AB的值,通过比较它们的大小来判定④的正误;先得出S四边形AEDF=S△ADC=12AD2,从而判定⑤的正误.【详解】解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠MDN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF.在△AED与△CFD中,EADC AD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AED ≌△CFD (ASA ),∴AE =CF ,ED =FD .故①②正确;又∵△ABD ≌△ACD ,∴△BDE ≌△ADF .故③正确;∵△AED ≌△CFD ,∴AE =CF ,ED =FD ,∴BE +CF =BE +AE =AB =2BD ,∵EF =2ED ,BD >ED ,∴BE +CF >EF .故④错误;∵△AED ≌△CFD ,△BDE ≌△ADF ,∴S 四边形AEDF =S △ADC =12AD 2.故⑤错误. 综上所述,正确结论是①②③.故答案是:①②③.【点睛】 考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,图形的面积等知识,综合性较强,有一定难度.17.如图,四边形ABCD 是正方形,直线l 1、l 2、l 3分别过A 、B 、C 三点,l 1∥l 2∥l 3,若l 1与l 2之间的距离为4,l 2与l 3之间的距离为5,则正方形的边长为______.41【解析】解:过B 作直线BF ⊥l 3于F ,交直线l 1于点E .∵l 1∥l 3,∴∠AEB =∠BFC =90°,∴BE =4,BF =5.∵ABCD 是正方形,∴AB =BC ,∠ABC =90°,∴∠ABE +∠CBF =90°.∵∠ABE +∠BAE =90°,∴∠BAE =∠CBF .在△ABE 和△BCF 中,∵∠BAE =∠CBF ,∠AEB =∠BFC ,AB =BC ,∴△ABE ≌△BCF ,∴AE =BF =5.在Rt △AEB 中,AB 22AE BE 2254+4141点睛:本题考查了全等三角形的性质和判定,正方形的性质的应用,解答本题的关键是能正确作出辅助线,并进一步求出△ABE ≌△BCF ,难度适中.18.把两个三角板如图甲放置,其中90ACB DEC ∠=∠=︒,45A ∠=︒,30D ∠=︒,斜边12AB =,14CD =,把三角板DCE 绕着点C 顺时针旋转15︒得到△11D CE (如图乙),此时AB 与1CD 交于点O ,则线段1AD 的长度为_________.【答案】10【解析】试题分析:如图所示,∠3=15°,∠1E =90°, ∴∠1=∠2=75°, 又∵∠B=45°,∴∠OF 1E =∠B+∠1=45°+75°=120° ∴∠1D FO=60° ∵∠C 11D E =30°,∴∠5=∠4=90°, 又∵AC=BC ,AB=12, ∴OA=OB=6 ∵∠ACB=90°,∴CO=12AB=6, 又∵C 1D =CD=14, ∴O 1D =C 1D -OC=14-6=8, 在Rt △A 1D O 中,222211A 6810D OA OD =+=+=点睛:本题主要考查的就是旋转的性质、三角形的外角性质、直角三角形的性质及判定以及勾股定理的应用.解决这个问题的关键就是首先根据三角形外角的性质以及旋转图形的性质得出△AO 1D 为直角三角形,然后根据直角三角形的性质得出AO 和O 1D 的长度,最后根据直角三角形的勾股定理得出答案.四、八年级数学全等三角形选择题(难)19.如图所示,设甲、乙、丙、丁分别表示△ABC ,△ACD ,△EFG ,△EGH .已知∠ACB =∠CAD =∠EFG =∠EGH =70°,∠BAC =∠ACD =∠EGF =∠EHG =50°,则叙述正确的是( )A .甲、乙全等,丙、丁全等B .甲、乙全等,丙、丁不全等C .甲、乙不全等,丙、丁全等D .甲、乙不全等,丙、丁不全等【答案】B【解析】【分析】 根据题意即是判断甲、乙是否全等,丙丁是否全等.运用判定定理解答.【详解】解:∵∠ACB=CAD=70°,∠BAC=∠ACD=50°,AC 为公共边,∴△ABC ≌△ACD ,即甲、乙全等;△EHG 中,∠EGH =70°≠∠EHG=50°,即EH≠EG ,虽∠EFG=∠EGH=70°,∠EGF=∠EHG=50°,∴△EFG 不全等于△EGH ,即丙、丁不全等.综上所述甲、乙全等,丙、丁不全等,B 正确,故选:B .【点睛】本题考查的是全等三角形的判定,但考生需要有空间想象能力.判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、HL .找着∠EGH=70°≠∠EHG=50°,即EH≠EG 是正确解决本题的关键.20.如图,在△ABC 中,AB=BC ,90ABC ∠=︒,点D 是BC 的中点,BF ⊥AD ,垂足为E ,BF 交AC 于点F ,连接DF.下列结论正确的是()A .∠1=∠3B .∠2=∠3C .∠3=∠4D .∠4=∠5【答案】A【解析】【分析】 如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则CG BC ⊥,先根据直角三角形两锐角互余可得BAD CBG ∠=∠,再根据三角形全等的判定定理与性质推出1G ∠=∠,又根据三角形全等的判定定理与性质推出3G ∠=∠,由此即可得出答案.【详解】如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则CG BC ⊥,即90BCG ∠=︒ ,90AB BC ABC =∠=︒45BAC ACB ∠∴∠==︒904545GCF BCG ACB ∴∠=∠-∠=︒-︒=︒BF AD ⊥1190BAD CBG ∴∠+∠=∠+∠=︒BAD CBG ∴∠=∠在BAD ∆和CBG ∆中,90BAD CBG AB BC ABD BCG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()BAD CBG ASA ∴∆≅∆,1BD CG G ∴=∠=∠点D 是BC 的中点CD BD CG ∴==在CDF ∆和CGF ∆中,45CD CG DCF GCF CF CF =⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS ∴∆≅∆3G ∴∠=∠13∠∠∴=故选:A .【点睛】本题是一道较难的综合题,考查了直角三角形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.21.如图(1),已知AB AC=,D为BAC∠的角平分线上一点,连接BD,CD;如图(2),已知AB AC=,D,E为BAC∠的角平分线上两点,连接BD,CD,BE,CE;如图(3),已知AB AC=,D,E,F为BAC∠的角平分线上三点,连接BD,CD,BE,CE,BF,CF;……,依此规律,第6个图形中有全等三角形的对数是()A.21 B.11 C.6 D.42【答案】A【解析】【分析】根据条件可得图1中△ABD≌△ACD有1对三角形全等;图2中可证出△ABD≌△ACD,△BDE≌△CDE,△ABE≌△ACE有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第6个图形中全等三角形的对数.【详解】解:∵AD是∠BAC的平分线,∴∠BAD=∠CAD.在△ABD与△ACD中,AB ACBAD CADAD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACD.∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE,∴BE=EC,∵△ABD≌△ACD.∴BD=CD,又DE=DE,∴△BDE≌△CDE,∴图2中有3对三角形全等,3=1+2;同理:图3中有6对三角形全等,6=1+2+3;∴第6个图形中有全等三角形的对数是1+2+3+4+5+6=21.【点睛】此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.22.下列命题中的假命题是()A.等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等B.等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等C.等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等D.直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等【答案】D【解析】【分析】根据等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定进行判定即可.【详解】解:A、等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等,正确,是真命题;B、等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等,正确,是真命题;C、等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等,正确,是真命题;D、直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等,错误,是假命题,故答案为D.【点睛】本题考查了等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定,其中灵活应用所学知识是解答本题的关键.23.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【答案】C【解析】【分析】分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.解:因为AB=CD ,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS 证得△ABP ≌△DCE , 由题意得:BP=2t=2,所以t=1,因为AB=CD ,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS 证得△BAP ≌△DCE ,由题意得:AP=16-2t=2,解得t=7.所以,当t 的值为1或7秒时.△ABP 和△DCE 全等.故选C .【点睛】本题考查全等三角形的判定,判定方法有:ASA ,SAS ,AAS ,SSS ,HL .24.如图,AC ⊥BE 于点C ,DF ⊥BE 于点F ,且BC =EF ,如果添上一个条件后,可以直接利用“HL ”来证明△ABC ≌△DEF ,则这个条件应该是( )A .AC =DEB .AB =DEC .∠B =∠ED .∠D =∠A【答案】B【解析】在Rt △ABC 与Rt △DEF 中,直角边BC =EF ,要利用“HL”判定全等,只需添加条件斜边AB=DE.故选:B.五、八年级数学轴对称三角形填空题(难)25.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE,由线段AB,DE的垂直平分线交于点C,得CA=CB,CE=CD,ACB=∠ECD=36°,进而得∠ACE=∠BCD,易证∆ACE≅∆BCD,设∠AEC=∠BDC=x,得则∠BDE=72°-x,∠CEB=92°-x,BDE中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE,∵线段AB,DE的垂直平分线交于点C,∴CA=CB,CE=CD,∵72ABC EDC∠=∠=︒=∠DEC,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD,在∆ACE与∆BCD中,∵CA CBACE BCDCE CD=⎧⎪∠=∠⎨⎪=⎩,∴∆ACE≅∆BCD(SAS),∴∠AEC=∠BDC,设∠AEC=∠BDC=x,则∠BDE=72°-x,∠CEB=92°-x,∴∠BED=∠DEC-∠CEB=72°-(92°-x)=x-20°,∴在∆BDE中,∠EBD=180°-(72°-x)-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.26.如图,己知30MON∠=︒,点1A,2A,3A,…在射线ON上,点1B,2B,3B,…在射线OM上,112A B A∆,223A B A∆,334A B A∆,…均为等边三角形,若12OA=,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.27.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG,利用△BDF≌△GDE,转换BF=GE,然后即可求得其最小值.【详解】以BD为边作等边三角形BDG,连接GE,如图所示:∵等边三角形BDG,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE∴△BDF≌△GDE(SAS)∴BF=GE当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′∴BF=GE=CD+12DG=2+1=3故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.28.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个【答案】5【解析】【分析】分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可【详解】解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个故答案为:5【点睛】本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键29.如图,在四边形ABCD中,∠A+∠C=180°,E、F分别在BC、CD上,且AB=BE,AD =DF,M为EF的中点,DM=3,BM=4,则五边形ABEFD的面积是_____.【答案】12【解析】【分析】延长BM至G,使MG=BM,连接FG、DG,证明△BME≌△GMF(SAS),得出FG=BE,∠MBE=∠MGF,证出AB=FG,证明△DAB≌△DFG(SAS),得出DB=DG,由等腰三角形的性质即可得DM⊥BM,由五边形ABEFD的面积=△DBG的面积,可求解.【详解】延长BM至G,使MG=BM=4,连接FG、DG,如图所示:∵M 为EF 中点,∴ME =MF ,在△BME 和△GMF 中,BM MG BME GMFME MF =⎧⎪∠=∠⎨⎪=⎩, ∴△BME ≌△GMF (SAS ),∴FG =BE ,∠MBE =∠MGF ,S △BEM =S △GFM ,∴FG ∥BE ,∴∠C =∠GFC ,∵∠A +∠C =180°,∠DFG +∠GFC =180°,∴∠A =∠DFG ,∵AB =BE ,∴AB =FG ,在△DAB 和△DFG 中,AB FG A DFGAD DF =⎧⎪∠=∠⎨⎪=⎩, ∴△DAB ≌△DFG (SAS ),∴DB =DG ,S △DAB =S △DFG ,∵MG =BM ,∴DM ⊥BM ,∴五边形ABEFD 的面积=△DBG 的面积=12×BG ×DM =12×8×3=12, 故答案为:12.【点睛】本题考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定与性质等知识;熟练掌握等腰三角形的判定由性质,证明三角形全等是解题的关键.30.如图,在四边形ABCD中,∠A=60°,∠ADC=∠ABC=90°,在AB、AD上分别找一点F、E,连接CE、EF、CF,当△CEF的周长最小时,则∠ECF的度数为______.【答案】60°【解析】【分析】此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.【详解】分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F再连接CE、CF此时△CEF的周长最小,理由如下:在AD、AB上任意取E1、F1两点根据对称性:∴CE=C1E,CE1=C1E1,CF=C2F,CF1=C2F1∴△CEF的周长= CE+EF+CF= C1E+EF+C2F= C1C2而△CE1F1的周长= CE1+E1F1+CF1= C1E1+E1F1+C2F1根据两点之间线段最短,故C1E1+E1F1+C2F1>C1C2∴△CEF的周长的最小为:C1C2.∵∠A=60°,∠ADC=∠ABC=90°∴∠DCB=360°-∠A-∠ADC-∠ABC=120°∴∠C C1C2+∠C C2C1=180°-∠DCB=60°根据对称性:∠C C1C2=∠E CD,∠C C2C1=∠F CB∴∠E CD+∠F CB=∠C C1C2+∠C C2C1=60°∴∠ECF=∠DCB-(∠E CD+∠F CB)=60°故答案为:60°【点睛】此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.六、八年级数学轴对称三角形选择题(难)31.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.3B.332C.32D.不能确定【答案】B【解析】已知,如图,P为等边三角形内任意一点,PD、PE、PF分别是点P到边AB、BC、AC的距离,连接AP、BP、CP,过点A作AH⊥BC于点H,已知等边三角形的边长为3,可求得高线AH=332,因S△ABC=12BC•AH=12AB•PD+12BC•PE+12AC•PF,所以1 2×3×AH=12×3×PD+12×3×PE+12×3×PF,即可得PD+PE+PF=AH=332,即点P到三角形三边距离之和为332.故选B.点睛:本题考查了等边三角形的性质,根据三角形的面积求点P到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.32.如图钢架中,∠A=a,焊上等长的钢条P1P2, P2P3, P3P4, P4P5……来加固钢架.著P1A= P1P2,且恰好用了4根钢条,则α的取值范圈是( )A.15°≤ a <18°B .15°< a ≤18°C .18°≤ a <22.5°D .18° < a ≤ 22.5°【答案】C【解析】【分析】由每根钢管长度相等,可知图中都是等腰三角形,利用等腰三角形底角一定是锐角,可推出取值范围.【详解】∵AB=BC=CD=DE=EF∴∠P 1P 2A=∠A=a由三角形外角性质,可得∠P 2P 1P 3=2∠A=2a同理可得,∠P 1P 3P 2=∠P 2P 1P 3=2a ,∠P 3P 2P 4=∠P 3P 4P 2=∠A+∠P 1P 3P 2=3a ,∠P 4P 3P 5=∠P 4P 5P 3=∠A+∠P 3P 4P 2=4a ,在△P 4P 3P 5中,∠P 3P 4P 5=180°-2∠P 4P 3P 5=180°-8a当∠P 5P 4B ≥90°即∠P 5P 4A ≤90°时,不能再放钢管,∴3180890+-≤a a ,解得a ≥18°又∵等腰三角形底角只能是锐角,∴4a <90°,解得a <22.5∴1822.5οο≤<a故选C.【点睛】本题考查等腰三角形的性质,掌握等腰三角形的底角只能是锐角是关键.33.如图,点D ,E 是等边三角形ABC 的边BC ,AC 上的点,且CD =AE ,AD 交BE 于点P ,BQ ⊥AD 于点Q ,已知PE =2,PQ =6,则AD 等于( )A .10B .12C .14D .16【答案】C【解析】【分析】 由题中条件可得△ABE ≌△CAD ,得出AD =BE ,∠ABE =∠CAD ,进而得出∠BPD =60°.在Rt △BPQ 中,根据30度角所对直角边等于斜边的一半,求出BP 的长,进而可得结论.【详解】∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠C =60°.又∵AE =CD ,∴△ABE ≌△CAD (SAS ),∴∠ABE =∠CAD ,AD =BE ,∴∠BPD =∠ABE +∠BAP =∠CAD +∠BAP =∠BAC =60°.∵BQ ⊥AD ,∴∠PBQ =30°,∴BP =2PQ =2×6=12,∴AD =BE =BP +PE =12+2=14.故选C .【点睛】本题考查了含30度角的直角三角形的性质、等边三角形的性质以及全等三角形的判定和性质,证明∠BPD =60°是解答本题的关键.34.如图,已知:∠MON =30°,点A 1、A 2、A 3 ···在射线ON 上,点1B 、2B 、3B ···在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,若112OA =,则△667A B A 的边长为( )A .6B .12C .16D .32【答案】C【解析】【分析】 根据等腰三角形与等边三角形性质以及直角三角形中30°角所对应的直角边等于斜边的一半111OA A B =,112122321122A B A B A B A B ===…以此类推得出答案即可 【详解】∵△112A B A 是等边三角形,∴∠112A B A =∠112B A A =60°又∵∠MON =30°∴∠11OB A =30°∴∠12OB A =∠212A B B =90°,1112112A B OA A B ===又∵△223A B A 是等边三角形∴22A B ∥11A B∴∠22OB A =∠11OB A =30°∴在Rt△212A B B 中,22A B =212A B =1以此类推,得出△667A B A 的边长=1222222⋅⋅⋅⋅⋅=16 所以答案为C 选项【点睛】 本题主要考查了等腰三角形与等边三角形性质以及30°角的直角三角形的性质,熟练掌握相关概念通过题目发现规律是解题关键35.如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A .(-2012,2)B .(-2012,-2)C .(-2013,-2)D .(-2013,2)【答案】A【解析】 试题分析:首先由正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M 的对应点的坐标,即可得规律:第n 次变换后的点M 的对应点的为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2),继而求得把正方形ABCD 连续经过2014次这样的变换得到正方形ABCD 的对角线交点M 的坐标.试题解析:∵正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).∴对角线交点M 的坐标为(2,2),根据题意得:第1次变换后的点M 的对应点的坐标为(2-1,-2),即(1,-2), 第2次变换后的点M 的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M 的对应点的坐标为(2-3,-2),即(-1,-2),第n 次变换后的点M 的对应点的为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2),∴连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为(-2012,2). 故选A .考点:1.翻折变换(折叠问题);2.正方形的性质;3.坐标与图形变化-平移.36.如图,已知长方形ABCD ,AB =1,BC =2,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为( )A.1 B.1+3C.2+3D.3【答案】B【解析】【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E 也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE的值.【详解】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=D G+GE=4+33,∴MA+MD+ME的最小值为4+33.故选B.【点睛】本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题.七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是( )。
八年级上册全册全套试卷复习练习(Word版含答案)一、八年级数学三角形填空题(难)1.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C.其中正确个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确.故答案为①②④.点睛:本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键.2.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.【答案】105°.【解析】【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD =45°,∠BDC =60°,∴∠COB =∠ECD +∠BDC =45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.3.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.【答案】115°.【解析】【分析】根据三角形的内角和定理得出∠ABC +∠ACB =130°,然后根据角平分线的概念得出∠OBC +∠OCB ,再根据三角形的内角和定理即可得出∠BOC 的度数. 【详解】解;∵∠A =50°,∴∠ABC +∠ACB =180°﹣50°=130°,∵∠B 和∠C 的平分线交于点O ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB , ∴∠OBC +∠OCB =12×(∠ABC +∠ACB )=12×130°=65°, ∴∠BOC =180°﹣(∠OBC +∠OCB )=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC +∠OCB 的度数.4.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.【答案】30【解析】【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .【详解】1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=.故答案为:30【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.【答案】360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.6.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.【答案】40°【解析】【分析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为40°.【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.二、八年级数学三角形选择题(难)7.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④【答案】C【解析】【分析】根据三角形内角和定理以及三角形角平分线的定义可得∠BOC=90°+12∠1,再结合三角形外角性质可得∠ECD=∠OBC+∠2,从而可得∠BOC=90°+∠2,据此即可进行判断.【详解】∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠ABC+∠ACB+∠1=180°,∴∠ABC+∠ACB=180°-∠1,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠1)=90°-12∠1,∴∠BOC=180°-∠OBC-∠OCB=180°-(90°-12∠1)=90°+12∠1,∵∠ACD=∠ABC+∠1,CE平分∠ACD,∴∠ECD=12∠ACD=12(∠ABC+∠1),∵∠ECD=∠OBC+∠2,∴∠2=12∠1,即∠1=2∠2,∴∠BOC=90°+12∠1=90°+∠2,∴①④正确,②③错误,故选C.【点睛】本题考查了三角形内角和定理、三角形外角的性质、三角形的角平分线等知识,熟练掌握相关的性质及定理、运用数形结合思想是解题的关键.8.已知△ABC的两条高分别为4和12,第三条高也为整数,则第三条高所有可能值为()A.3和4 B.1和2 C.2和3 D.4和5【答案】D【解析】【分析】先设长度为4、12的高分别是a、b边上的,边c上的高为h,△ABC的面积是S,根据三角形面积公式,可求a=24S;b=212S;c=2Sh,结合三角形三边的不等关系,可得关于h的不等式,解不等式即可.【详解】设长度为4、12的高分别是a,b边上的,边c上的高为h,△ABC的面积是S,那么a=24S;b=212S;c=2Sh∵a-b <c <a+b , ∴24S -212S <c <24S +212S , 即 3S <2S h <23S , 解得3<h <6,∴h=4或h=5,故选D.【点睛】主要考查三角形三边关系;利用三角形面积的表示方法得到相关等式是解决本题的关键.9.有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边长为、、3的三角形为直角三角形;③等腰三角形的两边长为3、4,则等腰三角形的周长为10; ④一边上的中线等于这边长的一半的三角形是等腰直角三角形.其中正确的个数是( )A .4个B .3个C .2个D .1个【答案】C【解析】试题分析:根据等边三角形的性质可知,有一个角为60°的等腰三角形是等边三角形,故①正确; 根据三边可知:,,3²=9,因此可知:,由勾股定理的逆定理可知其是直角三角形,故②正确;由等腰三角形的三边可知其边长为:3,3,4或3,4,4,则周长为10或11,故③不正确; 由一边上的中线等于这边长的一半的直角三角形是等腰直角三角形,故④不正确. 故选:C10.把一副直角三角板按如图所示的方式摆放在一起,其中C 90∠=,F 90∠=,D 30∠=,A 45∠=,则12∠∠+等于( )A .270B .210C .180D .150【答案】B【解析】【分析】 利用三角形的外角等于不相邻的两内角和,和三角形内角和为180︒,可解出答案.【详解】如图,AB与DE交于点G,AB与EF交于点H,∵∠1=∠A+∠DGA,∠2=∠B+∠FHB,∠DGA=∠BGE,∠FHB=∠AHE,在三角形GEH中,∠BGE+∠AHE =180︒-∠E=120︒,∴∠1+∠2=∠A+∠B+∠BGE+∠AHE=90︒+120︒=210.【点睛】本题考查了三角形的外角性质,内角和定理,熟练掌握即可解题.11.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9 B.8 C.7 D.6【答案】A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.12.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4 B.5 C.6 D.7【答案】C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.三、八年级数学全等三角形填空题(难)13.如图,∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,AB =11,AC =5,则BE =______________.【答案】3【解析】如图,连接CD ,BD ,已知AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,根据角平分线的性质可得DF=DE ,∠F=∠DEB=90°,∠ADF=∠ADE ,即可得AE=AF ,又因DG 是BC 的垂直平分线,所以CD=BD ,在Rt △CDF 和Rt △BDE 中,CD =BD ,DF =DE ,利用HL 定理可判定Rt △CDF ≌Rt △BDE ,由全等三角形的性质可得BE=CF ,所以AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE ,又因AB=11,AC=5,所以BE=3.点睛:此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,正确作出辅助线,利用数形结合思想是解决问题的关键.14.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).15.如图,已知点I 是△ABC 的角平分线的交点.若AB +BI =AC ,设∠BAC =α,则∠AIB =______(用含α的式子表示)【答案】1206α︒-【解析】【分析】在AC上截取AD=AB,易证△ABI≌△ADI,所以BI=DI,由AB+BI=AC,可得DI=DC,设∠DCI=β,则∠ADI=∠ABI=2β,然后用三角形内角和可推出β与α的关系,进而求得∠AIB.【详解】解:如图所示,在AC上截取AD=AB,连接DI,点I是△ABC的角平分线的交点所以有∠BAI=∠DAI,∠ABI=∠CBI,∠ACI=∠BCI,在△ABI和△ADI中,AB=ADBAI=DAIAI=AI⎧⎪∠∠⎨⎪⎩∴△ABI≌△ADI(SAS)∴DI=BI又∵AB+BI=AC,AB+DC=AC∴DI=DC∴∠DCI=∠DIC设∠DCI=∠DIC=β则∠ABI=∠ADI=2∠DCI=2β在△ABC中,∠BAC+2∠ABI+2∠DCI=180°,即42180ββ︒++=a,∴180=3066β︒︒=--a a在△ABI 中,180︒∠=-∠-∠AIB BAI ABI121802αβ︒=-- 1=23160028αα︒︒⎛⎫--- ⎪⎝⎭ =1206α︒-【点睛】本题考查全等三角形的判定和性质,以及三角形角度计算,利用截长补短构造全等三角形是解题的关键.16.在Rt △ABC 中,∠C =90°,∠A 的平分线AD 分对边BD ,DC 的长度比为3:2,且BC =20cm ,则点D 到AB 的距离是_____cm .【答案】8【解析】【分析】根据题意画出图形,过点D 作DE ⊥AB 于点E ,由角平分线的性质可知DE =CD ,根据角平分线AD 分对边BC 为BD :DC =3:2,且BC =10cm 即可得出结论.【详解】解:如图所示,过点D 作DE ⊥AB 于点E ,∵AD 是∠BAC 的平分线,∠C =90°,∴DE =CD .∵BD :DC =3:2,且BC =10cm ,∴CD =20×25=8(cm ). 故答案为:8.【点睛】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.17.如图,已知点(,0)A a 在x 轴正半轴上,点(0,)B b 在y 轴的正半轴上,ABC ∆为等腰直角三角形,D 为斜边BC 上的中点.若2OD =,则a b +=________.【答案】2【解析】【分析】根据等腰直角三角形的性质,可得AP 与BC 的关系,根据垂线的性质,可得答案【详解】如图:作CP ⊥x 轴于点P ,由余角的性质,得∠OBA=∠PAC ,在Rt △OBA 和Rt △PAC 中,OBA PAC AOB CPA BA AC ∠∠⎧⎪∠∠⎨⎪⎩===,Rt △OBA ≌Rt △PAC (AAS ),∴AP=OB=b ,PC=OA=a .由线段的和差,得OP=OA+AP=a+b ,即C 点坐标是(a+b ,a ),由B (0,b ),C (a+b ,a ),D 是BC 的中点,得D (2a b +,2a b +), ∴OD=22a b +() ∴22a b +()2, ∴a+b=2.故答案为2.【点睛】本题解题主要①利用了等腰直角三角形的性质;②利用了全等三角形的判定与性质;③利用了线段中点的性质.18.如图,已知ABC △是等边三角形,点D 在边BC 上,以AD 为边向左作等边ADE ,连结BE ,作BF AE ∥交AC 于点F ,若2AF =,4CF =,则AE =________.【答案】27【解析】【分析】证明△BAE ≌△CAD 得到ABE BAC ∠=∠,从而证得BE AF ,再得到AEBF 是平行四边形,可得AE=BF ,在三角形BCF 中求出BF 即可.【详解】作FH BC ⊥于H , ∵ABC 是等边三角形,2AF =,4CF =∴BC=AC=6在HCF 中, CF=4, 060BCF ∠=030,2CFD CH ∴∠==2224212FH ∴=-=22241227BF BH FH ∴++=∵ABC 是等边三角形,ADE 是等边三角形∴AC=AB ,AD=AE ,060CAB DAE ∠=∠=CAD BAE ∴∠=∠CAD BAE ∴∆≅∆060ABE ACD ∴∠=∠=ABE BAC ∴∠=∠BE AF ∴∵BF AE∴AEBF 是平行四边形∴AE=BF= 27【点睛】 本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.四、八年级数学全等三角形选择题(难)19.如图,已知在正方形ABCD 中,点E F 、分别在BC CD 、上,△AEF 是等边三角形,连接AC 交EF 于G ,给出下列结论:①BE DF =; ② 15DAF ∠=;③AC 垂直平分EF ; ④BE DF EF +=.其中结论正确的共有( ).A .1个B .2个C .3个D .4个 【答案】C【解析】试题分析:四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF 等边三角形,∴AE=EF=AF ,∠EAF=60°.∴∠BAE+∠DAF=30°.∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF (故①正确).∠BAE=∠DAF ,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD ,∴BC ﹣BE=CD ﹣DF ,即CE=CF ,∵AE=AF ,∴AC 垂直平分EF .(故③正确). 设EC=x ,由勾股定理,得EF=x ,CG=x ,AG=AEsin60°=EFsin60°=2×CGsin60°=x , ∴AC=, ∴AB=, ∴BE=﹣x=, ∴BE+DF=x ﹣x≠x .(故④错误).∴综上所述,正确的有3个.考点:正方形的性质;全等三角形的判定与性质;线段垂直平分线的性质;等边三角形的性质.20.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点【答案】B【解析】【分析】根据角平分线上的点到角的两边距离相等可得AD=AE,BC=BE,利用角平分线的定义和平角的性质可得到∠AOB的度数,再利用“HL”证明Rt△AOD和Rt△AOE全等,根据全等三角形对应边相等可得OD=OE,同理可得OC=OE,然后求出∠AOB=90°,然后对各选项分析判断即可得解.【详解】∵点A,B分别是∠NOP,∠MOP平分线上的点,∴AD=AE,BC=BE.∵AB=AE+BE,∴AB=AD+BC,故A选项结论正确;与∠CBO互余的角有∠COB,∠EOB,∠OAD,∠OAE共4个,故B选项结论错误;∵点A、B分别是∠NOP、∠MOP平分线上的点,∴∠AOE=12∠EOD,∠BOC=12∠MOE,∴∠AOB=12(∠EOD+∠MOE)=12×180°=90°,故C选项结论正确;在Rt△AOD和Rt△AOE中,AO AOAD AE=⎧⎨=⎩,∴Rt△AOD≌Rt△AOE(HL),∴OD=OE,同理可得OC=OE,∴OC=OD=OE,∴点O是CD的中点,故D选项结论正确.故选B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,余角的定义,熟记各性质并准确识图是解题的关键.21.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是().A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】如图,连接AP,根据HL判定△APR和△APS全等,即可说明①正确;由△APR和△APS 全等可得∠RAP=∠PAC,再根据等腰三角形性质推出∠QAP=∠QPA,得到∠QPA=∠BAP,根据平行线判定推出OP//AB,即②正确;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等;连接RS,与AP交于点D,先证△ARD≌△ASD,即RD=SD;运用等腰三角形的性质即可判定.【详解】解:如图,连接AP∵PR⊥AB,PS⊥AC,PR=PS∴△APR≌△APS∴AS=AR,∠RAP=∠PAC即①正确;又∵AQ=PQ∴∠QAP=∠QPA∴∠QPA=∠BAP∴OP//AB,即②正确.在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等,故③错误.如图,连接PS∵△APR≌△APS∴AR=AS,∠RAP=∠PAC∴AP垂直平分RS,即④正确;故答案为C.【点睛】本题主要考查了全等三角形的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解答本题的关键22.如图,与都是等边三角形,,下列结论中,正确的个数是( )①;②;③;④若,且,则.A.1 B.2 C.3 D.4【答案】C【解析】【分析】利用全等三角形的判定和性质一一判断即可.【详解】解:∵与都是等边三角形∴AD=AB,AC=AE,∠DAB=∠EAC=60°∴∠DAB+∠BAC=∠EAC +∠BAC即∠DAC=∠EAB∴∴,①正确;∵∴∠ADO=∠ABO∴∠BOD=∠DAB=60°,②正确∵∠BDA=∠CEA=60°,∠ADC≠∠AEB∴∠BDA-∠ADC≠∠CEA-∠AEB∴,③错误∵∴∠DAC+∠BCA=180°∵∠DAB=60°,∴∠BCA=180°-∠DAB-∠BAC=30°∵∠ACE=60°∴∠BCE=∠ACE+∠BCA=60°+30°=90°∴④正确故由①②④三个正确,故选:C【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.如图,四边形ABCD中,∠A、∠B、∠C、∠D的角平分线恰相交于一点P,记△APD、△APB、△BPC、△DPC的面积分别为S1、S2、S3、S4,则有()A .1324S S S S +=+B .1234S S S S +=+C .1423S S S S +=+D .13S S =【答案】A【解析】【分析】作辅助线,利用角平分线性质定理,明确8个三角形中面积两两相等即可解题.【详解】四边形ABCD,四个内角平分线交于一点P,即点p 到四边形各边距离相等,(角平分线性质定理),如下图,可将四边形分成8个三角形,面积分别是a 、a 、b 、b 、c 、c 、d 、d,则S 1=a+d, S 2=a+b, S 3=b+c, S 4=c+d,∴S 1+S 3=a+b+c+d= S 2+S 4故选A【点睛】本题考查了角平分线性质定理,作高线和理解角平分线性质定理是解题关键.24.已知111122,A B C A B C △△的周长相等,现有两个判断:①若21212112,A A B C B A A C ==,则111222A B C A B C △≌△;②若12=A A ∠∠,1122=A C A C ,则111222A B C A B C △≌△,对于上述的两个判断,下列说法正确的是( )A .①,②都正确B .①,②都错误C .①错误,②正确D .①正确,②错误【答案】A【解析】【分析】根据SSS 即可推出△111A B C ≅△222A B C ,判断①正确;根据相似三角形的性质和判定和全等三角形的判定推出即可.【详解】解:①△111A B C,△222A B C的周长相等,1122A B A B=,1122AC A C=,1122B C B C∴=,∴△111A B C≅△222()A B C SSS,∴①正确;②如图,延长11A B到1D,使1111B D B C=,,延长22A B到2D,使2222B D B C=,∴111111A D AB B C=+,222222A D AB B C=+,∵111122,A B C A B C△△的周长相等,1122=A C A C∴1122A D A D=,在△111A B D和△222A B D中1122121122==A D A DA AA C A C=⎧⎪∠∠⎨⎪⎩,∴△111A B D≅△222A B D(SAS)∴12=D D∠∠,∵1111B D B C=,2222B D B C=∴1111=D D C B∠∠,2222=D D C B∠∠,又∵1111111=A B C D D C B∠∠+∠,2222222=A B C D D C B∠∠+∠,∴1112221==2A B C A B C D∠∠∠,在△111A B C和△222A B C中111222121122===A B C A B CA AA C A C∠∠⎧⎪∠∠⎨⎪⎩,∴△111A B C≅△222A B C(AAS),∴②正确;综上所述:①,②都正确.故选:A.【点睛】本题考查了全等三角形的判定、等腰三角形的性质,能构造全等三角形、综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,而AAA和SSA不能判断两三角形全等.五、八年级数学轴对称三角形填空题(难)25.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB6,∵AC=BC2AB=3∴BE=23﹣6;③若MA=ME 则∠MAE=∠AEM=45°∵∠BAC=90°,∴∠BAE=45°∴AE平分∠BAC∵AB=AC,∴BE=1BC=3.2故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.26.在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有_____个.【答案】4【解析】【分析】以O为圆心,OA为半径画弧交x轴于点P1、P3,以A为圆心,AO为半径画弧交x轴于点P4,作OA的垂直平分线交x轴于P2.【详解】解:如图,使△AOP是等腰三角形的点P有4个.故答案为4.【点睛】本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.27.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B ,∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,∴∠CA 2A 1= 108022BA A ︒∠= =40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴第n 个等腰三角形的底角∠A n = 11()802n -︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键.28.如图,在ABC 中,AB AC >,按以下步骤作图:分别以点B 和点C 为圆心,大于BC 一半长为半径作画弧,两弧相交于点M 和点N ,过点M N 、作直线交AB 于点D ,连接CD ,若10AB =,6AC =,则ADC 的周长为_____________________.【答案】16【解析】【分析】利用基本作图可以判定MN 垂直平分BC ,则DC=DB ,然后利用等线段代换得到ACD ∆的周长=AB+AC ,再把10AB =,6AC =代入计算即可.【详解】解:由作法得MN 垂直平分BC ,则DC=DB ,10616ACD C CD AC AD DB AD AC AB AC ∆=++=++=+=+=故答案为:16.【点睛】本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.29.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AE平分∠BAC,∠D=∠DBC=60°,若BD=5cm,DE=3cm,则BC的长是 ______cm.【答案】8.【解析】【分析】作出辅助线后根据等边三角形的判定得出△BDM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【详解】解:延长DE交BC于M,延长AE交BC于N,作EF∥BC于F,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴△EFD为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm),故答案为8.【点睛】本题考查等边三角形的判定与性质;等腰三角形的性质.30.在△ABC 中,∠ACB=90º,D、E 分别在 AC、AB 边上,把△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,若△CFD 与△BFE 都是等腰三角形,则∠BAC 的度数为_________.【答案】45°或60°【解析】【分析】根据题意画出图形,设∠BAC的度数为x,则∠B=90°-x,∠EFB =135°-x,∠BEF=2x-45°,当△BFE 都是等腰三角形,分三种情况讨论,即可求解.【详解】∵∠ACB=90º,△CFD是等腰三角形,∴∠CDF=∠CFD=45°,设∠BAC的度数为x,∴∠B=90°-x,∵△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,∴∠DFE=∠BAC=x,∴∠EFB=180°-45°-x=135°-x,∵∠ADE=∠FDE,∴∠ADE=(180°-45°)÷2=67.5°,∴∠AED=180°-∠ADE-∠BAC=180°-67.5° -x=112.5°-x,∴∠DEF=∠AED=112.5°-x,∴∠BEF=180°-∠AED-∠DEF=180°-(112.5°-x)-(112.5°-x)=2x-45°,∵△BFE 都是等腰三角形,分三种情况讨论:①当FE=FB时,如图1,则∠BEF=∠B,∴90-x=2x-45,解得:x=45;②当BF=BE时,则∠EFB=∠BEF,∴135-x=2x-45,解得:x=60,③当EB=EF时,如图2,则∠B=∠EFB,∴135-x=90-x,无解,∴这种情况不存在.综上所述:∠BAC 的度数为:45°或60°.故答案是:45°或60°.图1 图 2【点睛】本题主要考查等腰三角形的性质定理,用代数式表示角度,并进行分类讨论,是解题的关键.六、八年级数学轴对称三角形选择题(难)31.如图,60AOB ∠=,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE ∆是等腰三角形,那么OEC ∠的度数不可能为( )A .120°B .75°C .60°D .30°【答案】C【解析】【分析】 分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC 是度数即可得到答案.【详解】∵60AOB ∠=,OC 平分AOB ∠,∠AOC=30︒,当OC=CE 时,∠OEC=∠AOC=30︒,当OE=CE 时,∠OEC=180OCE COE ∠∠︒--=120︒,当OC=OE 时,∠OEC=12(180COE ∠︒- )=75︒, ∴∠OEC 的度数不能是60°,故选:C.【点睛】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.32.如图,△ABC 中,AB =AC ,且∠ABC =60°,D 为△ABC 内一点 ,且DA =DB ,E 为△ABC 外一点,BE =AB ,且∠EBD =∠CBD ,连DE ,CE. 下列结论:①∠DAC =∠DBC ;②BE ⊥AC ;③∠DEB=30°. 其中正确的是( )A .①...B .①③...C .② ...D .①②③【答案】B【解析】【分析】 连接DC,证ACD BCD DAC DBC ∠∠≅=得出①,再证BED BCD ≅,得出BED BCD 30∠∠==︒;其它两个条件运用假设成立推出答案即可.【详解】解:证明:连接DC ,∵△ABC 是等边三角形,∴AB=BC=AC ,∠ACB=60°,∵DB=DA ,DC=DC ,在△ACD 与△BCD 中,AB BC DB DA DC DC =⎧⎪=⎨⎪=⎩, ∴△ACD ≌△BCD (SSS ),由此得出结论①正确;∴∠BCD=∠ACD=1302ACB ∠=︒ ∵BE=AB ,∴BE=BC ,∵∠DBE=∠DBC ,BD=BD , 在△BED 与△BCD 中,BE BC DBE DBC BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BED ≌△BCD (SAS ),∴∠DEB=∠BCD=30°.由此得出结论③正确;∵EC ∥AD ,∴∠DAC=∠ECA ,∵∠DBE=∠DBC ,∠DAC=∠DBC ,∴设∠ECA=∠DBC=∠DBE=∠1,∵BE=BA ,∴BE=BC ,∴∠BCE=∠BEC=60°+∠1,在△BCE 中三角和为180°,∴2∠1+2(60°+∠1)=180°∴∠1=15°,∴∠CBE=30,这时BE 是AC 边上的中垂线,结论②才正确.因此若要结论②正确,需要添加条件EC ∥AD.故答案为:B.【点睛】本题考查的知识点主要是全等三角形的判定与性质以及等边三角形的性质,通过已知条件作出恰当的辅助线是解题的关键点.33.如图,在四边形ABCD 中,AB AC =,60ABD ∠=,75ADB ∠=,30BDC ∠=,则DBC ∠=( )°A .15B .18C .20D .25【答案】A【解析】【分析】延长BD到M使得DM=DC,由△ADM≌△ADC,得AM=AC=AB,得△AMB是等边三角形,得∠ACD=∠M=60°,再求出∠BAO即可解决问题.【详解】如图,延长BD到M使得DM=DC.∵∠ADB=75°,∴∠ADM=180°﹣∠ADB=105°.∵∠ADB=75°,∠BDC=30°,∴∠ADC=∠ADB+∠BDC=105°,∴∠ADM=∠ADC.在△ADM和△ADC中,∵AD ADADM ADC DM DC=⎧⎪∠=∠⎨⎪=⎩,∴△ADM≌△ADC,∴AM=AC.∵AC=AB,∴AM=AC=AB,∠ABC=∠ACB.∵∠ABD=60°,∴△AMB是等边三角形,∴∠M=∠DCA=60°.∵∠DOC=∠AOB,∠DCO=∠ABO=60°,∴∠BAO=∠ODC=30°.∵∠CAB+∠ABC+∠ACB=180°,∴30°+2(60°+∠CBD)=180°,∴∠CBD=15°.故选:A.【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质等知识,解决问题的关键是添加辅助线构造全等三角形,题目有一定难度.34.如图,Rt ACB ∆中,90ACB ∠=︒,ABC ∠的平分线BE 和BAC ∠的外角平分线AD 相交于点P ,分别交AC 和BC 的延长线于E ,D .过P 作PF AD ⊥交AC 的延长线于点H ,交BC 的延长线于点F ,连接AF 交DH 于点G .下列结论:①45APB ∠=︒;②PB 垂直平分AF ;③BD AH AB -=;④2DG PA GH =+;其中正确的结论有( )A .4个B .3个C .2个D .1个【答案】A【解析】【分析】 ①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP ,再根据角平分线的定义∠ABP =12∠ABC ,然后利用三角形的内角和定理整理即可得解;②先求出∠APB =∠FPB ,再利用“角边角”证明△ABP 和△FBP 全等,根据全等三角形对应边相等得到AB =BF ,AP =PF ;③根据直角的关系求出∠AHP =∠FDP ,然后利用“角角边”证明△AHP 与△FDP 全等,根据全等三角形对应边相等可得DF =AH ;④求出∠ADG =∠DAG =45°,再根据等角对等边可得DG =AG ,再根据等腰直角三角形两腰相等可得GH =GF ,然后根据2PA 即可得到2DG PA GH =+. 【详解】解:①∵∠ABC 的角平分线BE 和∠BAC 的外角平分线,∴∠ABP =12∠ABC , ∠CAP =12(90°+∠ABC )=45°+12∠ABC , 在△ABP 中,∠APB =180°−∠BAP−∠ABP ,=180°−(45°+12∠ABC +90°−∠ABC )−12∠ABC ,=180°−45°−12∠ABC−90°+∠ABC−12∠ABC , =45°,故本小题正确;②∵PF ⊥AD ,∠APB =45°(已证),∴∠APB =∠FPB =45°,∵∵PB 为∠ABC 的角平分线,∴∠ABP =∠FBP ,在△ABP 和△FBP 中, APB FPB PB PBABP FBP ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABP ≌△FBP (ASA ),∴AB =BF ,AP =PF ;∴PB 垂直平分AF ,故②正确;③∵∠ACB =90°,PF ⊥AD ,∴∠FDP +∠HAP =90°,∠AHP +∠HAP =90°, ∴∠AHP =∠FDP ,∵PF ⊥AD ,∴∠APH =∠FPD =90°,在△AHP 与△FDP 中,90AHP FDP APH FPD AP PF ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△AHP ≌△FDP (AAS ),∴DF =AH ,∵BD =DF +BF ,∴BD =AH +AB ,∴BD−AH =AB ,故③小题正确;④∵AP =PF ,PF ⊥AD ,∴∠PAF =45°,∴∠ADG =∠DAG =45°,∴DG =AG ,∵∠PAF =45°,AG ⊥DH ,∴△ADG 与△FGH 都是等腰直角三角形, ∴DG =AG ,GH =GF ,∴DG =GH +AF ,∴故DG GH =+.综上所述①②③④正确.故选:A.【点睛】本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.35.如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)【答案】A【解析】试题分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.试题解析:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选A.考点:1.翻折变换(折叠问题);2.正方形的性质;3.坐标与图形变化-平移.36.如图,已知△ABC与△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数为( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据题意,结合图形,对选项一一求证,即可得出正确选项.【详解】(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.在△BCD和△ACE中,∵AC BCBCD ACECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△BCD≌△ACE,∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC.又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∵△ACG≌△BCF,∴CG=CF.∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG为等边三角形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°.∵△ACE≌△BCD,∴∠CDZ=∠CEN.在△CDZ和△CEN中,CZD CNECDZ CENCD CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDZ≌△CEN,∴CZ=CN.∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述:四个结论均正确.故选D.【点睛】本题综合考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的判定定理等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.七、八年级数学整式的乘法与因式分解选择题压轴题(难)。
2016-2017学年度山东省滕州市党山中学八年级上册地理期末复习综合练习题(一)1.与我国既相邻又隔海相望的国家正确一组是A.日本、菲律宾B.朝鲜、越南C.印度尼西来、马来西亚D.菲律宾、日本2.我国13亿人口日的到来比预计时间整整推迟了4年,其主要原因是A.实施了人才强国战略B.人口基数大,增长快C.坚持实行计划生育的基本国策D.人口增长超过了经济和环境的承受能力3.下列关于民族的说法,正确的是A.汉族全部集中在东部和中部,少数民族全部分布在边疆地区B.我国民族是包括少数民族和汉族的总称C.人口少于100万的少数民族,不能实行民族区域自治D.每年农历五月初五的“端午节”,是全国各民族共同的节日读我国沿北纬32°地形剖面图,完成下列各题。
4.图中反映出我国的地势特征是A.东高西低B.北高南低C.中部高,四周低D.西高东低5.位于地势第一级阶梯上的地形区是A.黄土高原B.内蒙古高原C.云贵高原D.青藏高原6.该地势特征对我国气候的影响是A.夏季高温B.冬季少雨C.便于海洋湿润气流深入内陆D.东部地区降水较少7.放寒假的时候,小明去了哈尔滨滑雪,小亮则去了海南岛领略海岛风光,下面是他们拍摄的两幅照片,你认为造成两地气候差异的最主要因素是A.地形B.海陆位置C.纬度位置D.地势8.被称为我国的“黄金腰带”的地区是A.黄河流域B.长江流域C.珠江流域D.京杭运河沿岸今年5月初,三明市连降暴雨,泰宁县发生重大的滑坡、泥石流等自然灾害,造成重大损失。
下图是逃生线路示意图。
据此完成下列各题。
9.此次滑坡、泥石流灾害形成的主要原因是①连续多日的强降水②地形坡度较大③植被茂密④土质疏松A.①②③ B.①②④C.②③④ D.①③④3.10.泥石流发生时,最佳的逃生线路是A.① B.②C.③ D.④“从雪山走来,春潮是你的风采。
你向海奔去,惊涛是你的气概。
你用甘甜的乳汁,哺育各族儿女,你用健美的臂膀,挽起高山大海。
八年级上册全册全套试卷复习练习(Word版含答案)一、初二物理声现象实验易错压轴题(难)1.小兰在观察提琴、吉他、二胡等弦乐器的弦振动时,猜测:既使在弦张紧程度相同的条件下,发声的音调还可能与弦的粗细、长短及弦的材料有关,于是想通过实验来探究一下自已的猜想是否正确,下表是小兰在实验时控制的琴弦条件.(1)如果小兰想探究弦发声的音调与弦的材料关系,你认为她应该选用编号为________琴弦(只填字母代号);(2)探究过程通常采用下列一些步骤:A .实验研究; B .分析归纳; C .提出问题(或猜想); D .得出结论等.你认为小兰要完成本探究的全过程所采用的合理顺序应该是:________(只填字母代号).【答案】D、E C、A、B、D【解析】(1)探究弦发声的音调与弦的材料关系,应控制长度、横截面积一定,材料不同,故应选D、E. (2控制变量法探究的步骤:提出问题,实验研究,分析归纳,得出结论.故顺序为CABD .点睛:(1)弦发声的音调可能与弦的材料、长度、粗细有关.(2)研究音调的影响因素时,一定要采取控制变量法.2.如图所示,小明和小刚用细棉线连接了两个纸杯制成了一个“土电话”。
⑴他们用“土电话”能实现10m间的通话,这表明 ___________。
且传播速度要 _____填大于、小于)液体、气体中的速度。
⑵相距同样远,讲话者以相同的响度讲话,如果改用细金属丝连接“土电话”,则听到的声音就大些。
这一实验表明:__________________________。
⑶如果用“土电话”时,另一个同学捏住棉线的某一部分,则听的一方就听不到声音了,这是由于______ 。
⑷如果在用“土电话”时,线没有拉直而处于松驰状态,则听的一方通过棉线(选填“能”或“不能”)____________ 听到对方的讲话。
【答案】固体能够传声大于固体传声的响度与材料有关振动停止,发声停止不能【解析】⑴他们用“土电话”能实现10m间的通话,这表明固体能够传声;声音在固体中传播速度最快,有液体中次之,在气体最慢,所以在“土电话”中传播速度要大于液体、气体中的速度。
2015-2016学年山东省枣庄市滕州市鲍沟中学八年级(上)期末数学复习试卷(实数)一、选择题1.下列说法中正确的是()A.带根号的数都是无理数 B.实数都是有理数C.有理数都是实数D.无理数都是开方开不尽的数2.下列各数:﹣5,,4.11212121212…,0,,3.14,其中无理数有()A.1个B.2个C.3个D.4个3.设4﹣的整数部分为a,小整数部分为b,则a﹣的值为()A.1﹣B.C.1+D.4.已知y=+﹣3,则5xy的值是()A.﹣15 B.15 C.﹣D.5.下列二次根式不是最简二次根式的是()A.B.3C.D.6.式子有意义的x的取值范围是()A.x<1 B.x≠1 C.x≥1 D.x>17.4的算术平方根是()A.4 B.2 C.±2 D.±48.如图,数轴上有A、B、C、D四点,其中与实数最接近的数所对应的点是()A.A B.B C.C D.D9.若+(y+2)2=0,则(x+y)2014等于()A.﹣1 B.1 C.32014 D.﹣3201410.下列各式正确的是()A.=×=10 B.=2+3=5C.=D.11.的值等于()A.﹣3 B.3 C.±3 D.12.如图将1、、、按下列方式排列.若规定(m,n)表示第m排从左向右第n 个数,则(5,4)与(15,8)表示的两数之积是()A.1 B.C.D.3二、选择题13.如图,数轴上A、B两点对应的实数分别为1和,若点A关于点B的对称点为C,则点C所对应的实数为.14.比较2.5,,﹣3的大小,用“<”连接起来为.15.若x3=27,则x=.16.观察下列各式:…请你将发现的规律用含自然数n(n≥1)的等式表示出来.17.若x2=9,则x=,,则x=.18.4的算术平方根是,9的平方根是,﹣27的立方根是.19.满足﹣的整数x是.20.﹣1的相反数是.21.已知:m与n互为相反数,c与d互为倒数,a是的整数部分,则的值是.三.解答题22.(1)3﹣﹣(2)++3﹣(3)(+)(﹣)23.阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2.(1)计算:;(2)如果=﹣4,求y的值.24.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+b+c的平方根.25.已知a,b,c满足+=|c﹣17|+b2﹣30b+225,(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.2015-2016学年山东省枣庄市滕州市鲍沟中学八年级(上)期末数学复习试卷(实数)参考答案与试题解析一、选择题1.下列说法中正确的是()A.带根号的数都是无理数 B.实数都是有理数C.有理数都是实数D.无理数都是开方开不尽的数【考点】实数.【分析】根据实数的定义及无理数的三种形式结合各选项判断即可.【解答】解:A、带根号的数是有理数,不是无理数,故本选项错误;B、实数包括有理数和无理数,故本选项错误;C、有理数和无理数统称实数,故本选项正确;D、无理数包括三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,故本选项错误.故选C.2.下列各数:﹣5,,4.11212121212…,0,,3.14,其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的定义得到无理数有,共1个.【解答】解:无理数有,共1个,故选A.3.设4﹣的整数部分为a,小整数部分为b,则a﹣的值为()A.1﹣B.C.1+D.【考点】估算无理数的大小.【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的整数部分,小数部分让原数减去整数部分,代入求值即可.【解答】解:∵1<<2,∴﹣1>﹣>﹣2,∴4﹣1>4﹣>4﹣2,∴3>4﹣>2.∴a=2,b=2﹣,∴a﹣=2﹣=1﹣.故选A.4.已知y=+﹣3,则5xy的值是()A.﹣15 B.15 C.﹣D.【考点】二次根式有意义的条件.【分析】首先依据二次根式被开放数大于等于0可求得x的值,将x的值代入可求得y的值,最后依据有理数的乘法法则求解即可.【解答】解:∵y=+﹣3,∴5x﹣5=0,解得:x=1.当x=1时,y=﹣3.∴5xy=5×1×(﹣3)=﹣15.故选:A.5.下列二次根式不是最简二次根式的是()A.B.3C.D.【考点】最简二次根式.【分析】根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.【解答】解:、3、满足最简二次根式的两个条件,是最简二次根式,=2被开方数不含能开得尽方的因数或因式,不是最简二次根式,故选:D.6.式子有意义的x的取值范围是()A.x<1 B.x≠1 C.x≥1 D.x>1【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式和分式有意义的条件可得x﹣1>0,再解即可.【解答】解:由题意得:x﹣1>0,解得:x>1,故选:D.7.4的算术平方根是()A.4 B.2 C.±2 D.±4【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵22=4,∴4算术平方根为2.故选B.8.如图,数轴上有A、B、C、D四点,其中与实数最接近的数所对应的点是()A.A B.B C.C D.D【考点】实数与数轴.【分析】先求出﹣﹣5的取值范围,进而可得出结论.【解答】解:∵9<10<16,∴3<<4,∴﹣2<﹣5<﹣1,∴点B与实数最接近.故选B.9.若+(y+2)2=0,则(x+y)2014等于()A.﹣1 B.1 C.32014 D.﹣32014【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵+(y+2)2=0,∴,解得,∴(x+y)2014=(1﹣2)2014=1,故选:B.10.下列各式正确的是()A.=×=10 B.=2+3=5C.=D.【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质,进而分别分析得出答案.【解答】解:A、=×=10,故此选项错误;B、=,故此选项错误;C、=,故此选项正确;D、=﹣=﹣3,故此选项错误.故选:C.11.的值等于()A.﹣3 B.3 C.±3 D.【考点】二次根式的性质与化简.【分析】根据=|a|=求出即可.【解答】解:==3,故选B.12.如图将1、、、按下列方式排列.若规定(m,n)表示第m排从左向右第n 个数,则(5,4)与(15,8)表示的两数之积是()A.1 B.C.D.3【考点】算术平方根.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m﹣1排有(m﹣1)个数,从第一排到(m﹣1)排共有:1+2+3+4+…+(m﹣1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【解答】解:(5,4)表示第5排从左向右第4个数是,(15,8)表示第15排从左向右第8个数,可以看出奇数排最中间的一个数都是1,第15排是奇数排,最中间的也就是这排的第8个数是1,1×=.故选:B.二、选择题13.如图,数轴上A、B两点对应的实数分别为1和,若点A关于点B的对称点为C,则点C所对应的实数为.【考点】实数与数轴.【分析】设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.【解答】解:设点C所对应的实数是x.∵点A关于点B的对称点为C,∴BC=AB,∴x﹣=﹣1,解得x=2﹣1.故答案为:2﹣1.14.比较2.5,,﹣3的大小,用“<”连接起来为.【考点】实数大小比较.【分析】根据正数大于负数,即可解答.【解答】解:∵=2.5,,∴2.5,∴﹣3<2.5<,故答案为:﹣3<2.5<.15.若x3=27,则x=.【考点】立方根.【分析】根据立方根的定义解简单的高次方程.【解答】解:∵x3=27,∴x==3,故答案为:316.观察下列各式:…请你将发现的规律用含自然数n(n≥1)的等式表示出来.【考点】规律型:数字的变化类.【分析】观察分析可得:=(1+1);=(2+1);…则将此题规律用含自然数n(n≥1)的等式表示出来【解答】解:∵=(1+1);=(2+1);∴=(n+1)(n≥1).故答案为:=(n+1)(n≥1).17.若x2=9,则x=,,则x=.【考点】算术平方根;平方根.【分析】根据算术平方根、平方根,即可解答.【解答】解:∵x2=9,∴x=±3,∵,∴x2=81,∴x=±9,故答案为:±3,±9.18.4的算术平方根是 ,9的平方根是 ,﹣27的立方根是 .【考点】立方根;平方根;算术平方根.【分析】根据算式平方根、平方根和立方根的定义求出即可.【解答】解:4的算术平方根是2,9的平方根是±3,﹣27的立方根是﹣3.故答案为:2;±3,﹣3.19.满足﹣的整数x 是 .【考点】实数大小比较.【分析】先求出﹣、的近似值,再根据x 的取值范围找出x 的整数解即可.【解答】解:因为﹣≈﹣1.414,≈2.236,所以满足﹣的整数x 是﹣1,0,1,2.故答案为:﹣1,0,1,2.20.﹣1的相反数是 .【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣1的相反数是 1﹣,故答案为:1﹣.21.已知:m 与n 互为相反数,c 与d 互为倒数,a 是的整数部分,则的值是 .【考点】实数的运算;估算无理数的大小.【分析】首先根据有理数的加法可得m +n=0,根据倒数定义可得cd=1,然后代入代数式求值即可.【解答】解:∵m 与n 互为相反数,∴m +n=0,∵c 与d 互为倒数,∴cd=1,∵a 是的整数部分,∴a=2,∴=1+2×0﹣2=﹣1. 故答案为:﹣1.三.解答题22.(1)3﹣﹣(2)++3﹣(3)(+)(﹣)【考点】实数的运算.【分析】(1)原式各项化简后,合并即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果;(3)原式利用平方差公式计算即可得到结果.【解答】解:(1)原式=6﹣3﹣=;(2)原式=4﹣3+3﹣3=3﹣2;(3)原式=2﹣3=﹣1.23.阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2.(1)计算:;(2)如果=﹣4,求y的值.【考点】二次根式的混合运算;解一元二次方程-公式法.【分析】(1)根据二阶行列式直接列出关系式解答即可;(2)由二阶行列式直接列出关于y的方程,然后解方程即可.【解答】解:(1)根据题意得:原式=(7+4)×(7﹣4)﹣(3+1)×(3+1)=49﹣48﹣45+1=﹣45﹣6.(2)根据题意得:原式=(2y+1)×(y﹣2)﹣3×1=﹣4,整理得:2y2﹣3y﹣1=0,∴x1=,x2.24.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+b+c的平方根.【考点】平方根;立方根;估算无理数的大小.【分析】首先根据平方根与立方根的概念可得2a﹣1与3a+b﹣9的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+b+c,根据平方根的求法可得答案.【解答】解:根据题意,可得2a﹣1=9,3a+b﹣9=8;故a=5,b=2;又∵2<<3,∴c=2,∴a+b+c=5+2+2=9,∴9的平方根为±3.25.已知a,b,c满足+=|c﹣17|+b2﹣30b+225,(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.【考点】配方法的应用;非负数的性质:偶次方;勾股定理的逆定理.【分析】(1)直接根据非负数的性质求出a、b、c的值即可;(2)先根据勾股定理的逆定理判断出三角形的形状,再求出其周长和面积即可.【解答】解:(1)∵a,b,c满足+=|c﹣17|+b2﹣30b+225,∴a﹣8=0,b﹣15=0,c﹣17=0,∴a=8,b=15,c=17;(2)能.∵由(1)知a=8,b=15,c=17,∴82+152=172.∴a2+c2=b2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40;三角形的面积=×8×15=60.第11页(共12页)2016年10月14日第12页(共12页)。
八年级上册全册全套试卷复习练习(Word版含答案)一、八年级数学全等三角形解答题压轴题(难)1.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【答案】(1)证明见解析(2)答案见解析(3)8【解析】【分析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM 与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=0∴|a﹣b|+(b﹣4)2=0∵|a﹣b|≥0,(b﹣4)2≥0∴|a﹣b|=0,(b﹣4)2=0∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM∴OA平分∠MON即OA是第一象限的角平分线(2)过A作AH平分∠OAB,交BM于点H∴∠OAH =∠HAB =45°∵BM ⊥AE∴∠ABH =∠OAE 在△AOE 与△BAH 中OAE ABH OA ABAOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩, ∴△AOE ≌△BAH (ASA )∴AH =OE在△ONE 和△AMH 中OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩=, ∴△ONE ≌△AMH (SAS )∴∠AMH =∠ONE设BM 与NE 交于K∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA∴2∠ONE ﹣∠NEA =90°(3)过H 作HM ⊥OF ,HN ⊥EF 于M 、N可证:△FMH ≌△FNH (SAS )∴FM =FN同理:NE =EK∴OE+OF ﹣EF =2HK过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q可证:△APF ≌△AQE (SAS )∴PF =EQ∴OE+OF =2OP =8∴2HK+EF =OE+OF =8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.2.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=82,BC=16.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)8【解析】【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=12BF,由(1)证明方法可得△PFD≌△QCD 则有CD=12CF,即可得出BE+CD=8.【详解】解:(1)如图①,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC ,∴∠B=∠ACB ,∴∠B=∠PFB ,∴BP=PF ,∴PF=CQ ,又∠PDF=∠QDC ,∴△PFD ≌△QCD , ∴DF=CD=12CF , 又因P 是AB 的中点,PF ∥AQ ,∴F 是BC 的中点,即FC=12BC=8, ∴CD=12CF=4; (2)8BE CD λ+==为定值.如图②,点P 在线段AB 上,过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF ∵易得△PFD ≌△QCD ∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】 此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.3.如图(1),AB=4cm ,AC ⊥AB ,BD ⊥AB ,AC=BD=3cm ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。
2016-2017学年山东省枣庄市滕州市八年级(上)期末数学试卷一、选择题1.下列说法中正确的是()A.化简后的结果是B.9的平方根为3C.是最简二次根式D.﹣27没有立方根2.下面四个数中与最接近的数是()A.2 B.3 C.4 D.53.若直角三角形的周长为30cm,且一条直角边为5cm,则另一条直角边长为()A.5cm B.10cm C.12cm D.13cm4.点P(m+1,m+3)在直角坐标系的x轴上,则点P的坐标为()A.(0,2)B.(﹣2,0)C.(4,0)D.(0,﹣2)5.如图,下列条件不能判断直线a∥b的是()A.∠1=∠4 B.∠3=∠5 C.∠2+∠5=180°D.∠2+∠4=180°6.给出下列命题:①两条直线被第三条直线所截,内错角相等;②如果∠1和∠2是对顶角,那么∠1=∠2;③三角形的一个外角大于任何一个内角;④如果x2>0,那么x>0,其中真命题的个数为()A.1个 B.2个 C.3个 D.4个7.已知一次函数y=kx+b的图象如图所示,则下列判断中不正确的是()A.方程kx+b=0的解是x=﹣3 B.k>0,b<0C.当x<﹣3时,y<0 D.y随x的增大而增大8.国内航空规定,乘坐飞机经济舱旅客所携带行李的重量x 与其运费y (元)之间是一次函数关系,其图象如图所示,那么旅客可携带的免费行李的最大重量为( )A .20kgB .25kgC .28kgD .30kg9.若式子+(k ﹣1)0有意义,则一次函数y=(k ﹣1)x +1﹣k 的图象可能是( )A .B .C .D .10.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?( )A .0.4B .0.6C .0.7D .0.811.以下四种沿AB 折叠的方法中,不一定能判定纸带两条边线a ,b 互相平行的是( )A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD 12.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x 元,包子每个y元,则所列二元一次方程组正确的是()A.B.C.D.13.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°14.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.15.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,2二、填空题(共6小题,每小题3分,满分18分)16.的平方根是;的值是.17.已知a,b满足方程组,则3a+b的值为.18.某人沿直路行走,设此人离出发地的距离S(千米)与行走时间t(分钟)的函数关系如图,则此人在这段时间内最快的行走速度是千米/小时.19.如图,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分线,DE平分∠ADC交AC于E,则∠BDE=.20.如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴正半轴于点C,则点C坐标为.21.如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,则第n个等腰直角三角形的斜边长为.三、解答题22.(8分)计算:(1)(﹣π)0﹣+(﹣1)2017(2)﹣(﹣3)×.23.(10分)解方程组:(1)(2).24.(6分)在由6个大小相同的小正方形组成的方格中:(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与BC 的关系,并说明理由;(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明).25.(7分)如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.(1)试证明∠B=∠ADG;(2)求∠BCA的度数.26.(8分)滕州市某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):经统计发现两班总数相等,此时有学生建议,可以通过考察数据中的其他信息作为参考,请你回答下列问题:(1)分别求出两班5名学生比赛成绩的中位数;(2)计算并比较两班比赛数据的方差哪个小?(3)根据以上信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.27.(8分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA 相交于点A(4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.28.(10分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A 品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x(x>5)个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?2016-2017学年山东省枣庄市滕州市八年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列说法中正确的是()A.化简后的结果是B.9的平方根为3C.是最简二次根式D.﹣27没有立方根【考点】最简二次根式;平方根;立方根;分母有理化.【分析】根据平方根、立方根的定义、最简二次根式的定义、二次根式的化简法则一一判断即可.【解答】解:A、=,故正确.B、9的平方根为±3,故错误.C、=2,不是最简二次根式,故错误.D、﹣27的立方根为﹣3,故错误.故选A.【点评】本题考查二次根式的化简、最简二次根式的定义、平方根、立方根的定义等知识,解题的关键是灵活一一这些知识解决问题.属于中考常考题型.2.下面四个数中与最接近的数是()A.2 B.3 C.4 D.5【考点】估算无理数的大小.【分析】先根据的平方是11,距离11最近的完全平方数是9和16,通过比较可知11距离9比较近,由此即可求解.【解答】解:∵32=9,3.52=12.25,42=16∴<<<,∴与最接近的数是3,而非4.故选B.【点评】此题主要考查了无理数的估算能力,通过比较二次根式的平方的大小来比较二次根式的大小是常用的一种比较方法和估算方法.3.若直角三角形的周长为30cm,且一条直角边为5cm,则另一条直角边长为()A.5cm B.10cm C.12cm D.13cm【考点】勾股定理.【分析】设出另一直角边和斜边,根据勾股定理列出方程,求解即可.【解答】解:设另一直角边长为xcm,斜边为(25﹣x)cm,根据勾股定理可得:x2+52=(25﹣x)2,解得:x=12.故选:C.【点评】本题考查了勾股定理;解这类题的关键是利用勾股定理来寻求未知系数的等量关系,列出方程.4.点P(m+1,m+3)在直角坐标系的x轴上,则点P的坐标为()A.(0,2)B.(﹣2,0)C.(4,0)D.(0,﹣2)【考点】点的坐标.【分析】根据x轴上点的纵坐标等于0,可得m值,根据有理数的加法,可得点P的坐标.【解答】解:∵点P(m+1,m+3)在直角坐标系的x轴上,∴这点的纵坐标是0,∴m+3=0,解得,m=﹣3,∴横坐标m+1=﹣2,则点P的坐标是(﹣2,0).故选:B.【点评】本题主要考查了点的坐标.坐标轴上点的坐标的特点:x轴上点的纵坐标为0,y轴上的横坐标为0.5.如图,下列条件不能判断直线a∥b的是()A.∠1=∠4 B.∠3=∠5 C.∠2+∠5=180°D.∠2+∠4=180°【考点】平行线的判定.【分析】要判断直线a∥b,则要找出它们的同位角、内错角相等,同旁内角互补.【解答】解:A、能判断,∠1=∠4,a∥b,满足内错角相等,两直线平行.B、能判断,∠3=∠5,a∥b,满足同位角相等,两直线平行.C、能判断,∠2=∠5,a∥b,满足同旁内角互补,两直线平行.D、不能.故选D.【点评】解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.6.给出下列命题:①两条直线被第三条直线所截,内错角相等;②如果∠1和∠2是对顶角,那么∠1=∠2;③三角形的一个外角大于任何一个内角;④如果x2>0,那么x>0,其中真命题的个数为()A.1个 B.2个 C.3个 D.4个【考点】命题与定理.【分析】根据平行线的性质对①进行判断;根据三角形外角性质对③进行判断;根据对顶角的性质对②进行判断;根据平方的意义对④进行判断.【解答】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;三角形的一个外角大于任何一个与之不相邻的内角,所以③错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;如果x2>0,那么x≠0,所以④错误.故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.已知一次函数y=kx+b的图象如图所示,则下列判断中不正确的是()A.方程kx+b=0的解是x=﹣3 B.k>0,b<0C.当x<﹣3时,y<0 D.y随x的增大而增大【考点】一次函数图象与系数的关系.【分析】一次函数y=kx+b的图象在x轴上方时,y>0,再根据图象解答即可.【解答】解:由图象可得:方程kx+b=0的解是x=﹣3,当x<﹣3时,y<0,k <0,b>0,y随x的增大而增大,故B错误.故选B.【点评】此题主要考查了一次函数与图象的关系,关键是能正确利用数形结合的方法解决问题.8.国内航空规定,乘坐飞机经济舱旅客所携带行李的重量x与其运费y(元)之间是一次函数关系,其图象如图所示,那么旅客可携带的免费行李的最大重量为()A.20kg B.25kg C.28kg D.30kg【考点】一次函数的应用.【分析】设携带行李的重量x与其运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出解析式,当y=0时求出x的值即可.【解答】解:设携带行李的重量x与其运费y(元)之间的函数关系式为y=kx+b,由题意,得,解得:,∴y=30x﹣600.当y=0时,30x﹣600=0,∴x=20.故选A.【点评】本题考查了与一次函数图象结合用一次函数解决实际问题,本题关键是理解一次函数图象的意义以及与实际问题的结合.9.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.【考点】一次函数图象与系数的关系;零指数幂;二次根式有意义的条件.【分析】首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k﹣1、1﹣k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k﹣1)x+1﹣k的图象可能是哪个即可.【解答】解:∵式子+(k﹣1)0有意义,∴解得k>1,∴k﹣1>0,1﹣k<0,∴一次函数y=(k﹣1)x+1﹣k的图象可能是:.故选:A.【点评】(1)此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数是非负数.10.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?()A.0.4 B.0.6 C.0.7 D.0.8【考点】勾股定理的应用.【分析】首先在直角三角形ABC中计算出CB长,再由题意可得EC长,再次在直角三角形EDC中计算出DC长,从而可得AD的长度.【解答】解:∵AB=2.5米,AC=0.7米,∴BC==2.4(米),∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC﹣0.4=2米,∴DC==1.5米.∴梯子的底部向外滑出AD=1.5﹣0.7=0.8(米).故选:D.【点评】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.11.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD 【考点】平行线的判定;翻折变换(折叠问题).【分析】根据平行线的判定定理,进行分析,即可解答.【解答】解:A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、在△AOC和△BOD中,,∴△AOC≌△BOD,∴∠CAO=∠DBO ,∴a ∥b (内错角相等,两直线平行),故正确.故选:C .【点评】本题考查了平行线的判定,解决本题的关键是熟记平行线的判定定理.12.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x 元,包子每个y 元,则所列二元一次方程组正确的是( )A .B .C .D .【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①5个馒头的钱+3个包子的钱=10+1元;②(8个馒头的钱+6个包子的钱)×9折=18元,根据等量关系列出方程组即可.【解答】解:若馒头每个x 元,包子每个y 元,由题意得:,故选:B .【点评】此题主要考查了由实际问题抽象出二元一次方程组的应用,关键是正确理解题意,根据花费列出方程.13.如图,在△ABC 中,AB=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E=35°,则∠BAC 的度数为( )A .40°B .45°C .60°D .70°【考点】等腰三角形的性质;平行线的性质.【分析】根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA 的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数.【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.【点评】考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.14.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.【考点】一次函数与二元一次方程(组).【分析】首先将点A的横坐标代入y=x+3求得其纵坐标,然后即可确定方程组的解.【解答】解:∵直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),∴当x=﹣1时,b=﹣1+3=2,∴点A的坐标为(﹣1,2),∴关于x、y的方程组的解是,故选C.【点评】本题考查了一次函数与二元一次方程组的知识,解题的关键是了解方程组的解与函数图象的交点坐标的关系.15.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,2【考点】众数;中位数.【分析】在这组样本数据中,3出现的次数最多,所以求出了众数,将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2;【解答】解:∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,有=2,∴这组数据的中位数为2;故选B.【点评】本题考查的知识点有:用样本估计总体、众数以及中位数的知识,解题的关键是牢记概念及公式.二、填空题(共6小题,每小题3分,满分18分)16.的平方根是;的值是﹣4.【考点】立方根;平方根.【分析】根据立方根和平方根的定义即可得到结论.【解答】解:的平方根是±;的值是﹣4,故答案为:,﹣4.【点评】本题考查了立方根和平方根的定义熟记定义是解题的关键.17.已知a,b满足方程组,则3a+b的值为7.【考点】解二元一次方程组.【分析】根据加减法,可得答案.【解答】解:两式相加,得3a+b=7,故答案为:7.【点评】本题考查了解二元一次方程组,利用等式的性质把两式相加是解题关键.18.某人沿直路行走,设此人离出发地的距离S(千米)与行走时间t(分钟)的函数关系如图,则此人在这段时间内最快的行走速度是8千米/小时.【考点】函数的图象.【分析】求速度用距离与时间的比即可,注意把分钟化为小时.【解答】解:此人在这段时间内最快的行走速度是=8千米/小时,故答案为:8.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.19.如图,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分线,DE平分∠ADC交AC于E,则∠BDE=132°.【考点】三角形的外角性质;角平分线的定义.【分析】根据三角形内角和定理和角平分线的定义求出∠BAD的度数,再根据三角形外角性质和角平分线的定义求出∠CDE,然后根据平角定义即可求出∠BDE 的度数.【解答】解:∵∠B=66°,∠C=54°,∴∠BAC=180°﹣66°﹣54°=60°,∵AD是∠BAC的平分线,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=66°+30°=96°,∵DE平分∠ADC交AC于E,∴∠CDE=∠ADC=48°,∴∠BDE=180°﹣48°=132°.【点评】本题主要考查三角形的一个外角等于和它不相邻的两个内角的和的性质和角平分线的定义,熟练掌握性质和定理是解题的关键.20.如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴正半轴于点C,则点C坐标为.【考点】一次函数图象上点的坐标特征;勾股定理.【分析】先根据坐标轴上点的坐标特征得到A(﹣2,0),B(0,4),再利用勾股定理计算出AB=2,然后根据圆的半径相等得到AC=AB=2,进而解答即可.【解答】解:当y=0时,2x+4=0,解得x=﹣2,则A(﹣2,0);当x=0时,y=2x+4=4,则B(0,4),所以AB=,因为以点A为圆心,AB为半径画弧,交x轴于点C,所以AC=AB=2,所以OC=AC﹣AO=2﹣2,所以的C的坐标为:,故答案为:【点评】本题考查了一次函数图象上点的坐标特征,关键是根据一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.21.如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,则第n个等腰直角三角形的斜边长为.【考点】等腰直角三角形.【分析】本题要先根据已知的条件求出第一个、第二个斜边的值,然后通过这两个斜边的求解过程得出一般化规律,进而可得出第n个等腰直角三角形的斜边长.【解答】解:第一个斜边AB=,第二个斜边A1B1=,所以第n个等腰直角三角形的斜边长为:,故答案为:.【点评】此题考查等腰直角三角形问题,关键是要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.三、解答题22.计算:(1)(﹣π)0﹣+(﹣1)2017(2)﹣(﹣3)×.【考点】二次根式的混合运算;零指数幂.【分析】(1)先利用零指数幂的意义和二次根式的除法法则运算,然后化简后合并即可;(2)先根据二次根式的乘除法则运算,然后化简后合并即可.【解答】解:(1)原式=1﹣(﹣)﹣1=1﹣(2﹣)﹣1=1﹣2+﹣1=﹣2;(2)原式=4﹣(﹣3)=4﹣6+3=.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.23.(10分)(2016秋•滕州市期末)解方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)去括号,先将两个方程化简,再利用加减法解方程组;(2)去分母化简,再利用加减法解方程组.【解答】解:(1)化简得:,①﹣②得:4y=28,y=7,把y=7代入①得:3x﹣7=8,x=5,∴方程组的解为;(2)化简得:,①+②得:6x=18,x=3,②﹣①得:4y=2,y=,∴方程组的解为.【点评】本题考查了解二元一次方程组,解决本题的关键是利用加减消元法解二元一次方程组.24.在由6个大小相同的小正方形组成的方格中:(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与BC 的关系,并说明理由;(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明).【考点】勾股定理;勾股定理的逆定理.【分析】(1)连接AC,再利用勾股定理列式求出AB2、BC2、AC2,然后利用勾股定理逆定理解答;(2)类似于(1)的图形解答.【解答】解:(1)如图,连接AC,由勾股定理得,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°,∴AB⊥BC;(2)∠α+∠β=45°.证明如下:如图,由勾股定理得,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,∴△ABC是直角三角形,∵AB=BC,∴△ABC是等腰直角三角形,∴∠α+∠β=45°.【点评】本题考查了勾股定理,勾股定理逆定理,等腰直角三角形的判定与性质,熟练掌握网格结构以及勾股定理和逆定理是解题的关键.25.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.(1)试证明∠B=∠ADG;(2)求∠BCA的度数.【考点】平行线的判定与性质.【分析】(1)由CD⊥AB,FE⊥AB,则CD∥EF,则∠2=∠BCD,从而证得BC∥DG,即∠B=∠ADG;(2)由CD∥EF,则∠3=∠BCG.【解答】(1)证明:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴BC∥DG,∴∠B=∠ADG;(2)解:∵DG∥BC,∴∠3=∠BCG,∵∠3=80°,∴∠BCA=80°.【点评】本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.26.滕州市某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):经统计发现两班总数相等,此时有学生建议,可以通过考察数据中的其他信息作为参考,请你回答下列问题:(1)分别求出两班5名学生比赛成绩的中位数;(2)计算并比较两班比赛数据的方差哪个小?(3)根据以上信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.【考点】方差;加权平均数;中位数.【分析】(1)根据中位数的定义,先将数据重新排列,再找到最中间位置的数即可得;(2)根据方差的定义即可得;(3)可从优秀率、中位数、方差等方面分析、评定,即可得.【解答】解:(1)甲班成绩从小到大排列为:89、96、97、100、118,∴甲班5名学生比赛成绩的中位数是97,乙班成绩从小到大排列为:91、95、100、104、110,∴乙班5名学生比赛成绩的中位数是100;(2)∵==100,∴= [(89﹣100)2+(100﹣100)2+(96﹣100)2+(118﹣100)2+(97﹣100)2]=94,∵==100,∴= [(100﹣100)2+(95﹣100)2+(110﹣100)2+(91﹣100)2+(104﹣100)2]=44.4∴>,∴乙班比赛数据的方差小;(3)冠军奖应发给乙班,∵乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,∴综合以上各种情况,乙班踢毽子的水平较高.【点评】本题主要考查中位数、平均数、方差,熟练掌握中位数和方差的定义并熟记方差的计算公式是解题的关键.27.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.【考点】待定系数法求一次函数解析式;一次函数的性质;一次函数图象上点的坐标特征.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).【点评】本题主要考查了用待定系数法求函数的解析式.先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.28.(10分)(2016秋•滕州市期末)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A 品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x(x>5)个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?【考点】一次函数的应用.【分析】(1)根据题意列出二元一次方程组,解方程组即可得到答案;(2)根据题意用含x的代数式表示出y1、y2即可;(3)把x=50代入两个函数关系式进行计算,比较得到答案.【解答】解:(1)设A、B两种品牌的计算器的单价分别为x、y元,由题意得,,解得.答:A、B两种品牌的计算器的单价分别为30元、32元;(2)y1=24x,y2=160+(x﹣5)×32×0.7=22.4x+48;(3)当x=50时,y1=24x=1200,y2=22.4x+48=1168,∵1168<1200,∴买B品牌的计算器更合算.【点评】本题考查的是二元一次方程组的应用和一次函数的应用,正确找出等量关系列出方程组并正确解出方程组、掌握一次函数的性质是解题的关键.。
八年级上册枣庄数学全册全套试卷测试与练习(word 解析版)一、八年级数学三角形填空题(难)1.如图,ABC 中,点D 在AC 的延长线上,E 、F 分别在边AC 和AB 上,BFE ∠与BCD ∠的平分线相交于点P ,若ABC ∠=70°FEC ∠=80°,则P ∠=______.【答案】85°【解析】【分析】根据四边形内角和等于360°,在四边形FECB 中∠B +∠BFE +∠FEC +∠BCE =360°,结合角平分线的定义计算即可得∠1-∠2=15°;再在四边形EFPC 中求出∠1-∠2+∠P =110°即可解答.【详解】解:∵∠BFE =2∠1,∠BCD =2∠2,又∵∠BFE +∠ABC +∠FEC +∠BCE =360°,ABC ∠=70°,FEC ∠=80°,∴2∠1+(180°-2∠2)+70°+80°=360°,∴∠1-∠2=15°;∵在四边形EFPC 中,∠PFE +∠FEC +∠P +∠PCE =360°,∴∠1+80°+(180°-∠2)+∠P =360°,∴∠1-∠2+∠P =100°,∴∠P =85°,故答案为:85°.【点睛】本题考查的是三角形内角和定理和四边形内角和定理的应用,掌握三角形内角和等于180°和四边形内角和等于360°是解题的关键.2.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.【答案】1980【解析】【详解】解:设多边形的边数为n,多加的角度为α,则(n-2)×180°=2005°-α,当n=13时,α=25°,此时(13-2)×180°=1980°,α=25°故答案为1980.3.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.4.如图,AD是△ABC的中线,CE是△ACD的中线,S△ACE=3cm2,则S△ABC=_____cm2.【答案】12cm2.【解析】【分析】根据三角形的面积公式,得△ACE的面积是△ACD的面积的一半,△ACD的面积是△ABC 的面积的一半.【详解】解:∵CE是△ACD的中线,∴S△ACD=2S△ACE=6cm2.∵AD是△ABC的中线,∴S△ABC=2S△ACD=12cm2.故答案为12cm2.【点睛】此题主要是根据三角形的面积公式,得三角形的中线把三角形的面积分成了相等的两部分.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.【答案】360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.6.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角,若∠A=100°,则∠1+∠2+∠3+∠4= .【答案】280°【解析】试题分析:先根据邻补角的定义得出与∠EAB相邻的外角∠5的度数,再根据多边形的外角和定理即可求解.解:如图,∵∠EAB+∠5=180°,∠EAB=100°,∴∠5=80°.∵∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3+∠4=360﹣80°=280°故答案为280°.考点:多边形内角与外角.二、八年级数学三角形选择题(难)7.如图,CD 是ABC 的一条中线,E 为BC 边上一点且2,BE CE AE CD 、相交于,F 四边形BDFE 的面积为6,则ABC 的面积是( )A .14B .14.4C .13.6D .13.2【答案】B【解析】【分析】 连结BF ,设S △BDF =x ,则S △BEF =6-x ,由CD 是中线可以得到S △ADF =S △BDF ,S △BDC =S △ADC ,由BE =2CE 可以得到S △CEF =12S △BEF ,S △ABE =23S △ABC ,进而可用两种方法表示△ABC 的面积,由此可得方程,进而得解.【详解】解:如图,连接BF ,设S△BDF=x,则S△BEF=6-x,∵CD是中线,∴S△ADF=S△BDF=x,S△BDC= S△ADC=12△ABC,∵BE=2CE,∴S△CEF=12S△BEF=12(6-x),S△ABE=23S△ABC,∵S△BDC= S△ADC=12△ABC,∴S△ABC=2S△BDC=2[x+32(6-x)]=18-x,∵S△ABE=23S△ABC,∴S△ABC=32S△ABE=32[2x+ (6-x)]=1.5x+9,∴18-x =1.5x+9,解得:x=3.6,∴S△ABC=18-x,=18-3.6=14.4,故选:B.【点睛】本题考查了三角形的中线能把三角形的面积平分,等高三角形的面积比等于底的比,熟练掌握这个结论记以及方程思想是解题的关键.8.一个多边形的内角和是1260°,这个多边形的边数是()A.6 B.7 C.8 D.9【答案】D【解析】试题解析:设这个多边形的边数为n,由题意可得:(n-2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选D.9.若正多边形的内角和是540︒,则该正多边形的一个外角为()A.45︒B.60︒C.72︒D.90︒【答案】C【解析】【分析】n-•︒求出多边形的边数,再根据多边形的外角和是固定根据多边形的内角和公式()2180的360︒,依此可以求出多边形的一个外角.【详解】正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选C.【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.10.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110︒B.115︒C.120︒D.125︒【答案】A【解析】【分析】根据三角形外角的性质三角形的一个外角等于和它不相邻的两个内角的和可得∠AEB=∠A+∠C=65°,∠DFE=∠B+∠AEC,进而可得答案.【详解】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=45°,∴∠DFE=65°+45°=110°,故选:A.【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.11.已知三角形的两边长分别为4和9,则下列数据中能作为第三边长的是( )A.13 B.6 C.5 D.4【答案】B【解析】【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】解:设这个三角形的第三边为x.根据三角形的三边关系定理“两边之和大于第三边,两边之差小于第三边”,得:-<<+,94x94<<.解得5x13故选:B.【点睛】.一定要注意构成三角形的条件:两边之和>第三边,两本题考查了三角形的三边关系定理边之差<第三边.12.如图,在△ABC中,过点A作射线AD∥BC,点D不与点A重合,且AD≠BC,连结BD 交AC于点O,连结CD,设△ABO、△ADO、△CDO和△BCO的面积分别为和,则下列说法不正确的是()A.B.C.D.【答案】D【解析】【分析】根据同底等高判断△ABD和△ACD的面积相等,即可得到,即,同理可得△ABC和△BCD的面积相等,即.【详解】∵△ABD和△ACD同底等高,,,即△ABC和△DBC同底等高,∴∴故A,B,C正确,D错误.故选:D.【点睛】考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.三、八年级数学全等三角形填空题(难)13.如图,P为等边△ABC内一点,∠APC=150°,且∠APD=30°,AP=6,CP=3,DP=7,则BD的长为______.【答案】34【解析】【分析】将△CPA绕点C逆时针旋转60°得到△CEB,连接EP,由全等三角形的性质可得CE=CP,∠ECB=∠PCA,∠CEB=∠CPA=150°,BE=AP=6,结合等边三角形的性质可得出∠ECP=60°,进而证明△ECP为等边三角形,由等边△ECP的性质进而证明D、P、E三点共线以及∠DEB=90°,最后利用勾股定理求出BD的长度即可.【详解】将△CPA绕点C逆时针旋转60°得到△CEB,连接EP,∴CE=CP,∠ECB=∠PCA,∠CEB=∠CPA=150°,BE=AP=6,∵等边△ABC,∴∠ACP+∠PCB=60°,∴∠ECB+∠PCB=60°,即∠ECP=60°,∴△ECP为等边三角形,∴∠CPE=∠CEP=60°,PE=6,∴∠DEB=90°,∵∠APC=150°,∠APD=30°,∴∠DPC=120°,∴∠DPE=180°,即D、P、E三点共线,∴ED=3+7=10,∴BD=22=234.DE BE故答案为234.【点睛】本题主要考查全等三角形的性质、勾股定理、等边三角形的判定与性质以及三点共线的判定,运用旋转构造全等三角形是解题的关键.14.如图,CA⊥BC,垂足为C,AC=2Cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动_______秒时,△BCA与点P、N、B为顶点的三角形全等.(2个全等三角形不重合)【答案】0;4;8;12【解析】【分析】此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC=BP 或AC=BN进行计算即可.【详解】解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6−2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为:0或4或8或12.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等时必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,在△ABC中,AC=BC,∠ACB=90°,M是AB边上的中点,点D、E分别是AC、BC边上的动点,连接DM 、ME、CM、DE, DE与CM相交于点F且∠DME=90°.则下列5个结论: (1)图中共有两对全等三角形;(2)△DEM是等腰三角形; (3)∠CDM=∠CFE;(4)AD2+BE2=DE2;(5)四边形CDME的面积发生改变.其中正确的结论有( )个.A.2 B.3 C.4 D.5【答案】B【解析】根据等腰三角形的性质,三角形内角和定理,得出:△AMC≌△BMC、△AMD≌△CME、△CMD≌△BME,根据全等三角形的性质得出DM=ME得出△DEM是等腰三角形,及∠CDM=∠CFE,再逐个判断222AD+BE=DE CEM CDM ADM CDM ACM ABCCDME1S=S+S=S+S=S=S2△△△△△△四边形即可得出结论.【详解】解:如图在Rt△ABC中,∠ACB=90°,M为AB中点,AB=BC∴AM=CM=BM,∠A=∠B=∠ACM=∠BCM=45°,∠AMC=∠BMC=90°∵∠DME=90°.∴∠1+∠2=∠2+∠3=∠3+∠4=90°∴∠1=∠3,∠2=∠4在△AMC和△BMC中AM=BMMC MCAC BC⎧⎪=⎨⎪=⎩∴△AMC≌△BMC在△AMD和△CME中A=MCEAM=CM1=3∠∠⎧⎪⎨⎪∠∠⎩∴△AMD≌△CME在△CDM和△BEMDCM=BCM=BM2=4∠∠⎧⎪⎨⎪∠∠⎩∴△CMD≌△CME共有3对全等三角形,故(1)错误∵△AMD≌△BME∴△DEM 是等腰三角形,(2)正确∵∠DME=90°.∴∠EDM=∠DEM=45°,∴∠CDM=∠1+∠A=∠1+45°,∴∠EDM=∠3+∠DEM=∠3+45°,∴∠CDM=∠CFE,故(3)正确在Rt △CED 中,222CE CD DE +=∵CE=AD ,BE=CD∴222AD +BE =DE 故(4)正确(5)∵△ADM ≌△CEM∴ADM CEM S =S △△∴CEM CDM ADM CDM ACM ABC CDME 1S =S +S =S +S =S =S 2△△△△△△四边形 不变,故(5)错误 故正确的有3个故选:B【点睛】本题主要考查了等腰直角三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,通过推理论证每个命题的正误是解决此类题目的关键.16.如图,平面直角坐标系中,A (0,3),B (4,0),BC ∥y 轴,且BC <OA ,第一象限内有一点P (a ,2a -3),若使△ACP 是以AC 斜边的等腰直角三角形,则点P 的坐标为_______________.【答案】(103,113). 【解析】【详解】 解:∵点P 的坐标为(a ,2a-3),∴点P 在直线y=2x-3上,如图所示,当点P 在AC 的上方时,过P 作y 轴的垂线,垂足为D ,交BC 的延长线于E ,则∠E=∠ADP=90°,∵△ACP是以AC为斜边的等腰直角三角形,∴AP=PC,∠APD=∠PCE,∴△APD≌△PCE,∴PE=AD,又∵OD=2a-3,AO=3,∴AD=2a-6=PE,∵DE=OB=4,DP=a,又∵DP+PE=DE,∴a+(2a-6)=4,解得a=10 3∴2a-3=11 3,∴P(103,113);当点P在AC下方时,过P作y轴的垂线,垂足为D,交BC于E,a=2,此时,CE=2,BE=2,即BC=2+2=4>AO,不合题意;综上所述,点P的坐标为P(103,113)故答案为P(103,113).17.在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,∠C<90°,若∠B满足条件:______________,则△ABC≌△DEF.【答案】∠B≥∠A.【解析】【分析】虽然题目中∠B 为锐角,但是需要对∠B 进行分类探究会理解更深入:可按“∠B 是直角、钝角、锐角”三种情况进行,最后得出∠B 、∠E 都是锐角时两三角形全等的条件.【详解】解:需分三种情况讨论:第一种情况:当∠B 是直角时:如图①,在△ABC 和△DEF ,AC=DF ,BC=EF ,∠B=∠E=90°,可知:△ABC 与△DEF 一定全等,依据的判定方法是HL ;第二种情况:当∠B 是钝角时:如图②,过点C 作CG ⊥AB 交AB 的延长线于G ,过点F 作DH ⊥DE 交DE 的延长线于H .∵∠B=∠E ,且∠B 、∠E 都是钝角.∴180°-∠B=180°-∠E ,即∠CBG=∠FEH .在△CBG 和△FEH 中,CBG FEH G HBC EF ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△CBG ≌△FEH (AAS ),∴CG=FH ,在Rt △ACG 和Rt △DFH 中,AC DF CG FH⎧⎨⎩=,= ∴Rt △ACG ≌Rt △DFH (HL ),∴∠A=∠D , 在△ABC 和△DEF 中,A DB EAC DF ∠∠⎧⎪∠∠⎨⎪⎩==,=∴△ABC ≌△DEF (AAS );第三种情况:当∠B 是锐角时:在△ABC 和△DEF 中,AC=DF ,BC=EF ,∠B=∠E ,且∠B 、∠E 都是锐角,小明在△ABC 中(如图③)以点C 为圆心,以AC 长为半径画弧交AB 于点D ,假设E 与B 重合,F 与C 重合,得到△DEF 与△ABC 符号已知条件,但是△AEF 与△ABC 一定不全等,所以有两边和其中一边的对角对应相等的两个三角形不一定全等;由图③可知,∠A=∠CDA=∠B+∠BCD ,∴∠A >∠B ,∴当∠B≥∠A 时,△ABC 就唯一确定了,则△ABC ≌△DEF .故答案为:∠B≥∠A .【点睛】本题是三角形综合题,考查全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键.18.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P、Q是边AC、BC上的两个动点,PD⊥AB于点D, QE⊥AB于点E.设点P、Q运动的时间是t秒(t>0).若点P从C点出发沿CA以每秒3个单位的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回到点C停止运动;点Q从点B出发沿BC以每秒1个单位的速度向点C匀速运动,到达点C后停止运动,当t= 时,△APD和△QBE全等.【答案】2或4.【解析】试题分析:①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,当△ADP≌△QBE时,则AP=BQ,即8﹣3t=t,解得:t=2;②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,当△ADP≌△QBE时,则AP=BQ,即3t﹣8=t,解得:t=4;综上所述:当t=2s或4s时,△ADP≌△QBE.考点:1.全等三角形的判定;2.动点型;3.分类讨论.四、八年级数学全等三角形选择题(难)19.如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D,且AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE的度数为()A .80°B .70°C .60°D .45°【答案】B【解析】【分析】 连接AE .根据ASA 可证△ADE ≌△CBA ,根据全等三角形的性质可得AE=AC ,∠AED=∠BAC=20°,根据等边三角形的判定可得△ACE 是等边三角形,根据等腰三角形的判定可得△DCE 是等腰三角形,再根据三角形内角和定理和角的和差关系即可求解.【详解】如图所示,连接AE .∵AB=DE ,AD=BC∵DE ∥BC ,∴∠ADE=∠B ,可得AE=DE∵AB=AC ,∠BAC=20°,∴∠DAE=∠ADE=∠B=∠ACB=80°,在△ADE 与△CBA 中,DAE ACB AD BCADE B ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ADE ≌△CBA (ASA ),∴AE=AC ,∠AED=∠BAC=20°,∵∠CAE=∠DAE-∠BAC=80°-20°=60°,∴△ACE 是等边三角形,∴CE=AC=AE=DE ,∠AEC=∠ACE=60°,∴△DCE 是等腰三角形,∴∠CDE=∠DCE ,∴∠DEC=∠AEC-∠AED=40°,∴∠DCE=∠CDE=(180-40°)÷2=70°.故选B.【点睛】考查了等腰三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,三角形内角和定理,平行线的性质,综合性较强,有一定的难度.20.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:①△PFA≌△PEB,②EF=AP,③△PEF是等腰直角三角形,④当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),S四边形AEPF=12S△ABC,上述结论中始终正确有()A.1个B.2个C.3个D.4个【答案】C【解析】∵AB=AC,∠BAC=90°,P是BC中点,∴AP⊥BC,AP=PB,∠B=∠CAP=45°,∵∠APF+∠FPA=90°,∠ APF+∠BPE=90°,∴∠APF=∠BPE,在△BPE和△APF中,∠B=∠CAP, BP=AP,∠BPE =∠APF,∴△PFA≌△PEB;故①正确;∵△ABC是等腰直角三角形点P是BC的中点,∴AP=12 BC,又∵EF不一定是△ABC的中位线,∴EF≠AP,故结论②错误;∵△PFA≌△PEB,∴PE=PF,又∵∠EPF=90°,∴△PEF是等腰直角三角形,故③正确;∵△PFA≌△PEB,∴S△PFA =S△PEB,∴S四边形AEPF=S△APE+S△APF=S△APE+S△BPE=S△APB=12S△ABC,故结论④正确;综上,当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),始终正确的有3个结论.故选:C.点睛:本题意旋转为背景考查了全等三角形的判定和性质,解题时需要运用等腰直角三角形的判定和性质,综合性较强,根据题意得出△PFA≌△PEB是解答此题的关键.21.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,45APE CPFAP PCEAP C∠∠⎧⎪⎨⎪∠∠︒⎩====,∴△APE≌△CPF(ASA),∴AE=CF,故①②正确;∵△AEP≌△CFP,同理可证△APF≌△BPE,∴△EFP是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴四边形AEPF =S △AEP +S △APF =S △CPF +S △BPE =12S △ABC .故④正确, 故选C .【点睛】 本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF ,从而得到△APE 和△CPF 全等是解题的关键,也是本题的突破点.22.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E .连CD 分别交AE ,AB 于点F ,G ,过点A 做AH ⊥CD 交BD 于点H ,则下列结论:①∠ADC =15°;②AF =AG ;③AH =DF ;④△ADF ≌△BAH ;⑤DF =2EH .其中正确结论的个数为( )A .5B .4C .3D .2【答案】B【解析】【分析】 ①根据△ABC 为等边三角形,△ABD 为等腰直角三角形,可以得出各角的度数以及DA=AC ,即可作出判断;②分别求出∠AFG 和∠AGD 的度数,即可作出判断;④根据三角形内角和定理求出∠HAB 的度数,求证EHG DFA ∠=∠,利用AAS 即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH ,又由③可知AH DF =,即可作出判断.【详解】①正确:∵ABC △是等边三角形,∴60BAC ︒∠=,∴CA AB =.∵ABD △是等腰直角三角形,∴DA AB =.又∵90BAD ︒∠=,∴150CAD BAD BAC ︒∠=∠+∠=,∴DA CA =,∴()1180150152ADC ACD ︒︒︒∠=∠=-=; ②错误:∵∠EDF=∠ADB-∠ADC=30°∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG∵∠AGD=90°-∠ADG=90°-15°=75°∠AFG≠∠AGD∴AF≠AG③,④正确,由题意可得45DAF ABH ︒∠=∠=,DA AB =,∵AE BD ⊥,AH CD ⊥.∴180EHG EFG ︒∠+∠=.又∵180?DFA EFG ∠+∠=,∴EHG DFA ∠=∠,在DAF △和ABH 中()AFD BHA DAF ABHAAS DA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴DAF △≌ABH .∴DF AH =.⑤正确:∵150CAD ︒∠=,AH CD ⊥,∴75DAH ︒∠=,又∵45DAF ︒∠=,∴754530EAH ︒︒︒∠=-=又∵AE DB ⊥,∴2AH EH =,又∵=AH DF ,∴2DF EH =【点睛】本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.23.在△ABC 中, ∠C=90°,AC=BC ,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,AB=18cm ,则△DBE 的周长为( )A .16cmB .8cmC .18cmD .10cm【答案】C【解析】因为 ∠C=90°,AC=BC ,AD 是∠BAC 的平分线,DE ⊥AB ,易证△ACD≌△AED,所以AE =AC=BC ,ED=CD.△DBE 的周长=BE+DE+DB=BE+CD+DB=BE+BC=BE+AE=AB.因为AB=12,所以△DBE 的周长=12.故选C.点睛:本题主要考查了全等三角形的判定的性质及角平分线的性质定理,角的平分线上的点到角的两边的距离相等,运用这个性质,结合等腰三角形有性质,将△DBE 的周长转化为AB 的长.24.如右图,在△ABC 中,点Q ,P 分别是边AC ,BC 上的点,AQ=PQ ,PR ⊥AB 于R ,PS ⊥AC 于S ,且PR=PS ,下面四个结论:①AP 平分∠BAC ;②AS=AR ;③BP=QP ;④QP ∥AB .其中一定正确的是( )A.①②③B.①③④C.①②④D.②③④【答案】C【解析】试题解析:∵PR⊥AB于点R,PS⊥AC于点S,且PR=PS,∴点P在∠BAC的平分线上,即AP平分∠BAC,故①正确;∴∠PAR=∠PAQ,∵AQ=PQ,∴∠APQ=∠PAQ,∴∠APQ=∠PAR,QP AB∴,故④正确;在△APR与△APS中,AP AP PR PS=⎧⎨=⎩,(HL)APR APS∴≌,∴AR=AS,故②正确;△BPR和△QSP只能知道PR=PS,∠BRP=∠QSP=90∘,其他条件不容易得到,所以,不一定全等.故③错误.故选C.五、八年级数学轴对称三角形填空题(难)25.在锐角三角形ABC中.BC=32,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是____.【答案】4【解析】【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据32ABC=45°,BD平分∠ABC可知△BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,∵32ABC=45°,BD平分∠ABC,∴△BCE是等腰直角三角形,∴CE=BC•cos45°=32×22=4. ∴CM+MN 的最小值为4.【点睛】本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.26.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.27.如图,在△ABC 中,AB=AC ,∠BAC=120°,D 为BC 上一点,DA ⊥AC ,AD=24 cm ,则BC 的长________cm .【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC ,∠BAC=120°∴∠B=∠C=30°∵DA ⊥AC ,AD=24 cm∴DC=2AD=48cm ,∵∠BAC=120°,DA ⊥AC∴∠BAD=∠BAC-90°=30°∴∠B=∠BAD∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.28.如图,在△ABC 中,AB=AC ,D 、E 是△ABC 内的两点,AE 平分∠BAC ,∠D=∠DBC=60°,若BD=5cm ,DE=3cm ,则BC 的长是 ______cm .【答案】8.【解析】【分析】作出辅助线后根据等边三角形的判定得出△BDM 为等边三角形,△EFD 为等边三角形,从而得出BN 的长,进而求出答案. 【详解】解:延长DE 交BC 于M ,延长AE 交BC 于N ,作EF ∥BC 于F ,∵AB=AC ,AE 平分∠BAC ,∴AN ⊥BC ,BN=CN ,∵∠DBC=∠D=60°,∴△BDM 为等边三角形,∴△EFD 为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM 为等边三角形,∴∠DMB=60°,∵AN ⊥BC ,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm ),故答案为8.【点睛】本题考查等边三角形的判定与性质;等腰三角形的性质.29.如图,在ABC ∆和DBC ∆中,40A ∠=,2AB AC ==,140BDC ∠=,BD CD =,以点D 为顶点作70MDN ∠=,两边分别交,AB AC 于点,M N ,连接MN ,则AMN ∆的周长为_______.【答案】4【解析】【分析】延长AB至F,使BF=CN,连接DF,通过证明△BDF≌△CDN,及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.【详解】延长AB至F,使BF=CN,连接DF.∵BD=CD,且∠BDC=140°,∴∠BCD=∠DBC=20°.∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠DBA=∠DCA=90°.在Rt△BDF和Rt△CND中,∵BF=CN,∠DBA=∠DCA,DB=DC,∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN.∵∠MDN=70°,∴∠BDM+∠CDN=70°,∴∠BDM+∠BDF=70°,∴∠FDM=70°=∠MDN.∵DF=DN,∠FDM=∠MDN,DM=DM,∴△DMN≌△DMF,∴MN=MF,∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=4.故答案为:4.【点睛】本题主要利用等腰三角形的性质来证明三角形全等,构造全等三角形是解答本题的关键.30.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=_____cm.【答案】8cm.【解析】【详解】解:如图,延长ED交BC于M,延长AD交BC于N,作DF∥BC,∵AB=AC,AD平分∠BAC,∴AN ⊥BC ,BN=CN ,∵∠EBC=∠E=60°,∴△BEM 为等边三角形,∴△EFD 为等边三角形,∵BE=6cm ,DE=2cm ,∴DM=4,∵△BEM 为等边三角形,∴∠EMB=60°,∵AN ⊥BC ,∴∠DNM=90°,∴∠NDM=36°,∴NM=2,∴BN=4,∴BC=8.六、八年级数学轴对称三角形选择题(难) 31.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,按此规律作下去,若11A B O α∠=,则1010A B O ∠=( )A .102aB .92aC .20aD .18a 【答案】B【解析】【分析】根据等腰三角形两底角相等用α表示出22A B O ∠,依此类推即可得到结论.【详解】解:1212B A B B =,11A B O α∠=,2212A B O α∴∠=, 同理332111222A B O αα∠=⨯=, 44312A B O α∠=,112n n n A B O α-∴∠=, 101092A B O α∴∠=,故选:B .【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.32.如图,坐标平面内一点A(2,-1),O 为原点,P 是x 轴上的一个动点,如果以点P 、O 、A 为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为( )A .2B .3C .4D .5【答案】C【解析】 以O 点为圆心,OA 为半径作圆与x 轴有两交点,这两点显然符合题意.以A 点为圆心,OA 为半径作圆与x 轴交与两点(O 点除外).以OA 中点为圆心OA 长一半为半径作圆与x 轴有一交点.共4个点符合,33.如图,ABC ,分别以AB 、AC 为边作等边三角形ABD 与等边三角形ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,连接AF ,有以下四个结论:①BE CD =;②FA 平分EFC ∠;③FE FD =;④FE FC FA +=.其中一定正确的结论有( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据等边三角形的性质证出△BAE ≌△DAC ,可得BE =CD ,从而得出①正确;过A 作AM ⊥BF 于M ,过A 作AN ⊥DC 于N ,由△BAE ≌△DAC 得出∠BEA =∠ACD ,由等角的补角相等得出∠AEM =∠CAN ,由AAS 可证△AME ≌△ANC ,得到AM =AN ,由角平分线的判定定理得到FA 平分∠EFC ,从而得出②正确;在FA上截取FG,使FG=FE,根据全等三角形的判定与性质得出△AGE≌△CFE,可得AG=CF,即可求得AF=CF+EF,从而得出④正确;根据CF+EF=AF,CF+DF=CD,得出CD≠AF,从而得出FE≠FD,即可得出③错误.【详解】∵△ABD和△ACE是等边三角形,∴∠BAD=∠EAC=60°,AE=AC=EC.∵∠BAE+∠DAE=60°,∠CAD+∠DAE=60°,∴∠BAE=∠DAC,在△BAE和△DAC中,∵AB ADBAE DACAE AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△DAC(SAS),∴BE=CD,①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,如图1.∵△BAE≌△DAC,∴∠BEA=∠ACD,∴∠AEM=∠ACN.∵AM⊥BF,AN⊥DC,∴∠AME=∠ANC.在△AME和△ANC中,∵∠AEM=∠CAN,∠AME=∠ANC,AE=AC,∴△AME≌△ANC,∴AM=AN.∵AM⊥BF,AN⊥DC,AM=AN,FA平分∠EFC,②正确;在FA上截取FG,使FG=FE,如图2.∵∠BEA=∠ACD,∠BEA+∠AEF=180°,∴∠AEF+∠ACD=180°,∴∠EAC+∠EFC=180°.∵∠EAC=60°,∴∠EFC=120°.∵FA平分∠EFC,∴∠EFA=∠CFA=60°.∵EF=FG,∠EFA=60°,∴△EFG是等边三角形,∴EF=EG.∵∠AEG+∠CEG=60°,∠CEG+∠CEF=60°,∴∠AEG=∠CEF,在△AGE和△CFE中,∵AE ACAEG CEFEG EF=⎧⎪∠=∠⎨⎪=⎩,∴△AGE≌△CFE(SAS),∴AG=CF.∵AF=AG+FG,∴AF=CF+EF,④正确;∵CF+EF=AF,CF+DF=CD,CD≠AF,∴FE≠FD,③错误,∴正确的结论有3个.故选C.【点睛】本题考查了等边三角形的判定与性质以及全等三角形的判定与性质,正确作辅助线是解答本题的关键.34.在坐标平面上有一个轴对称图形,其中A(3,﹣52)和B(3,﹣112)是图形上的一对对称点,若此图形上另有一点C(﹣2,﹣9),则C点对称点的坐标是()A.(﹣2,1)B.(﹣2,﹣32)C.(﹣32,﹣9)D.(﹣2,﹣1)【答案】A【解析】【分析】先利用点A和点B的坐标特征可判断图形的对称轴为直线y=-4,然后写出点C关于直线y=-4的对称点即可.【详解】解:∵A(3,﹣52)和B(3,﹣112)是图形上的一对对称点,∴点A 与点B 关于直线y =﹣4对称, ∴点C (﹣2,﹣9)关于直线y =﹣4的对称点的坐标为(﹣2,1).故选:A .【点睛】本题考查了坐标与图形的变化,需要注意关于直线对称:关于直线x=m 对称,则两点的纵坐标相同,横坐标和为2m ;关于直线y=n 对称,则两点的横坐标相同,纵坐标和为2n .35.如图所示,等边三角形的边长依次为2,4,6,8,……,其中1(0,1)A ,()21,13A --,()31,13A -,4(0,2)A ,()52,223A --,……,按此规律排下去,则2019A 的坐标为( )A .(673,6736733-B .(673,6736733--C .(0,1009)D .(674,6746743- 【答案】A【解析】【分析】 根据等边三角形的边长依次为2,4,6,8,……,及点的坐标特征,每三个点一个循环,2019÷3=673,A 2019的坐标在第四象限即可得到结论.【详解】∵2019÷3=673,∴顶点A 2019是第673个等边三角形的第三个顶点,且在第四象限.第673个等边三角形边长为2×673=1346,∴点A 2019的横坐标为 12⨯1346=673.点A 2019的纵坐标为673-13463=673﹣3点A 2019的坐标为:(673,6736733-.故选:A .【点睛】本题考查了点的坐标、等边三角形的性质,是点的变化规律,主要利用了等边三角形的性质,确定出点A 2019所在三角形是解答本题的关键.36.如图,在平面直角坐标系中,A(1,2),B(3,2),连接AB ,点P 是x 轴上的一个动点,连接AP 、BP ,当△ABP 的周长最小时,对应的点P 的坐标和△ABP 的最小周长分别为( )A .(1,0),224+B .(3,0),224+C .(2,0), 25D .(2,0),252+【答案】D【解析】 作A 关于x 轴的对称点N (1,-2),连接BN 与x 轴的交点即为点P 的位置,此时△ABP 的周长最小.设直线BN 的解析式为y kx b =+,∵N (1,-2),B (3,2),∴232k b k b +=-⎧⎨+=⎩ , 解得24k b =⎧⎨=-⎩, ∴24y x =-,当0y =时,240x -=,解得,2x =,∴点P 的坐标为(2,0);∵A (1,2),B (3,2),∴AB //x 轴,∵AN ⊥x 轴,∴AB ⊥x 轴,在Rt △ABC 中,AB =2,AN =4,由勾股定理得,BN==∵AP=NP,∴△ABP的周长最小值为:AB+BP+AP=AB+BP+PN=AB+BN故选D.点睛:本题考查最短路径问题.利用轴对称作出点P的位置是解题的关键.七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.248﹣1能被60到70之间的某两个整数整除,则这两个数是()A.61和63 B.63和65 C.65和67 D.64和67【答案】B【解析】【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B.【点睛】此题考察多项式的因式分解,将248﹣1利用平方差公式因式分解得到(224+1)(212+1)×65×63,即可得到答案38.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a2+b2+c2—ab-bc-ca的值等于( )A.0 B.1 C.2 D.3【答案】D【解析】【分析】首先把a2+b2+c2﹣ab﹣bc﹣ac两两结合为a2﹣ab+b2﹣bc+c2﹣ac,利用提取公因式法因式分解,再把a、b、c代入求值即可.【详解】a 2+b 2+c 2﹣ab ﹣bc ﹣ac=a 2﹣ab +b 2﹣bc +c 2﹣ac=a (a ﹣b )+b (b ﹣c )+c (c ﹣a )当a =2012x +2011,b =2012x +2012,c =2012x +2013时,a -b =-1,b -c =-1,c -a =2,原式=(2012x +2011)×(﹣1)+(2012x +2012)×(﹣1)+(2012x +2013)×2=﹣2012x ﹣2011﹣2012x ﹣2012+2012x ×2+2013×2=3.故选D .【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目.39.下列多项式中,能分解因式的是:A .224a b -+B .22a b --C .4244x x --D .22a ab b -+【答案】A【解析】根据因式分解的意义,可知A 、224a b -+能用平方差公式()()22a b a b a b -=+-分解,故正确;B 、22a b --=-(22a b +),不能进行因式分解,故不正确;C 、4244x x --不符合完全平方公式()2222a ab b a b ±+=±,故不正确;D 、22a ab b -+既没有公因式,也不符合公式,故不正确.故选:A.点睛:此题主要考查了因式分解,解题时利用因式分解的方法:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).40.把228a -分解因式,结果正确的是( )A .22(4)a -B .22(2)a -C .2(2)(2)a a +-D .22(2)a +【答案】C【解析】【分析】先提公因式2,然后再利用平方差公式进行分解即可.【详解】 228a -=22(4)a -。
2015-2016学年山东省枣庄市滕州市八年级(上)期末数学复习试卷一、选择题1.如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积S为()cm2.A.54 B.108 C.216 D.2702.下列标志中,可以看作是轴对称图形的是()A.B.C.D.3.下列各数:﹣5,,4.11212121212…,0,,3.14,其中无理数有()A.1个B.2个C.3个D.4个4.如图,把Rt△ABC(∠C=90°)折叠,使A、B两点重合,得到折痕ED,再沿BE折叠,C点恰好与D点重合,则∠A等于()A.45°B.30°C.60°D.20°5.若直线y=mx+2m﹣3经过二、三、四象限,则m的取值范围是()A.m<B.m>0 C.m>D.m<06.一组数据1,3,6,1,2的众数和中位数分别是()A.1,6 B.1,1 C.2,1 D.1,27.下列各式中,正确的是()A.=﹣2 B.=9 C.=±3 D.±=±38.设4﹣的整数部分为a,小整数部分为b,则a﹣的值为()A.1﹣B.C.1+D.9.已知y=+﹣3,则5xy的值是()A.﹣15 B.15 C.﹣D.10.一次函数y=kx+b,y随x的增大而减小,且kb>0,则它的图象大致是()A.B.C.D.11.若+(y+2)2=0,则(x+y)2014等于()A.﹣1 B.1 C.32014 D.﹣3201412.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个13.如图,点P为∠AOB内一点,分别作点P关于OA,OB的对称点P1,P2,连接P1,P2交OA于M,交OB于N,若P1P2=6,则△PMN周长为()A.4 B.5 C.6 D.714.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169 B.25 C.19 D.1315.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.二、填空题16.甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.17.已知,则2a﹣b=.18.在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2.(填“>”“<”或“=”)19.如图,函数y=﹣2x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+2x >0的解集为.20.绿化校园,某校计划购进A、B两种树苗,共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,够买两种树苗所需费用为y元.(1)y与x的函数关系式为:;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案.并求出该方案所需费用.21.在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是.22.某市2015年1月上旬每天的最低气温如图所示(单位:℃),则3日~7日这5天该市最低气温的平均数为℃.23.如图,在△ABC中,D、E分别是AB、AC上的点,点F在BC的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2=.24.如图,在▱ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=.25.如图,AD∥BC,BD平分∠ABC.若∠ABD=30°,∠BDC=90°,CD=2,则∠A=°,BC=.三、解答题26.两根电线杆AB、CD,AB=5m,CD=3m,它们的底部相距8m,现在要在两根电线杆底端之间(线段BD上)选一点E,由E分别向两根电线杆顶端拉钢索AE、CE.若使钢索AE与CE相等,那么点E应该选在距点B多少米处?售价如表所示:y元,求y关于x的函数解析式;(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?28.某服装点用6000购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利=(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?29.如图,△ABC是正方形网格上的格点三角形(顶点A、B、C在正方形网格的格点上)(1)画出△ABC关于直线l的对称图形;(2)画出以P为顶点且与△ABC全等的格点三角形.(规定:点P与点B对应)30.如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D和点C的坐标;(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.31.为发展旅游经济,我市某景区对门票釆用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1与y2之间的函数图象如图所示.(1)观察图象可知:a=;b=;m=;(2)直接写出y1,y2与x之间的函数关系式;(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?32.某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?33.学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.34.已知函数y1=k1x+b1和y2=k2x+b2图象如图所示,直线y1与直线y2交于A点(0,3).(1)求函数y1和y2的函数关系式;(2)求三角形ABC的面积;(3)已知点D在x轴上,且满足三角形ACD是等腰三角形,直接写出D点坐标.y的值;(2)这20名学生的本次测验成绩的众数和中位数分别是多少?2015-2016学年山东省枣庄市滕州市八年级(上)期末数学复习试卷参考答案与试题解析一、选择题1.如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积S 为( )cm 2.A .54B .108C .216D .270【考点】勾股定理的逆定理;勾股定理.【分析】连接AC ,运用勾股定理逆定理可证△ACD ,△ABC 为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.【解答】解:连接AC ,则在Rt △ADC 中,AC 2=CD 2+AD 2=122+92=225,∴AC=15,在△ABC 中,AB 2=1521,AC 2+BC 2=152+362=1521,∴AB 2=AC 2+BC 2,∴∠ACB=90°,∴S △ABC ﹣S △ACD =AC •BC ﹣AD •CD=×15×36﹣×12×9=270﹣54=216. 答:这块地的面积是216平方米.2.下列标志中,可以看作是轴对称图形的是( )A .B .C .D .【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.3.下列各数:﹣5,,4.11212121212…,0,,3.14,其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的定义得到无理数有,共1个.【解答】解:无理数有,共1个,故选A.4.如图,把Rt△ABC(∠C=90°)折叠,使A、B两点重合,得到折痕ED,再沿BE折叠,C点恰好与D点重合,则∠A等于()A.45°B.30°C.60°D.20°【考点】翻折变换(折叠问题).【分析】如图,运用翻折变换的性质证明∠ABC=2∠A;进而证明3∠A=90°,即可解决问题.【解答】解:如图,由题意得:∠EAD=∠EBD,∠EBD=∠EBC,∴∠ABC=2∠A;而∠C=90°,∴∠ABC+∠A=3∠A=90°,∴∠A=30.故选B.5.若直线y=mx+2m﹣3经过二、三、四象限,则m的取值范围是()A.m<B.m>0 C.m>D.m<0【考点】一次函数图象与系数的关系.【分析】根据一次函数图象的性质作答.【解答】解:∵直线y=mx+2m﹣3经过第二,三,四象限;∴m<0,2m﹣1<0,即m<0.故选D.6.一组数据1,3,6,1,2的众数和中位数分别是()A.1,6 B.1,1 C.2,1 D.1,2【考点】众数;中位数.【分析】根据众数和中位数的定义分别进行解答即可.【解答】解:∵1出现了2次,出现的次数最多,∴众数是1,把这组数据从小到大排列1,1,2,3,6,最中间的数是2,则中位数是2;故选:D.7.下列各式中,正确的是()A.=﹣2 B.=9 C.=±3 D.±=±3【考点】算术平方根.【分析】根据开平方、完全平方,二次根式的化简的知识分别计算各选项,然后对比即可得出答案.【解答】解:A、=2,故本选项错误;B、=3,故本选项错误;C、=3,故本选项错误;D、=±3,故本选项正确;故选D.8.设4﹣的整数部分为a,小整数部分为b,则a﹣的值为()A.1﹣B.C.1+D.【考点】估算无理数的大小.【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的整数部分,小数部分让原数减去整数部分,代入求值即可.【解答】解:∵1<<2,∴﹣1>﹣>﹣2,∴4﹣1>4﹣>4﹣2,∴3>4﹣>2.∴a=2,b=2﹣,∴a﹣=2﹣=1﹣.故选A.9.已知y=+﹣3,则5xy的值是()A.﹣15 B.15 C.﹣D.【考点】二次根式有意义的条件.【分析】首先依据二次根式被开放数大于等于0可求得x的值,将x的值代入可求得y的值,最后依据有理数的乘法法则求解即可.【解答】解:∵y=+﹣3,∴5x﹣5=0,解得:x=1.当x=1时,y=﹣3.∴5xy=5×1×(﹣3)=﹣15.故选:A.10.一次函数y=kx+b,y随x的增大而减小,且kb>0,则它的图象大致是()A.B.C.D.【考点】一次函数的图象.【分析】根据y随x的增大而减小得出k<0,再利用kb>0,得出b<0,进而判断即可.【解答】解:因为y随x的增大而减小,可得k<0,因为kb>0,可得b<0,所以一次函数的图象经过2,3,4象限,故选B.11.若+(y+2)2=0,则(x+y)2014等于()A.﹣1 B.1 C.32014 D.﹣32014【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵+(y+2)2=0,∴,解得,∴(x+y)2014=(1﹣2)2014=1,故选:B.12.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个【考点】等腰三角形的判定;坐标与图形性质.【分析】分为三种情况:①OA=OP,②AP=OP,③OA=OA,分别画出即可.【解答】解:以O为圆心,以OA为半径画弧交x轴于点P和P′,此时三角形是等腰三角形,即2个;以A为圆心,以OA为半径画弧交x轴于点P″(O除外),此时三角形是等腰三角形,即1个;作OA的垂直平分线交x轴于一点P1,则AP=OP,此时三角形是等腰三角形,即1个;2+1+1=4,故选C.13.如图,点P为∠AOB内一点,分别作点P关于OA,OB的对称点P1,P2,连接P1,P2交OA于M,交OB于N,若P1P2=6,则△PMN周长为()A.4 B.5 C.6 D.7【考点】轴对称-最短路线问题.【分析】根据线段垂直平分线上的点到线段两端的距离相等,得到MP=MP1,NP=NP2,于是△PMN周长可转化为P1P2的长.【解答】解:∵P与P1关于OA对称,∴OA为PP1的垂直平分线,∴MP=MP1,P与P2关于OB对称,∴OB为PP2的垂直平分线,∴NP=NP2,于是△PMN周长为MN+MP+NP=MN+MP1+NP2=P1P2=6.故选C.14.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169 B.25 C.19 D.13【考点】勾股定理;完全平方公式.【分析】先求出四个直角三角形的面积,再根据再根据直角三角形的边长求解即可.【解答】解:∵大正方形的面积13,小正方形的面积是1,∴四个直角三角形的面积和是13﹣1=12,即4×ab=12,即2ab=12,a2+b2=13,∴(a+b)2=13+12=25.故选B.15.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.【考点】一次函数与二元一次方程(组).【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是.故选:D.二、填空题16.甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.【考点】二元一次方程组的应用.【分析】设购买甲电影票x张,乙电影票y张,则根据总共买票40张,花了700元可得出方程组,解出即可得出答案.【解答】解:设购买甲电影票x张,乙电影票y张,由题意得,,解得:,即甲电影票买了20张.故答案为:20.17.已知,则2a﹣b=.【考点】解二元一次方程组.【分析】利用加减消元法求出方程组的解得到a与b的值,即可确定出2a﹣b的值.【解答】解:,①+②×2得:7a=20,即a=,把a=代入①得:b=﹣,则2a﹣b=+=6.故答案为:6.18.在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2.(填“>”“<”或“=”)【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的性质,当k>0时,y随x的增大而增大.【解答】解:∵一次函数y=2x+1中k=2>0,∴y随x的增大而增大,∵x1<x2,∴y1<y2.故答案为:<.19.如图,函数y=﹣2x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+2x >0的解集为.【考点】一次函数与一元一次不等式.【分析】首先将点A的坐标代入正比例函数中求得m的值,然后结合图象直接写出不等式的解集即可.【解答】解:∵函数y=﹣2x经过点A(m,3),∴﹣2m=3,解得:m=﹣,则关于x的不等式kx+b+2x>0可以变形为kx+b>﹣2x,由图象得:kx+b>﹣2x的解集为x>﹣,故答案为:x>﹣.20.绿化校园,某校计划购进A、B两种树苗,共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,够买两种树苗所需费用为y元.(1)y与x的函数关系式为:;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案.并求出该方案所需费用.【考点】一次函数的应用;一元一次不等式的应用.【分析】(1)根据购买两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答;(2)根据购买B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围,再根据(1)得出的y与x之间的函数关系式,利用一次函数的增减性结合自变量的取值即可得出更合算的方案.【解答】解:(1)y=90(21﹣x)+70x=﹣20x+1890,故答案为:y=﹣20x+1890;(2)∵购买B种树苗的数量少于A种树苗的数量,∴x<21﹣x,解得:x<10.5,又∵x≥1,∴x的取值范围为:1≤x≤10,且x为整数,∵y=﹣20x+1890,k=﹣20<0,∴y随x的增大而减小,∴当x=10时,y有最小值,最小值为:﹣20×10+1890=1690,∴使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.21.在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是.【考点】中位数;折线统计图.【分析】根据中位数的定义,即可解答.【解答】解:把这组数据从小到大排列,最中间两个数的平均数是(26+26)÷2=26,则中位数是26.故答案为:26.22.某市2015年1月上旬每天的最低气温如图所示(单位:℃),则3日~7日这5天该市最低气温的平均数为℃.【考点】算术平均数;折线统计图.【分析】先根据图形得出3日~7日这5天该市最低气温的数值,再根据平均数是指在一组数据中所有数据之和再除以数据的个数,列式计算即可.【解答】解:由统计图可知,3日~7日这5天该市最低气温分别是:4,6,7,3,5,则这5天该市最低气温的平均数为(4+6+7+3+5)÷5=5(°C).故答案为5.23.如图,在△ABC中,D、E分别是AB、AC上的点,点F在BC的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2=.【考点】三角形的外角性质;平行线的性质.【分析】根据两直线平行,同位角相等可得∠B=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵DE∥BC,∴∠B=∠1=57°,由三角形的外角性质得,∠2=∠A+∠B=44°+57°=101°.故答案为:101°.24.如图,在▱ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=.【考点】平行四边形的性质.【分析】根据等边对等角可得∠C=∠DBC=70°,根据平行四边形的性质可得AD∥BC,进而得到∠ADB=∠CBD=70°,再利用三角形内角和定理计算出∠DAE即可.【解答】解:∵DC=BD,∴∠C=∠DBC=70°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADB=∠CBD=70°,∵AE⊥BD于E,∴∠AED=90°,∴∠DAE=20°,故答案为:20°.25.如图,AD∥BC,BD平分∠ABC.若∠ABD=30°,∠BDC=90°,CD=2,则∠A=°,BC=.【考点】含30度角的直角三角形;平行线的性质.【分析】根据平行线的性质得到∠A+∠ABC=180°,由此求得∠A的度数;在直角△BCD中,由“30度角所对的直角边等于斜边的一半”来求BC的长度.【解答】解:如图,∵BD平分∠ABC.若∠ABD=30°,∴∠ABC=2∠ABD=60°.∵AD∥BC,∴∠A+∠ABC=180°,∴∠A=120°.∵在直角△BCD中,∠BDC=90°,CD=2,∠DBC=∠ABD=30°,∴BC=2CD=4.故答案是:120;4.三、解答题26.两根电线杆AB、CD,AB=5m,CD=3m,它们的底部相距8m,现在要在两根电线杆底端之间(线段BD上)选一点E,由E分别向两根电线杆顶端拉钢索AE、CE.若使钢索AE与CE相等,那么点E应该选在距点B多少米处?【考点】勾股定理的应用.【分析】设BE=x米,在Rt△ABE中,由勾股定理得:AE2=52+x2,在Rt△CDE中,由勾股定理得:CE2=32+(8﹣x)2,根据AE=CE∴52+x2=32+(8﹣x)2求得BE的长即可.【解答】解:设BE=x米,在Rt△ABE中,AE2=52+x2在Rt△CDE中,CE2=32+(8﹣x)2,∵AE=CE,∴52+x2=32+(8﹣x)2,解得x=3,答:点E应该选在距B点3米处.售价如表所示:y元,求y关于x的函数解析式;(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?【考点】一次函数的应用.【分析】(1)根据题意列出方程即可;(2)根据一次函数的增减性求解即可.【解答】解:(1)y=(45﹣30)x+(70﹣50),=15x+2000﹣20x,=﹣5x+2000,(2)∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值为﹣5×25+2000=1875(元).28.某服装点用6000购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利=(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?【考点】二元一次方程组的应用.【分析】(1)设A种服装购进x件,B种服装购进y件,由总价=单价×数量,利润=售价﹣进价建立方程组求出其解即可;(2)分别求出打折后的价格,再根据少收入的利润=总利润﹣打折后A种服装的利润﹣打折后B中服装的利润,求出其解即可.【解答】解:(1)设A种服装购进x件,B种服装购进y件,由题意,得,解得:.答:A种服装购进50件,B种服装购进30件;(2)由题意,得:3800﹣50﹣30=3800﹣1000﹣360=2440(元).答:服装店比按标价售出少收入2440元.29.如图,△ABC是正方形网格上的格点三角形(顶点A、B、C在正方形网格的格点上)(1)画出△ABC关于直线l的对称图形;(2)画出以P为顶点且与△ABC全等的格点三角形.(规定:点P与点B对应)【考点】作图-轴对称变换.【分析】(1)分别作出各点关于直线l的对称点,再顺次连接各点即可;(2)根据勾股定理画出与△ABC全等的格点三角形即可.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,△FPE即为与△ABC全等的格点三角形.30.如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D和点C的坐标;(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.【考点】一次函数综合题.【分析】(1)对于直线解析式,分别令x=0与y=0求出对应y与x的值,确定出A与B的坐标,得到OA与OB的长,利用勾股定理求出AB的长即可;(2)过D作DE垂直于x轴,过C作CF垂直于y轴,根据四边形ABCD的正方形,得到四条边相等,四个角为直角,利用同角的余角相等得到三个角相等,利用AAS得到三角形EDA,三角形AOB以及三角形BFC全等,利用全等三角形的对应边相等得到DE=OA=BF=4,AE=OB=CF=2,进而求出OE与OF的长,即可确定出D与C的坐标;(3)找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,设直线DB′解析式为y=kx+b,把D与B′坐标代入求出k与b的值,确定出直线DB′解析式,令y=0求出x的值,确定出此时M的坐标即可.【解答】解:(1)对于直线y=x+2,令x=0,得到y=2;令y=0,得到x=﹣4,∴A(﹣4,0),B(0,2),即OA=4,OB=2,则AB==2;(2)过D作DE⊥x轴,过C作CF⊥y轴,∵四边形ABCD为正方形,∴AB=BC=AD,∠ABC=∠BAD=∠BFC=∠DEA=∠AOB=90°,∵∠FBC+∠ABO=90°,∠ABO+∠BAO=90°,∠DAE+∠BAO=90°,∴∠FBC=∠OAB=∠EDA,∴△DEA≌△AOB≌△BFC(AAS),∴AE=OB=CF=2,DE=OA=FB=4,即OE=OA+AE=4+2=6,OF=OB+BF=2+4=6,则D(﹣6,4),C(﹣2,6);(3)如图所示,连接BD,找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,∵B(0,2),∴B′(0,﹣2),设直线DB′解析式为y=kx+b,把D(﹣6,4),B′(0,﹣2)代入得:,解得:k=﹣1,b=﹣2,∴直线DB′解析式为y=﹣x﹣2,令y=0,得到x=﹣2,则M坐标为(﹣2,0).31.为发展旅游经济,我市某景区对门票釆用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1与y2之间的函数图象如图所示.(1)观察图象可知:a=;b=;m=;(2)直接写出y1,y2与x之间的函数关系式;(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?【分析】(1)根据原票价和实际票价可求a、b的值,m的值可看图得到;(2)先列函数解析式,然后将图中的对应值代入其中求出常数项,即可得到解析式;(3)分两种情况讨论,即不多于10和多于10人,找出等量关系,列出关于人数的n的一元一次方程,解此可得人数.【解答】解:(1)门票定价为50元/人,那么10人应花费500元,而从图可知实际只花费300元,是打6折得到的价格,所以a=6;从图可知10人之外的另10人花费400元,而原价是500元,可以知道是打8折得到的价格,所以b=8,看图可知m=10;(2)设y1=kx,当x=10时,y1=300,代入其中得,k=30y1的函数关系式为:y1=30x;同理可得,y2=50x(0≤x≤10),当x>10时,设其解析式为:y2=kx+b,将点(10,500),(20,900)代入可得:,解得:,即y2=40x+100;故y1与x之间的函数关系式为:y1=30x;y2与x之间的函数关系式为:y2=;(3)设A团有n人,则B团有(50﹣n)人,当0≤n≤10时,50n+30(50﹣n)=1900解得,n=20这与n≤10矛盾,当n>10时,40n+100+30(50﹣n)=1900,解得,n=30,50﹣30=20.答:A团有30人,B团有20人.32.某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图(1)第20天的总用水量为多少米3?(2)求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?【分析】(1)看x=20时,所对应的函数值是多少即可;(2)①当<x<20时,设y与x之间的函数关系式y=kx,由函数图象经过点(20,1000),求得k=5,于是得到y与x之间的函数关系式为y=5x,②当x≥20时,设y与x之间的函数关系式:y=kx+b,求得.于是得到当x≥20时,y与x之间的函数关系式为:y=300x﹣5000;设出一次函数解析式,把(20,1000),(30,4000)代入一次函数解析式,求得k,b的值即可;(3)把y=7000代入(2)得到的一次函数解析式,求得x的值即可.【解答】解:(1)当x=20时,y=1000,故第20天的总用水量为1000米3;(2)①当<x<20时,设y与x之间的函数关系式y=kx,∵函数图象经过点(20,1000),∴1000=20k,∴k=5,∴y与x之间的函数关系式为y=5x,②当x≥20时,设y与x之间的函数关系式:y=kx+b,∵函数图象经过点(20,1000),(30,4000),∴,解得.∴当x≥20时,y与x之间的函数关系式为:y=300x﹣5000;(3)当y=7000时,x=40,答:时间为40天时,总用水量达到7000米3.33.学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.【考点】一元一次方程的应用.【分析】(1)甲印刷厂收费表示为:甲厂每份材料印刷费×材料份数x+制版费,乙印刷厂收费表示为:乙厂每份材料印刷费×材料份数x;(2)先把x=2400代入(1)中所求的代数式,分别计算出此时甲、乙两印刷厂的收费,然后比较即可.【解答】解:(1)甲印刷厂收费表示为:(0.2x+500)元,乙印刷厂收费表示为:0.4x元.(2)选择乙印刷厂.理由:当x=2400时,甲印刷费为0.2x+500=980(元),乙印刷费为0.4x=960(元).因为980>960,所以选择乙印刷厂比较合算.34.已知函数y 1=k 1x +b 1和y 2=k 2x +b 2图象如图所示,直线y 1与直线y 2交于A 点(0,3). (1)求函数y 1和y 2的函数关系式;(2)求三角形ABC 的面积;(3)已知点D 在x 轴上,且满足三角形ACD 是等腰三角形,直接写出D 点坐标.【考点】两条直线相交或平行问题.【分析】(1)把点的坐标代入函数解析式即可得到结论;(2)根据三角形的面积公式计算即可;(3)根据勾股定理得到AC=3,①当AD=AC=3时,根据等腰三角形的性质得到D 1(﹣3,0),②当AC=CD=3时,根据等腰三角形的性质得到D 2(3﹣3,0),③当AD=PD=3时,D 在AC 的垂直平分线上,由线段垂直平分线的性质即可得到结论.【解答】解:(1)把A (0,3),C (3,0)代y 2=k 2x +b 2,解得:. 故函数y 2的函数关系式y 2=﹣3x +3,把A (0,3),B (1,0)代入y 1=k 1x +b 1得,解得:. 故y 1的函数关系式为:y 1=﹣x +3(2)S △ABC =BC •AO=2×3=3;(3)∵OA=OC=3,∴AC=3,①当AD=AC=3时,OD=OC=3,∴D 1(﹣3,0),②当AC=CD=3时,OD=CD ﹣OC=3﹣3,∴D 2(3﹣3,0),③当AD=PD=3时,D 在AC 的垂直平分线上,∴D 与O 重合,∴D 3(0,0),④当AD=CD=3时,OD=OC+CD=3+3,∴D4(3+3,0).综上所述:点D在x轴上,且满足三角形ACD是等腰三角形,D点坐标:(﹣3,0)(3﹣3,0)(0,0)(3+3,0).y的值;(2)这20名学生的本次测验成绩的众数和中位数分别是多少?【考点】众数;加权平均数;中位数.【分析】(1)根据平均分为84分,总人数为20人,列方程组求解;(2)根据众数和中位数的概念求解.【解答】解:(1)由题意得,,解得:,即x的值为1,y的值为11;(2)∵成绩为90分的人数最多,故众数为90,∵共有20人,∴第10和11为学生的平均数为中位数,中位数为:=90.2016年10月14日。
山东省枣庄市滕州市2015~2016学年度八年级上学期期末物理试卷一、选择题(共16小题,每小题2分,满分32分)1.一个人沿路走近某一盏路灯,在走路过程中,路灯照射人,人的影子长短在变化,其变化情况是()A.逐渐变短 B.逐渐变长 C.先变短再变长 D.先变长后变短2.下列事例中,属于紫外线应用的是()A.夜视仪B.遥控器C.验钞机D.全自动感应水龙头3.显微镜的物镜成像相当于下列哪种光学元件的成像()A.照相机B.投影仪C.放大镜D.潜望镜4.一支蜡烛燃烧一段时间后剩下半支,则()A.质量减半,密度减半B.体积减半,密度加倍C.质量减半,密度不变D.质量、体积、密度都减半5.如图所示晚上,在桌面上铺一张白张,把一小块平面镜平放在纸上,让手电筒的光正对着平面镜照射,则从侧面看出()A.镜子比较暗,它发生了镜面反射B.白纸比较暗,它发生了漫反射C.镜子比较亮,它发生了镜面反射D.白纸比较亮,它发生了镜面反射6.一张课桌质量约为()A.800g B.8kg C.0.08t D.8000mg7.当光从空气斜射向水面时,同时发生反射和折射,图中,能正确表示其传播方向的是()A.B.C.D.8.要使小灯泡发出的光经某透镜后变成平行光,应把小灯泡放在()A.凸透镜前任意位置 B.凸透镜的焦点上C.凹透镜前任意位置 D.凹透镜的焦点上9.某物体放在离凸透镜20cm处,无论怎样移动光屏,光屏上始终得不到像,则该凸透镜的焦距可能是()A.30cm B.15cm C.10cm D.5cm10.如图所示,用手电筒对着平面镜中像照射时,观察到的像比原来亮多了,其原因是()A.光射到像上,所以会变亮B.镜子比原来亮,所以像也变亮C.光反射到物上,物变亮,所以像也变亮D.有光照射,更便于观察,所以觉得像变亮了11.我们生活中常常都提到像:①小孔成像,②平面镜成像,③放大镜成像,④银幕上的像,⑤哈哈镜中的像,其中()A.属于实像的是①④B.属于虚像的是①②③C.由于光的反射而形成的像是①③④D.由于光的折射而形成的像是③④⑤12.用显微镜和普通天文望远镜观察物体时,你注意过像的正倒吗?如果还没注意过,请你根据已学过的光学知识判断,关于像的正倒,以下说法正确的是()A.用显微镜观察时像是倒立的,用天文望远镜观察时像是正立的B.用显微镜现察时像是倒立的,用天文望远镜观察时像是倒立的C.用显微镜观察时像是正立的,用天文望远镜观察时像是倒立的D.用显微镜观察时像是正立的,用天文望远镜观察时像是正立的13.报纸上放有小明的近视眼镜、爸爸的老花眼镜、奶奶度数更深的老花眼镜及妈妈的平光眼镜如图,则奶奶的眼镜是图中的()A.B.C.D.14.用天平和量筒测量形状不规则小石块的密度,下列步骤不需要的是()A.用天平测量小石块的质量m1B.用天平测量量筒的质量m2C.在量筒内倒入适量的水,记下量筒中水的休积V1D.用细线系住小石块,浸没在量筒的水中,记下量筒中石块和水的总休积V215.一个质量为0.3kg的水壶,装满水后总质量为0.8kg,装满另一种液体是总质量为0.7kg,则这种液体的密度是(ρ水=1.0×103kg/m3)()A.1.4×103kg/m3 B.0.875×103kg/m3C.0.8kg/m3D.0.8×103/m316.小明利用天平和量杯测量某种液体的密度,得到的数据如下表,他根据实验数据绘出的图象如液体的体积V/cmA.20g,0.8×103kg/m3B.60g,0.8×103kg/m3C.60g,1.0×103kg/m3D.20g,1.0×103kg/m3二、填空题(共9小题,每小题2分,满分20分)17.排纵队时,如果看到前面的一位同学挡住了他前面所有的同学,队就排直了,这可以用来解释,光在中的传播速度最快,其速度是m/s.18.在湖边散步的小明惊奇的发现一只小鸟在水中飞翔,他所看到的是空中小鸟的(填“实”或“虚”像).当小鸟向高处飞行时,水中的“小鸟”将(填“靠近”或“远离”)水面.19.小莉看不清黑板上的字,她向黑板靠近几步就看清了,说明她是眼(选填“近视”或“远视”).如果小莉仍坐在原位,为了使物体的像刚好落在小莉的视网膜上,她应该配戴适当度数的透镜制作的眼镜来矫正视.20.装在烧杯中的水被倒出一部分后,烧杯中剩余水的密度;密封在容器中一定质量的气体被抽出一部分后,容器中剩余气体的密度.(选填“变大”、“变小”、“不变”)21.舞蹈演员上身穿白衣服,下面穿绿裤子.当剧场舞台上用红光灯照射到这个演员身上时,剧场观众看到演员上身的衣服是色,下身的裤子是色.22.如图在鉴定文物时,常用放大镜观察文物的细微部分,这时他看到的像是.如果在文物上有两条裂纹,其夹角是5度.要想使看到的像更大些,应该将放大镜离裂纹.放大镜的放大倍数是6倍,则他看到的角是度.23.水具有反常膨胀的特性.如图所示为水的密度在0℃~10℃范围内随温度变化的曲线.根据图象可知,温度等于℃时,水的密度最大;在0℃~4℃范围内,水具有(填“热胀冷缩”或“热缩冷胀”)的性质.24.飞机设计师为减轻飞机的重力,将一个钢制零件改为铝制零件,使其质量减少104kg,则所需铝的质量是kg.(ρ钢=7.9×103kg/m3、ρ铝=2.7×103kg/m3)25.现有密度分别为ρ1、ρ2(ρ1<ρ2)的两种液体,质量均为m0,某工厂要用它们按体积比1:1的比例配制一种混合液(设混合前后总体积不变),且使所得混合液的质量最大,则这种混合液的密度为;剩下的那部分液体的质量为.三、解答题(共5小题,满分48分)26.小明同学用易拉罐做小孔成像实验,他用钉子在易拉罐底部中央戳了个三角形的小孔.(1)小明把易拉罐正对着点燃的蜡烛(如图1所示),则在半透明纸上会看到蜡烛的(选填“正立”或“倒立”)的像,这现象可用光的知识解释.(2)小明实验时发现小孔成像的大小会变化,于是他设计实验探究小孔所成像的大与哪些因素有关.他猜想所成像的大小可能与蜡烛到小孔的距离、物体的高度以及像到小孔的距离有关.于是他用同一支蜡烛实验,且保持蜡烛到小孔的距离不变,在多次改变小孔到半透明纸之间的距离时,他(3)从图象中可以看出:当蜡烛和小孔的距离保持不变时,半透明纸离小孔越远,所成的像越.(4)请你根据有关结论判断:当半透明纸距小孔12cm时,像的高度是cm.(5)通过实验,小明得到了正确的结论后很高兴.但他又想,像的大小会不会跟蜡烛离小孔的距离有关呢?在设计这个实验时小明应注意控制、不变.27.某同学在做平面镜成像特点实验时,将一块玻璃板竖直架在一直尺的上面,再取两段等长的蜡烛A和B,一前一后竖放在直尺上,点燃玻璃板前的蜡烛A,用眼睛进行观察,如图甲所示.在此实验中:(1)该实验采用薄透明平板玻璃作为平面镜,是为了能确定.直尺的作用主要是便于比较物与像;两段等长的蜡烛是为了比较物与像的关系;(2)为便于观察,该实验最好在(填“较亮”或“较暗”)环境进行,如果有3mm厚和2mm厚的两块玻璃板,应选择mm厚的玻璃板做实验.(3)把手指放在B上面,B的烛焰(选填“会”或“不会”)烫手.(4)实验中如果把平面镜向左倾斜,如图乙,实验能否成功?说出你的判断和想法:.(5)做完实验后某同学总结了一些关于平面镜成像的知识,其中不准确的是.A.将蜡烛向玻璃板靠近,像的大小不变B.将蜡烛和像所在的位置用直线连接,连线跟玻璃板垂直C.当蜡烛与玻璃板的距离为10cm时,像和物相距20cmD.将玻璃板换成平面镜,成像更清晰,更有利于进行成像特点的探究.28.小明在探究“凸透镜成实像时像距与物距的关系”的实验中,所用的实验器材有:光具座、凸透镜、光屏和蜡烛等.(1)将蜡烛、凸透镜和光屏放在光具座上,点燃蜡烛,调整凸透镜和光屏的高度,使烛焰、凸透镜和光屏的中心大致在同一上.(2)该实验应使凸透镜成实像,那么凸透镜成实像的条件是:物距焦距.次实验在光屏上所成的像是倒立、的实像.生活中应用了凸透镜这一成像规律而制成的物品有(请举一例).(4)小明得出探究结论后,又用上述器材做了一个实验.把蜡烛放在光具座上的0刻线处,凸透镜放在15cm刻线上,如图所示.移动光屏在a位置找到像;蜡烛和光屏不动,只移动凸透镜,当凸透镜向某一方向移动到b位置时,在光屏上又看到像.结合所画图象,请你对实验中可能出现的现象作出合理的判断.(至少有一个选项正确,将正确选项的字母填在横线上)A、光屏上第一次的像是倒立、放大的B、凸透镜向某一方向移动到b位置,某一方向指的是向光屏方向C、光屏上第二次的像是倒立、缩小的D、a位置在30~35cm刻线之间.29.为了测量小正方体物块的密度,同学们设计了如下甲、乙两个实验方案:甲方案:①用托盘天平测出小正方体的质量m;②用直尺测出小正方体的边长,然后计算出它的体积V;③根据公式ρ=,求小正方体的密度.乙方案:①用直尺测出小正方体的边长,然后计算出它的体积V;②用托盘天平测出小正方体的质量m;③根据公式ρ=,求小正方体的密度.(1)下列对甲、乙两个方案的评价正确的是(填选项符号).A、甲方案正确,乙方案错误B、甲方案错误,乙方案正确C、甲、乙两个方案都正确(2)小明利用托盘天平称量小正方体的质量,如图甲所示,其存在的操作错误的是:.(3)小明改正自己的错误后重新进行的称量,其右盘上的砝码一个,其数值和游码所对刻度值如图乙所示,小正方体的质量为g;若测得它的边长为2cm3,则小正方体物块的密度为g/cm3.30.体积为30cm3,质量为158g的空心球,其空心部分注满水后测得质量为168g,则其空心部分的体积是多少?若把空心球压成实心球,其密度是多少?(ρ水=1.0×103kg/m3)山东省枣庄市滕州市2015~2016学年度八年级上学期期末物理试卷参考答案与试题解析一、选择题(共16小题,每小题2分,满分32分)1.一个人沿路走近某一盏路灯,在走路过程中,路灯照射人,人的影子长短在变化,其变化情况是()A.逐渐变短 B.逐渐变长 C.先变短再变长 D.先变长后变短【考点】光直线传播的应用.【专题】应用题.【分析】(1)影子是由于光的直线传播形成的,当光遇到不透明物体时,便会在物体后面形成一个黑暗的区域,即是影子.(2)人由远而近经过路灯时,人的身高和路灯的高度都是不变的,但因为人和路灯间的位置发生了变化,光线与地面的夹角发生变化,夹角越大影子越短,光线与地面夹角变化时,影子的长度也会发生变化.【解答】解:一个人沿路走近某一盏路灯,路灯发出的射向人头顶的光线与地面的夹角越来越大,人在地面上留下的影子越来越短,当人到达路灯的下方时,人在地面上的影子变成一个圆点,故选A.【点评】此题考查了光直线传播的应用,影子的长度取决于人的身高、人和光源之间的距离、人和光源的角度.本题的解题关键是了解人从路灯下走过的过程中,人与灯间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.2.下列事例中,属于紫外线应用的是()A.夜视仪B.遥控器C.验钞机D.全自动感应水龙头【考点】紫外线.【专题】应用题.【分析】了解紫外线与红外线的作用与特点,才能顺利解答此题:(1)紫外线的作用和用途:紫外线的有杀菌的作用,制成消毒灯;紫外线能使荧光物质发光,制成验钞机;紫外线能合成维生素D能促进钙的吸收.(2)红外线的作用和用途:红外线的热作用很强,制成热谱仪、红外线夜视仪;红外线可以用来遥控,制成电视遥控器.【解答】解:A、夜视仪是利用红外线的热作用强来工作的.不符合题意.B、遥控器是利用红外线可以进行遥控来工作的.不符合题意.C、验钞机是利用紫外线能使荧光物质发光来工作的.符合题意.D、全自动感应水龙头是通过接收人体辐射的红外线来进行控制的,不符合题意.故选C.【点评】掌握红外线和紫外线的作用和应用,两者放在一起对比记忆记忆效果比较好.3.显微镜的物镜成像相当于下列哪种光学元件的成像()A.照相机B.投影仪C.放大镜D.潜望镜【考点】显微镜.【专题】应用题;透镜及其应用.【分析】显微镜有物镜和目镜组成,显微镜的物镜成的是放大、倒立的实像,目镜成的是正立、放大的虚像.【解答】解:显微镜包括物镜和目镜,靠近物体的称之为物镜,另一个称之为目镜,物体首先由物镜成一个倒立、放大的实像,再经目镜成一个正立、放大的虚像.因此,物镜成像原理相当于投影仪,目镜成像原理相当于放大镜.故选B.【点评】本题考查了显微镜的物镜和目镜的成像特点,它们都是利用了凸透镜的成像规律,显微镜的物镜成放大实像,目镜成放大的虚像.4.一支蜡烛燃烧一段时间后剩下半支,则()A.质量减半,密度减半B.体积减半,密度加倍C.质量减半,密度不变D.质量、体积、密度都减半【考点】质量及其特性;密度及其特性.【专题】应用题;密度及其应用.【分析】质量是物体所含物质的多少,是物质的一种属性,不随物体的形状、状态、位置的改变而改变;密度是物质的一种特性,不同种类的物质密度一般是不同,它与物体的质量、体积无关,但与物质的状态、温度有关.【解答】解:一支蜡烛燃烧一段时间后,还剩半支,所含物质变少,其质量减半,体积也减半,但质量与体积的比值不变即密度不变.故选 C.【点评】考查物质的质量与密度,质量是物质的一种属性,是不需要附加条件的,同一个物体即使它的形状、状态、温度、位置等条件改变了,它的质量也不会改变;密度是物质的一种特性,是指物质或物体在一定条件下(如温度、状态等)才具有的一种性质.5.如图所示晚上,在桌面上铺一张白张,把一小块平面镜平放在纸上,让手电筒的光正对着平面镜照射,则从侧面看出()A.镜子比较暗,它发生了镜面反射B.白纸比较暗,它发生了漫反射C.镜子比较亮,它发生了镜面反射D.白纸比较亮,它发生了镜面反射【考点】镜面反射;漫反射.【专题】光的传播和反射、平面镜成像.【分析】(1)镜面反射后的光线射向同一方向,正好处在这一方向上时,获得的光线很强,其他方向上几乎没有反射光线.(2)漫反射时反射光线射向各个方向,所以我们能从各个不同方向看到本身不发光的物体.【解答】解:手电筒的光是正对着平面镜照射,因为平面镜发生的是镜面反射,所以所有的反射光都垂直镜面竖直向上.因为人是从侧面看白纸的,所以镜面反射的光几乎没有进入眼睛,故看到镜子是暗的;而入射到白纸上的光会发生漫反射,会向四面八方反射,即使人站在侧面看,也会有反射光线进入人眼,所以人看到白纸是亮的,故选项A正确,BCD错误.故选A.【点评】本题考查了漫反射和镜面反射的区别,解答本题不能只凭自己平时的经验去判断,需要用知识去进行分析.不要误认为镜面反射一定是亮的,要看镜面反射的光是否进入人眼,如果不进入人眼,反而比漫反射更暗,这些实验只要学生动手做过,就会明白其中包含的光学道理.6.一张课桌质量约为()A.800g B.8kg C.0.08t D.8000mg【考点】质量的估测.【专题】质量及其测量.【分析】此题考查我们对常见物体质量的估测,根据对日常生活中常见物体和质量单位的认识,选出符合题意的选项.【解答】解:一辆自行车的质量在10kg左右,课桌的质量略小于10kg,在8kg=8×103g=8×10﹣3t=8×106mg左右.故选B.【点评】质量的估测,需要我们熟悉常见物体的质量大小,以它们为标准对研究对象的质量作出判断.如:一个鸡蛋的质量在60g左右,一个苹果的质量在200g左右,一杯水的质量在0.5kg左右,中学生的质量在50kg左右,大象的质量在5t左右,等等.7.当光从空气斜射向水面时,同时发生反射和折射,图中,能正确表示其传播方向的是()A.B.C.D.【考点】光的反射定律;光的折射规律.【专题】图析法.【分析】光由空气斜射入水中时,发生反射和折射.(1)反射光线与入射光线分居法线两侧;在同一种介质中;反射角等于入射角.(2)折射光线与入射光线也分居法线两侧;在不同种介质中;由空气斜射入水中,折射角小于入射角.【解答】解:A、图中光从空气斜射入水中时,折射光线向远离法线方向偏折了,故不正确;B、符合光的反射定律和折射定律,该选项正确;C、图中反射角和入射角不相等,光从空气斜射入水中没有发生折射,故不正确;D、图中反射角大于入射角,故不正确.故选B.【点评】解此类问题,要深刻理解反射定律和折射定律的内容,特别容易出错的地方是光线的方向、位置和角度的大小.8.要使小灯泡发出的光经某透镜后变成平行光,应把小灯泡放在()A.凸透镜前任意位置 B.凸透镜的焦点上C.凹透镜前任意位置 D.凹透镜的焦点上【考点】凸透镜的会聚作用.【专题】应用题.【分析】首先分析这个透镜要对光线起到的是会聚作用还是发散作用,据此选择好透镜;然后根据凸透镜或者是凹透镜的上特殊的光线来分析.【解答】解:小灯泡发出的光是发散光,要经过透镜变为平行光,这个透镜对光线起到了会聚作用,应该是凸透镜;过凸透镜焦点的光线经过凸透镜的折射,就会变为平行于主光轴的光线射出,所以可以将小灯泡放在凸透镜的焦点上.故选B.【点评】此题考查凸透镜对光线会聚作用的应用,是一道应用题.9.某物体放在离凸透镜20cm处,无论怎样移动光屏,光屏上始终得不到像,则该凸透镜的焦距可能是()A.30cm B.15cm C.10cm D.5cm【考点】凸透镜成像的应用.【专题】应用题;透镜及其应用.【分析】凸透镜成像时,U<f,成正立、放大的虚像,光屏上得不到像.根据物距和焦距的关系,求出凸透镜焦距的取值范围.【解答】解:U<f,成正立、放大的虚像.虚像不能呈现到光屏上.某物体放在凸透镜前20cm处时,无论怎样移动光屏,光屏上始终得不到像,则20cm<f,则f>20cm,只有A选项符合题意.故选A.【点评】此题主要考查了学生对凸透镜成像规律的应用,首先要熟练掌握凸透镜成像的规律,才能做到举一反三.10.如图所示,用手电筒对着平面镜中像照射时,观察到的像比原来亮多了,其原因是()A.光射到像上,所以会变亮B.镜子比原来亮,所以像也变亮C.光反射到物上,物变亮,所以像也变亮D.有光照射,更便于观察,所以觉得像变亮了【考点】平面镜成像的特点、原理、现象及其实验方案;光的反射.【分析】平面镜成像的实质:点光源发出的光线经平面镜反射后,反射光线的反向延长线交于像点.根据平面镜成像的原理确定经过镜面的反射光线的方向,再根据物体反射光线的多少进行分析物体的明暗.【解答】解:因为当手电筒对着像照射射时,反射光线刚好射到物体上,而物体反射出去的光线增多,因此物体变亮,像随之也变亮.故选 C.【点评】本题考查平面镜成像的特点、原理、现象及其实验方案的掌握情况,会根据物体所反射的光线多少判断物体的明暗程度.11.我们生活中常常都提到像:①小孔成像,②平面镜成像,③放大镜成像,④银幕上的像,⑤哈哈镜中的像,其中()A.属于实像的是①④B.属于虚像的是①②③C.由于光的反射而形成的像是①③④D.由于光的折射而形成的像是③④⑤【考点】实像与虚像的区别;光的反射;光的折射现象及其应用.【专题】光的传播和反射、平面镜成像;光的折射、光的色散.【分析】要解决此题,需要掌握光的反射现象,知道平面镜成像是由于光的反射形成的.要掌握光的折射现象,知道水底看起来比实际的要浅、斜插入水中的筷子向上折、海市蜃楼、凸透镜成像都是光的折射.要掌握光沿直线传播现象,知道影子的形成、日月食的形成、小孔成像都是光沿直线传播形成的.【解答】解:①小孔成像是由光的直线传播形成的实像.②平面镜成像是由光的反射形成的虚像.③放大镜成像属于凸透镜成像,是由光的折射形成的虚像.④电影银幕上的像,属于凸透镜成像,是由光的折射形成的实像.⑤哈哈镜中的像是凸面镜或凹面镜,所以它成的像是由光的反射形成的虚像.综上分析,属于实像的是①④;属于虚像的是②③⑤.故选A.【点评】此题主要考查了光的反射、光的折射、光的直线传播现象,平时要注意各个现象的形成原因,并注意区分.12.用显微镜和普通天文望远镜观察物体时,你注意过像的正倒吗?如果还没注意过,请你根据已学过的光学知识判断,关于像的正倒,以下说法正确的是()A.用显微镜观察时像是倒立的,用天文望远镜观察时像是正立的B.用显微镜现察时像是倒立的,用天文望远镜观察时像是倒立的C.用显微镜观察时像是正立的,用天文望远镜观察时像是倒立的D.用显微镜观察时像是正立的,用天文望远镜观察时像是正立的【考点】显微镜.【专题】透镜及其应用.【分析】根据显微镜和望远镜成像原理即可解答此题:显微镜的原理:显微镜包括物镜和目镜,物镜相当于投影仪成倒立的放大的实像;目镜相当于放大镜成正立的放大的虚像.望远镜的原理:望远镜包括物镜和目镜,物镜相当于照相机成倒立缩小的实像,目镜相当于放大镜成正立的放大的虚像.【解答】解:显微镜的物镜相当于投影仪成倒立的放大的实像;目镜相当于放大镜,将投影仪成倒立的放大的实像再次放大,成倒立的放大的虚像.望远镜物镜相当于照相机成倒立的缩小的实像,这个实像正好落在目镜的焦点以内,这跟放大镜的成像原理相同,所以目镜起到将物镜成的缩小的实像再次放大的作用.所以只有选项B是正确的.故选B.【点评】掌握显微镜成像原理和望远镜成像原理是解答本题的关键,无论在显微镜中还是在望远镜中,都进行了多次成像,第一次所成得像可以当做第二次成像的物体.13.报纸上放有小明的近视眼镜、爸爸的老花眼镜、奶奶度数更深的老花眼镜及妈妈的平光眼镜如图,则奶奶的眼镜是图中的()A.B.C.D.【考点】眼睛及其视物原理.【专题】应用题.【分析】此题利用凸透镜成像特点之一,当u<f时,成正立放大的虚像,可采用排除法将CD选项排除,再根据奶奶度数更深的老花眼镜从AB选项中选出即可.【解答】解:因为奶奶的眼镜是老花镜,由凸透镜成像特点之一,当u<f时,成正立放大的虚像,可知,AB选项符合;C选项成缩小的像,不符合,D选项成等大的像,也不符合题意;又因为奶奶的老花镜度数更深,即看到的图象应该更大,由图可知,A选项符合.故选A.【点评】此题主要考查学生对利用凸透镜成像特点之一,当u<f时,成正立放大的虚像这一知识点的理解和掌握.14.用天平和量筒测量形状不规则小石块的密度,下列步骤不需要的是()A.用天平测量小石块的质量m1B.用天平测量量筒的质量m2C.在量筒内倒入适量的水,记下量筒中水的休积V1D.用细线系住小石块,浸没在量筒的水中,记下量筒中石块和水的总休积V2【考点】固体密度的测量.【专题】测量型实验综合题.【分析】测固体的密度用到的器材是天平和量筒,用天平测出固体的质量m,根据排水法用量筒测出固体的体积V,用公式ρ=计算出固体的密度.【解答】解:测固体石块的密度的基本方法是:用天平测出石块的质量m,在量筒中倒入适量水,读出体积为V1,将石块放入量筒浸没水中,读出水面体积值为V2,则石块的密度为ρ=.。
八年级上册全册全套试卷复习练习(Word 版 含答案)一、八年级数学三角形填空题(难)1.△ABC 的两边长为4和3,则第三边上的中线长m 的取值范围是_______.【答案】1722m << 【解析】【分析】 作出草图,延长AD 到E ,使DE=AD ,连接CE ,利用“边角边”证明△ABD 和△ECD 全等,然后根据全等三角形对应边相等可得CE=AB ,再根据三角形的任意两边之和大于第三边,两边之和小于第三边求出AE 的取值范围,便不难得出m 的取值范围.【详解】解:如图,延长AD 到E ,使DE=AD ,连接CE ,∵AD 是△ABC 的中线,∴BD=CD , 在△ABD 和△ECD 中,AD DE ADB EDC BD CD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△ECD (SAS ),∴CE=AB ,∵AB=3,AC=4,∴4-3<AE <4+3, 即1<AE <7,∴1722m <<. 故答案为:1722m <<. 【点睛】本题主要考查倍长中线法构造全等三角形和三边关系,解决本题的关键是要熟练掌握倍长中线法构造全等三角形.2.如图,在∆ABC 中, ∠A =80︒, ∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1; ∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;……; ∠A 7BC 与∠A 7CD 的平分线相交于点A 8,得∠A 8,则∠A 8的度数为_________..【答案】516【解析】【分析】 利用外角等于不相邻的两个内角之和,以及角平分线的性质求∠A 1=12∠A ,再依此类推得,∠A 2=212∠A ,……,∠A 8= 812∠A ,即可求解. 【详解】解:根据三角形的外角得:∠ACD=∠A+∠ABC.又∵∠ABC 与∠ACD 的平分线交于点A 1, ∴1111222A ABC A ABC ∠+∠=∠+∠ ∴∠A 1=12∠A 依此类推得,∠A 2= 212∠A ,……,∠A 8= 812∠A=180256⨯=516 故答案为516. 【点睛】 本题考查三角形外角、角平分线的性质,解答的关键是弄清楚角之间的关系..3.如图是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD =__________.【答案】119°【解析】【分析】连接BD ,构△BCD 根据对顶角相等和三角形内角和定理即可求出∠BCD 的度数.【详解】如图所示,连接BD ,∵∠4=∠1=38°,∠3=∠2=23°,∴∠BCD =180°-∠4-∠3=180°-38°-23°=119°.故答案为:119°.【点睛】本题考查了对顶角的性质与三角形内角和定理. 连接BD ,构△BCD 是解题的关键.4.三角形的三个内角度数比为1:2:3,则三个外角的度数比为_____.【答案】5:4:3【解析】试题解析:设此三角形三个内角的比为x ,2x ,3x ,则x+2x+3x=180,6x=180,x=30,∴三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°,则三个外角的度数比为:150°:120°:90°=5:4:3,故答案为5:4:3.5.如图,在△ABC 中,∠A =60°,若剪去∠A 得到四边形BCDE ,则∠1+∠2=______.【答案】240.【解析】【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.6.将直角三角形(ACB ∠为直角)沿线段CD 折叠使B 落在B '处,若50ACB '︒∠=,则ACD ∠度数为________.【答案】20°.【解析】【分析】根据翻折的性质可知:∠BCD=∠B′CD,又∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,继而即可求出∠BCD的值,又∠ACD+∠BCD=∠ACB=90°,继而即可求出∠ACD的度数.【详解】解:∵△B′CD时由△BCD翻折得到的,∴∠BCD=∠B′CD,又∵∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,∴∠BCD=70°,又∵∠ACD+∠BCD=∠ACB=90°,∴∠ACD=20°.故答案为:20°.【点睛】本题考查翻折变换的知识,难度适中,解题关键是掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、八年级数学三角形选择题(难)7.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【答案】B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.8.下列多边形中,不能够单独铺满地面的是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【解析】【分析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C.【点睛】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.9.一个多边形内角和是900°,则这个多边形的边数是()A.7 B.6 C.5 D.4【答案】A【解析】【分析】n边形的内角和为(n-2)180°,由此列方程求n的值即可.【详解】设这个多边形的边数为n,则:(n-2)180°=900°,解得n=7.故答案为:A.【点睛】本题考查了多边形的内角和,熟练掌握该知识点是本题解题的关键.10.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()A.4B.5C.6D.9【答案】C【解析】【分析】根据三角形的三边关系可判断x的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选C.【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.11.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是()A.7 B.8 C.6 D.5【答案】B【解析】【分析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.12.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°【答案】D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.三、八年级数学全等三角形填空题(难)13.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为 .41.【解析】作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD′中,BA CA BAD CAD AD AD =⎧⎪∠=∠'⎨⎪='⎩, ∴△BAD ≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=22()=32=42AD AD +',∠D′DA+∠ADC=90°由勾股定理得CD′=22()=932=41DC DD +'+∴BD=CD′=41,故答案为41.14.如图,P 为等边△ABC 内一点,∠APC=150°,且∠APD=30°,AP=6,CP=3,DP=7,则BD 的长为______.【答案】34【解析】【分析】将△CPA 绕点C 逆时针旋转60°得到△CEB ,连接EP ,由全等三角形的性质可得CE =CP ,∠ECB =∠PCA ,∠CEB =∠CPA =150°,BE =AP =6,结合等边三角形的性质可得出∠ECP =60°,进而证明△ECP 为等边三角形,由等边△ECP 的性质进而证明D 、P 、E 三点共线以及∠DEB =90°,最后利用勾股定理求出BD 的长度即可.【详解】 将△CPA 绕点C 逆时针旋转60°得到△CEB ,连接EP ,∴CE =CP ,∠ECB =∠PCA ,∠CEB =∠CPA =150°,BE =AP =6,∵等边△ABC ,∴∠ACP +∠PCB =60°,∴∠ECB +∠PCB =60°,即∠ECP =60°,∴△ECP 为等边三角形,∴∠CPE =∠CEP =60°,PE =6,∴∠DEB =90°,∵∠APC =150°,∠APD =30°,∴∠DPC =120°,∴∠DPE =180°,即D 、P 、E 三点共线,∴ED =3+7=10,∴BD =22DE BE +=234.故答案为234.【点睛】本题主要考查全等三角形的性质、勾股定理、等边三角形的判定与性质以及三点共线的判定,运用旋转构造全等三角形是解题的关键.15.如图,在等腰三角形ABC 中,90ABC ∠=,D 为AD 边上中点,多D 点作DE DF ⊥,交AB 于E ,交BC 于F ,若3AE =,2CF =,则ABC ∆的面积为______.【答案】252【解析】【分析】 利用等腰直角三角形斜边中点D 证明AD=BD ,∠DBC=∠A=45︒,再利用DE DF ⊥证得∠ADE=∠BDF ,由此证明△ADE ≌△BDF ,得到BC 的长度,即可求出三角形的面积.【详解】∵90ABC ∠=︒,AB=BC,∴∠A=45︒,∵D 为AC 边上中点,∴AD=CD=BD ,∠DBC=∠A=45︒,∠ADB=90︒,∵DE DF ⊥,∴∠EDB+∠BDF=∠EDB+∠ADE=90︒,∴∠ADE=∠BDF,∴△ADE ≌△BDF,∴BF==AE=3,∵CF=2,∴AB=BC=BF+CF=5,∴ABC ∆的面积为212BC ⋅=252, 故答案为:252. 【点睛】此题考查等腰直角三角形的性质,三角形全等的判定及性质.16.如图,在△ABC 中,AB =8,AC =5,AD 是∠BAC 的角平分线,点D 在△ABC 内部,连接AD 、BD 、CD ,∠ADB =150°,∠DBC =30°,∠ABC +∠ADC =180°,则线段CD 的长度为________.【答案】3【解析】【分析】在AB 上截取AE=AC ,证明△ADE 和△ADC 全等,再证BDE 是等腰三角形即可得出答案.【详解】在AB 上截取AE=AC∵AD 是∠BAC 的角平分线∴∠EAD=∠CAD又AD=AD∴△ADE≌△ADC(SAS)∴ED=DC,∠ADE=∠ADC∵∠ADB=150°∴∠EDB+∠ADE=150°又∵∠DBC=30°,∠ABC+∠ADC=180°∴∠ABD+∠DBC+∠ADC=180°即∠ABD +∠ADC=150°∴∠ABD=∠EDB∴BE=ED即BE=CD又AB=8,AC=5CD=BE=AB-AE=AB-AC=3故答案为3【点睛】本题考查的是全等三角形的综合,解题关键是利用截长补短法作出两个全等的三角形.17.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④CO平分∠AOE;⑤∠AOB=60°.恒成立的结论有__.(把你认为正确的序号都填上)【答案】①②③④⑤【解析】【分析】根据等边三角形的性质及SAS即可证明△ACD≌△BCE即可求解.【详解】①△ABC和△DCE均是等边三角形,点A,C,E在同一条直线上,∴AC=BC,EC=DC,∠BCE=∠ACD=120°∴△ACD≌△ECB∴AD=BE,故本选项正确;②∵△ACD≌△ECB∴∠CBQ=∠CAP,又∵∠PCQ=∠ACB=60°,CB=AC,∴△BCQ≌△ACP,∴CQ=CP,又∠PCQ=60°,∴△PCQ为等边三角形,∴∠QPC=60°=∠ACB,∴PQ∥AE,故本选项正确;③∵∠ACB=∠DCE=60°,∴∠BCD=60°,∴∠ACP=∠BCQ,∵AC=BC,∠DAC=∠QBC,∴△ACP≌△BCQ(ASA),∴CP=CQ,AP=BQ,故本选项正确;④∵BC∥DE,∴∠CBE=∠BED,∵∠CBE=∠DAE,∴∠AOB=∠OAE+∠AEO=60°,同理可得出∠AOE=120°,∵D,O,C,E四点共圆,∴∠OCD=∠OED,∴∠OAC=∠OCD,∴∠DCE=∠AOC=60°,∴OC平分∠AOE,故④正确;⑤∵△ABC、△DCE为正三角形,∴∠ACB=∠DCE=60°,AC=BC,DC=EC,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴∠CAD=∠CBE,∴∠AOB=∠CAD+∠CEB=∠CBE+∠CEB,∵∠ACB=∠CBE+∠CEB=60°,∴∠AOB=60°,故本选项正确.综上所述,正确的结论是①②③④⑤.【点睛】本题考查等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,找到不变量,是解题关键.18.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1、l2之间的距离为2,l2、l3之间的距离为3,则AC的长是_________;【答案】217【解析】【分析】首先作AD⊥l3于D,作CE⊥l3于E,再证明△ABD≌△BCE,因此可得BE=AD=3,再结合勾股定理可得AC的长.【详解】作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°,又∠DAB+∠ABD=90°,∴∠BAD=∠CBE,又AB=BC,∠ADB=∠BEC.∴△ABD≌△BCE,∴BE=AD=3,在Rt△BCE中,根据勾股定理,得34在Rt△ABC中,根据勾股定理,得22342217+=⨯=AB CB故答案为17【点睛】本题主要考查直角三角形的综合问题,关键在于证明三角形的全等,这类题目是固定的解法,一定要熟练掌握.四、八年级数学全等三角形选择题(难)19.如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).A .PA PB =B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP【答案】D【解析】【分析】 根据角平分线上的点到角的两边距离相等可得出PA=PB ,再利用“HL ”证明△AOP 和△BOP 全等,可得出APO BPO ∠=∠,OA=OB ,即可得出答案.【详解】解:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥∴PA PB =,选项A 正确;在△AOP 和△BOP 中,PO PO PA PB =⎧⎨=⎩, ∴AOP BOP ≅∴APO BPO ∠=∠,OA=OB ,选项B ,C 正确;由等腰三角形三线合一的性质,OP 垂直平分AB ,AB 不一定垂直平分OP ,选项D 错误. 故选:D .【点睛】本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键.20.具备下列条件的两个三角形,可以证明它们全等的是( ).A .一边和这一边上的高对应相等B .两边和第三边上的中线对应相等C .两边和其中一边的对角对应相等D .直角三角形的斜边对应相等 【答案】B【解析】【分析】根据判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL 分别进行分析.【详解】解:A 、一边和这边上的高对应相等,无法得出它们全等,故此选项错误;B 、两边和第三边上的中线对应相等,通过如图所示方式(倍长中线法)可以证明它们全等(△ABC≌△A′B′C′),故此选项正确..C、两边和其中一边的对角对应相等,无法利用ASS得出它们全等,故此选项错误;D、直角三角形的斜边对应相等,无法得出它们全等,故此选项错误.故选:B.【点睛】本题考查三角形全等的判定方法,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④【答案】D【解析】分析:根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.详解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP,∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD,∴PH=PD,故③正确.∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确.故选D.点睛:本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.22.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为()A.2 B.3 C.4 D.5【答案】C【解析】【分析】可延长DE至F,使EF=BC,利用SAS可证明△ABC≌△AEF,连AC,AD,AF,再利用SSS证明△ACD≌△AFD,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求解即可.【详解】延长DE至F,使EF=BC,连AC,AD,AF,在△ABC与△AEF中,=90AB AEABC AEFBC EF⎧⎪∠∠⎨⎪⎩===,∴△ABC≌△AEF(SAS),∴AC=AF,∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,∴CD=EF+DE=DF,在△ACD与△AFD中,AC AFCD DFAD AD⎧⎪⎨⎪⎩===,∴△ACD≌△AFD(SSS),∴五边形ABCDE的面积是:S=2S△ADF=2×12•DF•AE=2×12×2×2=4.故选C.【点睛】本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE的面积转化为两个△ADF的面积是解决问题的关键.23.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()A.2B.1+22C.2D2-1【答案】B【解析】第一次折叠后,等腰三角形的底边长为1,腰长为22;第一次折叠后,等腰三角形的底边长为22,腰长为12,所以周长为112212222++=+.故答案为B.24.如图, AB=AC,AD=AE, BE、CD交于点O,则图中全等三角形共有()A.五对B.四对C.三对D.二对【答案】A【解析】如图,由已知条件可证:①△ABE≌△ACD;②△DBC≌△ECB;③△BDO≌△ECO;④△ABO≌△ACO;⑤△ADO≌△AEO;∴图中共有5对全等三角形.故选A.五、八年级数学轴对称三角形填空题(难)25.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=12 BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=12×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.26.在锐角三角形ABC中.BC=32,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是____.【答案】4【解析】【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据32ABC=45°,BD平分∠ABC可知△BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长.【详解】 解:过点C 作CE ⊥AB 于点E ,交BD 于点M′,过点M′作M′N′⊥BC 于N′,则CE 即为CM+MN 的最小值,∵BC=32,∠ABC=45°,BD 平分∠ABC ,∴△BCE 是等腰直角三角形,∴CE=BC•cos45°=32×22=4. ∴CM+MN 的最小值为4.【点睛】本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.27.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.【答案】2019122-【解析】【分析】根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得AA ₁⊥BC,AA ₁=2,由此发现规律:01 2122h =-=-₁同理21122h =-3211122222h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-,据此求得2020h 的值. 【详解】解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上又∵ D 是AB 中点,∴DA= DB ,∵DB= DA ₁ ,∴∠BA ₁D=∠B ,∴∠ADA ₁=∠B +∠BA ₁D=2∠B,又∵∠ADA ₁ =2∠ADE ,∴∠ADE=∠B∵DE//BC,∴AA ₁⊥BC , ∵h ₁=1∴AA ₁ =2,∴012122h =-=-₁ 同理:21122h =-; 3211122222h =-⨯=-; …∴经过n 次操作后得到的折痕D n-1E n-1到BC 的距离1122n n h -=-∴20202019122h =-【点睛】本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.28.如图,在△A BC 中,AB=AC ,D 、E 是△ABC 内两点,AD 平分∠BAC,∠EBC=∠E=60°,若BE=6cm ,DE=2cm ,则BC=_____cm .【答案】8cm.【解析】【详解】解:如图,延长ED交BC于M,延长AD交BC于N,作DF∥BC,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=6cm,DE=2cm,∴DM=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=36°,∴NM=2,∴BN=4,∴BC=8.29.如图,在四边形ABCD中,∠A=60°,∠ADC=∠ABC=90°,在AB、AD上分别找一点F、E,连接CE、EF、CF,当△CEF的周长最小时,则∠ECF的度数为______.【答案】60°【解析】【分析】此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.【详解】分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F再连接CE、CF此时△CEF的周长最小,理由如下:在AD、AB上任意取E1、F1两点根据对称性:∴CE=C1E,CE1=C1E1,CF=C2F,CF1=C2F1∴△CEF的周长= CE+EF+CF= C1E+EF+C2F= C1C2而△CE1F1的周长= CE1+E1F1+CF1= C1E1+E1F1+C2F1根据两点之间线段最短,故C1E1+E1F1+C2F1>C1C2∴△CEF的周长的最小为:C1C2.∵∠A=60°,∠ADC=∠ABC=90°∴∠DCB=360°-∠A-∠ADC-∠ABC=120°∴∠C C1C2+∠C C2C1=180°-∠DCB=60°根据对称性:∠C C1C2=∠E CD,∠C C2C1=∠F CB∴∠E CD+∠F CB=∠C C1C2+∠C C2C1=60°∴∠ECF=∠DCB-(∠E CD+∠F CB)=60°故答案为:60°【点睛】此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.30.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为_________【答案】8 5【解析】【分析】首先根据折叠可得CD=AC=6,B′C=BC=8,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE,得出BF 的长,即B′F的长.【详解】解:根据折叠的性质可知:DE=AE,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,B′F=BF,∴B′D=8-6=2,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FE=90°,∵S△ABC=12AC•BC=12AB•CE,∴AC•BC=AB•CE,∵根据勾股定理得:22226810AB AC BC∴ 4.8AC BC CE AB⋅== ∴EF=4.8,22 3.6AE AC EC =-=∴B′F=BF=AB -AE-EF=10-3.6-4.8=1.6=85,故答案是:85.【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CE 、AE 是解决问题的关键.六、八年级数学轴对称三角形选择题(难)31.如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).A .PA PB =B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP【答案】D【解析】【分析】 根据角平分线上的点到角的两边距离相等可得出PA=PB ,再利用“HL ”证明△AOP 和△BOP 全等,可得出APO BPO ∠=∠,OA=OB ,即可得出答案.【详解】解:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥∴PA PB =,选项A 正确;在△AOP 和△BOP 中,PO PO PA PB =⎧⎨=⎩, ∴AOP BOP ≅∴APO BPO ∠=∠,OA=OB ,选项B ,C 正确;由等腰三角形三线合一的性质,OP 垂直平分AB ,AB 不一定垂直平分OP ,选项D 错误. 故选:D .【点睛】本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键.32.如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正确的结论有()个A.1 B.2 C.3 D.4【答案】C【解析】【分析】由已知条件可知∠ABC+∠ACB=90°,又因为CD、BE分别是△ABC的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB,∠BAG=2∠ABF.所以可知选项①③④正确.【详解】∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF 故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB 故③正确.故选C.【点睛】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.33.如图,Rt ACB ∆中,90ACB ∠=︒,ABC ∠的平分线BE 和BAC ∠的外角平分线AD 相交于点P ,分别交AC 和BC 的延长线于E ,D .过P 作PF AD ⊥交AC 的延长线于点H ,交BC 的延长线于点F ,连接AF 交DH 于点G .下列结论:①45APB ∠=︒;②PB 垂直平分AF ;③BD AH AB -=;④2DG PA GH =+;其中正确的结论有( )A .4个B .3个C .2个D .1个【答案】A【解析】【分析】 ①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP ,再根据角平分线的定义∠ABP =12∠ABC ,然后利用三角形的内角和定理整理即可得解;②先求出∠APB =∠FPB ,再利用“角边角”证明△ABP 和△FBP 全等,根据全等三角形对应边相等得到AB =BF ,AP =PF ;③根据直角的关系求出∠AHP =∠FDP ,然后利用“角角边”证明△AHP 与△FDP 全等,根据全等三角形对应边相等可得DF =AH ;④求出∠ADG =∠DAG =45°,再根据等角对等边可得DG =AG ,再根据等腰直角三角形两腰相等可得GH =GF ,然后根据2PA 即可得到2DG PA GH =+. 【详解】解:①∵∠ABC 的角平分线BE 和∠BAC 的外角平分线,∴∠ABP =12∠ABC , ∠CAP =12(90°+∠ABC )=45°+12∠ABC , 在△ABP 中,∠APB =180°−∠BAP−∠ABP , =180°−(45°+12∠ABC +90°−∠ABC )−12∠ABC ,=180°−45°−12∠ABC−90°+∠ABC−12∠ABC , =45°,故本小题正确;②∵PF ⊥AD ,∠APB =45°(已证),∴∠APB =∠FPB =45°,∵∵PB 为∠ABC 的角平分线,∴∠ABP =∠FBP ,在△ABP 和△FBP 中, APB FPB PB PBABP FBP ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABP ≌△FBP (ASA ),∴AB =BF ,AP =PF ;∴PB 垂直平分AF ,故②正确;③∵∠ACB =90°,PF ⊥AD ,∴∠FDP +∠HAP =90°,∠AHP +∠HAP =90°,∴∠AHP =∠FDP ,∵PF ⊥AD ,∴∠APH =∠FPD =90°,在△AHP 与△FDP 中,90AHP FDP APH FPD AP PF ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△AHP ≌△FDP (AAS ),∴DF =AH ,∵BD =DF +BF ,∴BD =AH +AB ,∴BD−AH =AB ,故③小题正确;④∵AP =PF ,PF ⊥AD ,∴∠PAF =45°,∴∠ADG =∠DAG =45°,∴DG =AG ,∵∠PAF =45°,AG ⊥DH ,∴△ADG 与△FGH 都是等腰直角三角形,∴DG =AG ,GH =GF ,∴DG =GH +AF ,∴故DG GH =+.综上所述①②③④正确.故选:A .【点睛】本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.34.如图,Rt ABC ∆中,90ACB ∠=,3AC =,4BC =,5AB =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段EF 的长为( )A .52B .125C .4D .53【答案】B【解析】【分析】先利用折叠的性质证明出△ECF 是一个等腰直角三角形,因此EF=CE ,然后再根据文中条件综合得出S △ABC =12AC∙BC=12AB∙CE ,求出CE 进而得出答案即可. 【详解】根据折叠性质可知:CD=AC=3,BC=B C '=4,∠ACE=∠DCE ,∠BCF=∠B 'CF ,CE ⊥AB , ∴∠DCE+∠B 'CF=∠ACE+∠BCF ,∵∠ACB=90°,∴∠ECF=45°,又∵CE ⊥AB ,∴△ECF 是等腰直角三角形,∴EF=CE ,又∵S △ABC =12AC∙BC=12AB∙CE , ∴AC∙BC=AB∙CE ,∵3AC =,4BC =,5AB =,∴125CE =, ∴EF 125=.所以答案为B选项.【点睛】本题主要考查了直角三角形与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.35.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC 和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③PQ∥AE;④DE=DP;⑤∠AOE=120°;其中正确结论的个数为()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE,故①正确;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ (ASA),所以AP=BQ;故②正确;③根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知③正确;④根据∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,可知PD≠CD,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,由平角的性质可得∠AOE=120°,可知⑤正确;【详解】①∵△ABC和△CDE为等边三角形∴AC=BC,CD=CE,∠BCA=∠DCB=60°∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE,故①正确;由(1)中的全等得∠CBE=∠DAC,且BC=AC,∠ACB=∠BCQ=60°∴△CQB≌△CPA(ASA),∴AP=BQ,故②正确;∵△CQB≌△CPA,∴PC=PQ,且∠PCQ=60°∴△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故③正确,∵∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,∴PD≠CD,∴DE≠DP,故④DE=DP错误;∵BC∥DE,∴∠CBE=∠BED,∵∠CBE=∠DAE,∴∠AOB=∠OAE+∠AEO=60°,∴∠AOE=120°,故⑤正确,故选C.【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,综合性较强,题目难度较大.36.如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于()A.108°B.114°C.126°D.129°【答案】C【解析】【分析】按照如图所示的方法折叠,剪开,把相关字母标上,易得∠ODC和∠DOC的度数,利用三角形的内角和定理可得∠OCD的度数.【详解】解:展开如图,五角星的每个角的度数是,180=36°.5∵∠COD=360°÷10=36°,∠ODC=36°÷2=18°,∴∠OCD=180°-36°-18°=126°,故选C.【点睛】本题主要考查轴对称性质,解决本题的关键是能够理解所求的角是五角星的哪个角,解题时可以结合正五边形的性质解决.七、八年级数学整式的乘法与因式分解选择题压轴题(难) 37.下列多项式中,能分解因式的是: A .224a b -+B .22a b --C .4244x x --D .22a ab b -+【答案】A【解析】根据因式分解的意义,可知A 、224a b -+能用平方差公式()()22a b a b a b -=+-分解,故正确;B 、22a b --=-(22a b +),不能进行因式分解,故不正确;C 、4244x x --不符合完全平方公式()2222a ab b a b ±+=±,故不正确;D 、22a ab b -+既没有公因式,也不符合公式,故不正确.故选:A.点睛:此题主要考查了因式分解,解题时利用因式分解的方法:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).38.已知x 2+4y 2=13,xy=3,求x+2y 的值,这个问题我们可以用边长分别为x 和y 的两种正方形组成一个图形来解决,其中x>y ,能较为简单地解决这个问题的图形是( )A .B .C .D .【答案】A【解析】 ∵222(2)44x y x y xy +=++,∴若用边长分别为x 和y 的两种正方形组成一个图形来解决(其中x y >), 则这个图形应选A ,其中图形A 中,中间的正方形的边长是x ,四个角上的小正方形边长是y ,四周带虚线的每个矩形的面积是xy .故选A.39.计算,得( ) A . B .C .D .【答案】C【解析】【分析】直接提取公因式(-3)m-1,进而分解因式即可.【详解】(-3)m +2×(-3)m-1。
山东省枣庄市滕州市2015-2016学年度八年级数学上学期期末试题一、选择题(共15小题,每小题3分,满分45分)1.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间2.下列二次根式中,不能与合并的是()A.B.C. D.3.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为()A.60° B.45° C.40° D.30°4.下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短5.已知点A(a﹣2,a+1)在x轴上,则a等于()A.1 B.0 C.﹣1 D.26.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或32 D.37或337.一条直线y=kx+b,其中k+b<0,kb>0,那么该直线经过()A.第二、四象限 B.第一、二、三象限C.第一、三象限 D.第二、三、四象限8.如图,若点P(﹣2,4)关于y轴的对称点在一次函数y=x+b的图象上,则b的值()A.﹣2 B.2 C.﹣6 D.69.已知a,b满足方程组,则a+b的值为()A.﹣4 B.4 C.﹣2 D.210.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.3cm B.4cm C.5cm D.6cm11.一次函数y=kx﹣k(k<0)的图象大致是()A.B.C.D.12.如果二元一次方程组的解是方程2x+3y﹣3=0的一个解,那么a的值是()A.4 B.3 C.2 D.113.如图,一个正比例函数图象与一次函数y=﹣x+1的图象相交于一点,则这个正比例函数的表达式是()A.y=﹣2x B.y=2x C.y=x D.y=﹣x14.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 2 1A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75C.中位数是4,平均数是3.8 D.众数是2,平均数是3.815.某车间有60名工人,每人每天能生产螺栓16个或螺母24个,设有x名工人生产螺栓,y名工人生产螺母,每天生产的螺栓和螺母按1:2配套,所列方程正确的是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)16.若点A在第二象限,且A点到x轴的距离为3,到y轴的距离为4,则点A的坐标为.17.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m= .18.若,则(b﹣a)2015= .19.若已知数据x1,x2,x3的平均数为a,那么数据2x1+1,2x2+1,2x3+1的平均数为(用含a的代数式表示).20.若=3﹣x,则x的取值范围是.21.如图,已知函数y=ax+b和y=kx的图象交于点P,则二元一次方程组的解是.22.有一块土地的形状如图所示,∠B=∠D=90°,AB=20m,BC=15m,CD=7m,则这块土地的面积为.23.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=3,则BC的长为.三、解答题(共7小题,满分51分)24.计算:(1)(2).25.解方程组:(1)(2).26.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲7 8 9 7 10 10 9 10 10 10乙10 8 7 9 8 10 10 9 10 9(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是队.27.如图,AB∥CD,∠CDE=120°,CF交∠DEB的平分线EF于点F,∠AGF=130°,求∠F的度数.28.元旦期间银座商城用36000元购进了甲、乙两种商品,其中甲种商品的进价为120元/件,售价为130元/件;乙种商品的进价为100元/件,售价为150元/件,当两种商品销售完后共获利润6000元,求甲、乙两种商品各购进多少件?29.如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l 上,并说明理由.30.高铁的开通,给滕州市民带来了极大的方便,“元旦”期间,乐乐和明明相约到济南的某游乐园游玩,乐乐乘私家车从滕州出发1小时后,明明乘坐高铁从滕州出发,先到济南火车西站,然后再乘出租车到游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开滕州的距离y(千米)与乘车时间t(小时)的关系如图所示,请结合图象解决下面问题:(1)求明明乘高铁路线的y与t的函数关系式;(2)当明明到达济南火车西站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?山东省枣庄市滕州市2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【考点】估算无理数的大小.【专题】计算题.【分析】利用”夹逼法“得出的范围,继而也可得出的范围.【解答】解:∵2=<=3,∴3<<4,故选B.【点评】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.2.下列二次根式中,不能与合并的是()A.B.C. D.【考点】同类二次根式.【专题】常规题型.【分析】根据二次根式的乘除法,可化简二次根式,根据最简二次根式的被开方数相同,可得答案.【解答】解:A、,故A能与合并;B、,故B能与合并;C、,故C不能与合并;D、,故D能与合并;故选:C.【点评】本题考查了同类二次根式,被开方数相同的最简二次根式是同类二次根式.3.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为()A.60° B.45° C.40° D.30°【考点】平行线的性质;等边三角形的性质.【专题】计算题.【分析】延长AC交直线m于D,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠3,再根据两直线平行,内错角相等解答即可.【解答】解:如图,延长AC交直线m于D,∵△ABC是等边三角形,∴∠3=60°﹣∠1=60°﹣20°=40°,∵l∥m,∴∠2=∠3=40°.故选:C.【点评】本题考查了平行线的性质,等边三角形的性质,熟记性质并作辅助线是解题的关键,也是本题的难点.4.下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短【考点】命题与定理.【专题】常规题型.【分析】根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.【解答】解:A、所有的实数都可用数轴上的点表示,所以A选项正确;B、等角的补角相等,所以B选项正确;C、无理数包括正无理数和负无理数,0是有理数,所以C选项错误;D、两点之间,线段最短,所以D选项正确.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.5.已知点A(a﹣2,a+1)在x轴上,则a等于()A.1 B.0 C.﹣1 D.2【考点】点的坐标.【分析】根据x轴上点的纵坐标为0列式计算即可得解.【解答】解:∵点A(a﹣2,a+1)在x轴上,∴a+1=0,解得a=﹣1.故选C.【点评】本题考查了点的坐标,主要利用了x轴上的点的纵坐标相等,需熟记.6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或32 D.37或33【考点】勾股定理.【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.故选C.【点评】此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.7.一条直线y=kx+b,其中k+b<0,kb>0,那么该直线经过()A.第二、四象限 B.第一、二、三象限C.第一、三象限 D.第二、三、四象限【考点】一次函数图象与系数的关系.【分析】根据k+b<0,kb>0,可得k<0,b<0,从而可知一条直线y=kx+b的图象经过哪几个象限.【解答】解:∵k+b<0,kb>0,∴k<0,b<0,∴y=kx+b的图象经过第二、三、四象限,故选D.【点评】本题考查一次函数图象与系数的关系,解题的关键是明确k、b的正负不同,函数图象相应的在哪几个象限.8.如图,若点P(﹣2,4)关于y轴的对称点在一次函数y=x+b的图象上,则b的值()A.﹣2 B.2 C.﹣6 D.6【考点】待定系数法求一次函数解析式;关于x轴、y轴对称的点的坐标.【专题】数形结合.【分析】先得出关于y轴对称的点P的坐标,然后代入运用待定系数法运算即可.【解答】解:由题意得:P′的坐标为(2,4),代入得:2+b=4,解得:b=2.故选B.【点评】本题考查待定系数法求一次函数解析式,比较简单,注意掌握关于y轴对称的点的坐标的特点.9.已知a,b满足方程组,则a+b的值为()A.﹣4 B.4 C.﹣2 D.2【考点】解二元一次方程组.【专题】计算题.【分析】求出方程组的解得到a与b的值,即可确定出a+b的值.【解答】解:,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,则a+b=4,故选B.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.3cm B.4cm C.5cm D.6cm【考点】翻折变换(折叠问题).【分析】首先由勾股定理求得AB=10,然后由翻折的性质求得BE=4,设DC=x,则BD=8﹣x,在△BDE 中,利用勾股定理列方程求解即可.【解答】解:在Rt△ABC中,由勾股定理可知:AB===10,由折叠的性质可知:DC=DE,AC=AE=6,∠DEA=∠C=90°,∴BE=AB﹣AE=10﹣6=4,∠DEB=90°,设DC=x,则BD=8﹣x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8﹣x)2,解得:x=3,∴CD=3.故选A.【点评】本题主要考查的是翻折变换、勾股定理的应用;熟练掌握翻折的性质和勾股定理是解决问题的关键.11.一次函数y=kx﹣k(k<0)的图象大致是()A.B.C.D.【考点】一次函数的图象.【分析】首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.【解答】解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选:A.【点评】此题主要考查了一次函数图象,直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.12.如果二元一次方程组的解是方程2x+3y﹣3=0的一个解,那么a的值是()A.4 B.3 C.2 D.1【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】把a看做已知数表示出方程组的解得到x与y,代入已知方程计算即可求出a的值.【解答】解:,①+②得:2x=6a,即x=3a,把x=3a代入①得:y=﹣a,把x=3a,y=﹣a代入方程得:6a﹣3a﹣3=0,解得:a=1,故选D【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.13.如图,一个正比例函数图象与一次函数y=﹣x+1的图象相交于一点,则这个正比例函数的表达式是()A.y=﹣2x B.y=2x C.y=x D.y=﹣x【考点】两条直线相交或平行问题.【分析】将交点的纵坐标代入一次函数的解析式求得其横坐标,然后代入正比例函数的解析式即可求解【解答】解:∵正比例函数图象与一次函数y=﹣x+1的图象相交的纵坐标为2,∴2=﹣x+1解得:x=﹣1∴点P的坐标为(﹣1,2),∴设正比例函数的解析式为y=kx,∴2=﹣k解得:k=﹣2∴正比例函数的解析式为:y=﹣2x.故选:A.【点评】本题考查了两条直线相交或平行问题,待定系数法求函数解析式,解题的关键是首先求得交点的坐标.14.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 2 1A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75C.中位数是4,平均数是3.8 D.众数是2,平均数是3.8【考点】中位数;加权平均数;众数.【分析】根据众数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.8.故选C.【点评】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.15.某车间有60名工人,每人每天能生产螺栓16个或螺母24个,设有x名工人生产螺栓,y名工人生产螺母,每天生产的螺栓和螺母按1:2配套,所列方程正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】由题意可知:①生产螺栓人数+生产螺母人数=60人;②每天生产的螺栓和螺母按1:2配套,那么螺栓要想与螺母的数量配套,则螺栓数量的2倍=螺母数量.【解答】解:根据生产螺栓人数+生产螺母人数=56人,得方程x+y=56;根据螺栓数量的2倍=螺母数量,得方程2×16x=24y.列方程组为.故选:B.【点评】此题考查了由实际问题抽象出二元一次方程组,找出题目蕴含的数量关系是解决问题的关键.二、填空题(共8小题,每小题3分,满分24分)16.若点A在第二象限,且A点到x轴的距离为3,到y轴的距离为4,则点A的坐标为(﹣4,3).【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵点A在第二象限,且A点到x轴的距离为3,∴点A的纵坐标为3,∵点A到y轴的距离为4,∴点A的横坐标是﹣4,∴点A的坐标为(﹣4,3).故答案为:(﹣4,3).【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.17.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m= ﹣1 .【考点】正比例函数的定义.【分析】由正比例函数的定义可得m2﹣1=0,且m﹣1≠0.【解答】解:由正比例函数的定义可得:m2﹣1=0,且m﹣1≠0,解得:m=﹣1,故答案为:﹣1.【点评】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx 的定义条件是:k为常数且k≠0,自变量次数为1.18.若,则(b﹣a)2015= ﹣1 .【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:算术平方根.【专题】计算题;一次方程(组)及应用.【分析】根据已知等式,利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵+|2a﹣b+1|=0,∴,①+②得:3a=﹣6,即a=﹣2,把a=﹣2代入①得:b=﹣3,则原式=(﹣3+2)2015=(﹣1)2015=﹣1.故答案为:﹣1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.若已知数据x1,x2,x3的平均数为a,那么数据2x1+1,2x2+1,2x3+1的平均数为2a+1 (用含a的代数式表示).【考点】算术平均数.【分析】根据平均数的性质知,要求2x1+1,2x2+1,2x3+1的平均数,只要把数2x1+1,2x2+1,2x3+1的和表示出即可.【解答】解:∵数x1、x2、x3的平均数为a,∴数2x1+1,2x2+1,2x3+1的平均数=(2x1+1+2x2+1+2x3+1)÷3=2a+1.故答案为2a+1.【点评】本题考查的是样本平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.20.若=3﹣x,则x的取值范围是x≤3.【考点】二次根式的性质与化简.【分析】根据二次根式的性质得出3﹣x≥0,求出即可.【解答】解:∵=3﹣x,∴3﹣x≥0,解得:x≤3,故答案为:x≤3.【点评】本题考查了二次根式的性质的应用,注意:当a≥0时,=a,当a<0时,=﹣a.21.如图,已知函数y=ax+b和y=kx的图象交于点P,则二元一次方程组的解是.【考点】一次函数与二元一次方程(组).【分析】一次函数图象的交点就是两函数组成的方程组的解.【解答】解:∵函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),∴二元一次方程组的解是,故答案为:.【点评】此题主要考查了一次函数与二元一次方程组,关键是掌握二元一次方程(组)与一次函数的关系.22.有一块土地的形状如图所示,∠B=∠D=90°,AB=20m,BC=15m,CD=7m,则这块土地的面积为234m2.【考点】勾股定理的应用.【分析】连接AC,则△ABC和△ACD均为直角三角形,根据AB,BC可以求出AC,根据AC,CD可以求出AD,根据直角三角形面积计算可以求出△ABC和△ACD的面积,四边形ABCD的面积为两个直角三角形面积之和.【解答】解:连接AC,将四边形分割成两个三角形,其面积为两个三角形的面积之和,在Rt△ABC中,AC为斜边,则AC===25(m),在Rt△ACD中,AC为斜边则AD==═24(m),四边形ABCD面积S=AB×BC+AD×CD=×20×25+×7×24=234(m2).答:此块地的面积为234平方米.故答案为:234m2.【点评】本题考查了勾股定理在实际生活中的应用以及直角三角形面积计算,本题中正确的运用勾股定理计算AC是解题的关键.23.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=3,则BC的长为3+.【考点】勾股定理.【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴BD=AD=3,在Rt△ADC中,∠C=90°,∴DC===,∴BC=BD+DC=3+,故答案为:3+.【点评】本题主要考查了勾股定理、三角形外角的性质、等腰三角形的判定;本题难度适中,是一道好题.三、解答题(共7小题,满分51分)24.计算:(1)(2).【考点】二次根式的混合运算;零指数幂.【专题】计算题.【分析】(1)根据二次根式的乘法和零指数幂以及二次根式的减法进行计算即可;(2)根据二次根式的除法、乘法及加法进行计算即可.【解答】解:(1)===;(2)==2+1+=3+2.【点评】本题考查二次根式的混合运算、零指数幂,解题的关键是明确零指数幂和二次根式的混合运算的计算方法.25.解方程组:(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②×3﹣①得:11y=22,即y=2,把y=2代入②得:x=1,则方程组的解为;(2)方程组整理得:,①+②得:2x=8,即x=4,把x=4代入①得:y=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.26.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲7 8 9 7 10 10 9 10 10 10乙10 8 7 9 8 10 10 9 10 9(1)甲队成绩的中位数是9.5 分,乙队成绩的众数是10 分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是乙队.【考点】方差;加权平均数;中位数;众数.【专题】计算题;图表型.【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【解答】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点评】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.27.如图,AB∥CD,∠CDE=120°,CF交∠DEB的平分线EF于点F,∠AGF=130°,求∠F的度数.【考点】平行线的性质.【分析】根据平行线的性质得到∠BED=∠CDE=120°,由角平分线的定义得到∠BEF=BED=60°,根据三角形的外角的性质即可得到结论.【解答】解:∵AB∥CD,∠CDE=120°,∴∠BED=∠CDE=120°,∵EF平分∠BED,∴∠BEF=BED=60°,∴∠GEF=120°,∵∠AGF=130°,∴∠F=∠AGF﹣∠GEF=10°.【点评】本题考查了平行线的性质,三角形的外角的性质,熟记平行线的性质是解题的关键.28.元旦期间银座商城用36000元购进了甲、乙两种商品,其中甲种商品的进价为120元/件,售价为130元/件;乙种商品的进价为100元/件,售价为150元/件,当两种商品销售完后共获利润6000元,求甲、乙两种商品各购进多少件?【考点】二元一次方程组的应用.【分析】分别利用用36000元购进了甲、乙两种商品,以及两种商品销售完后共获利润6000元分别得出等式求出答案.【解答】解:设购进甲商品x件,乙商品y件,根据题意可得:,解得:,答:购进甲商品240件,乙商品72件.【点评】此题主要考查了二元一次方程组的应用,根据题意表示出两种商品的利润是解题关键.29.如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l 上,并说明理由.【考点】一次函数图象与几何变换;一次函数图象上点的坐标特征;待定系数法求一次函数解析式.【分析】(1)根据“右加左减、上加下减”的规律来求点P2的坐标;(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),把点P1(2,1),P2(3,3)代入直线方程,利用方程组来求系数的值;(3)把点(6,9)代入(2)中的函数解析式进行验证即可.【解答】解:(1)P2(3,3).(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),∵点P1(2,1),P2(3,3)在直线l上,∴,解得.∴直线l所表示的一次函数的表达式为y=2x﹣3.(3)点P3在直线l上.由题意知点P3的坐标为(6,9),∵2×6﹣3=9,∴点P3在直线l上.【点评】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及一次函数图象的几何变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.30.高铁的开通,给滕州市民带来了极大的方便,“元旦”期间,乐乐和明明相约到济南的某游乐园游玩,乐乐乘私家车从滕州出发1小时后,明明乘坐高铁从滕州出发,先到济南火车西站,然后再乘出租车到游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开滕州的距离y(千米)与乘车时间t(小时)的关系如图所示,请结合图象解决下面问题:(1)求明明乘高铁路线的y与t的函数关系式;(2)当明明到达济南火车西站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?【考点】一次函数的应用.【分析】(1)由待定系数法求出明明乘高铁路线的y与t的函数关系式即可;(2)求出乐乐乘私家车的y与x的函数解析式,进而求出2小时乐乐行驶的距离,进而得出距离游乐园的路程;(3)把y=216代入y=80t,得t=2.7,进而求出私家车的速度.【解答】解:(1)设明明乘高铁路线的y与t的函数关系式为y=kt+b,当t=1时,y=0,当t=2时,y=240,得:,解得:,∴明明乘高铁路线的y与t的函数关系式为y=240t﹣240;(2)把t=1.5代入y=240t﹣240,得y=120,设乐乐乘私家车的y与x的函数关系式为y=at,当t=1.5,y=120,得1.5t=120,解得:a=80,∴y=80t,当t=2,y=160,216﹣160=56(千米),∴乐乐距离游乐园还有56千米;(3)把y=216代入y=80t,得t=2.7,2.7﹣=2.4(小时),=90(千米/时).∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.【点评】此题主要考查了一次函数的应用、用待定系数法求一次函数的解析式;根据题意结合函数图象得出一次函数解析式是解题关键.。
八年级上册生物试题一、选择题:1.桃花结构中,最主要的部分是A.花药和花瓣B.花柄和雌蕊C.花萼和雄蕊D.雄蕊和雌蕊2.吃玉米棒子和葵花籽时,常发现玉米果穗再现“秃顶”、葵花籽出现空瘪现象。
其主要原因都是A.传粉不足 B.光照不足 C.开得花较少 D.肥料不足3.被子植物的卵细胞存在于下列哪一结构中A.子房壁B.花粉管C.胚珠D.柱头4.有一个描述花生的谜语:“麻屋子、红帐子,里面住着个白胖子”。
麻屋子、红帐子、白胖子分别指的是A.外果皮、内果皮、种子B.外层种皮、内层种皮、种子C.果皮、种皮、种子D.果皮、种皮、胚5.下图是桃花及其所结果实的部分结构示意图,下列表述错误..的是A.花中最重要的部分是雄蕊和雌蕊B.[4]中的精子到达胚珠完成受精作用C.[7]是由[6]发育而来的D.[8]萌发的内部条件是具有完整的、有活力的胚以及供胚发育的营养物质6.在下图所示植物的生殖方式中,属于无性生殖的是A、a.b.cB、a.c.dC、a.b.dD、b.c.d7..“鲁花花生油,滴滴香浓”,你可知道这滴滴香浓的花生油主要来自种子的A.胚根B.胚乳C.胚芽D.子叶8.下列属于有性生殖的是A.柳树枝条扦插长成植株B.胡萝卜根尖细胞培养成幼苗C.毛桃树枝上嫁接水蜜桃D.大豆种子发育成幼苗9.袁隆平梦想将高粱的高产基因、固氮菌的固氮基因一并转入水稻,并使其在水稻中表达。
如若梦想成真,这不仅提高产量,还能减少化肥的使用,实现绿色环保低成本优质生产。
你认为这种转基因技术的基本原理是A.基因控制性状B.性状控制基因C.基因就是性状D.基因与性状无关10. 种子的主要结构是 A.胚芽 B.胚 C.胚根 D.子叶11. 不是每一朵花都能结出果实,能结出果实的花一定①长有雌蕊和雄蕊②长有雌蕊③经历了自花传粉④经历了传粉⑤经历了受精A.①④⑤B.①③⑤C.②④⑤D.②③⑤12.炎炎夏日,吃西瓜消暑是一件很惬意的事情,西瓜的果实和种子分别是由什么结构发育而来A.子房和胚珠B.子房和受精卵C.雌蕊和珠被D.子房壁和受精卵13.今春山亭大樱桃喜获丰收,其艳丽的外观、优良的品质、独特的风味深受人们的喜爱。
大樱桃食用部分是由花的()发育而成A.子房B.胚珠C.子房壁D.受精卵14.枣庄市实验学校引种了一种能开多种颜色花的月季,能达到上述目的的技术是A.组织培养B.嫁接C.扦插D.压条15.在樱桃开花季节,山亭的木棚樱桃种植户们会租两箱蜜蜂放在大棚内,这是因为蜜蜂能帮助樱桃 A.开花 B.花粉成熟 C.传粉 D.子房发育16.现在正是桃、杏大量上市的季节,我们食用的主要是桃、杏的A.果皮B.子房C.种皮D.种子17.从市场上买回来的新鲜茄子,其果柄常被几片带刺的像叶一样的结构包裹着,这是茄子花存留下的A.花萼B.花冠C.雄蕊 D.子房18.一部《舌尖上的中国》引发了人们对全国各地美食的向往,《脚步》篇中提到的山东煎饼也是枣庄市的主食之一。
小麦是制作煎饼的原料之一,小麦种子中的营养物质主要贮存在A.胚芽B.胚轴C.子叶D、胚乳19.“满筐圆实骊珠滑,入口甘香冰玉寒”,葡萄中含有的丰富营养物质贮存在果实的A.果皮B.种皮C.种子D.胚20.用豌豆做遗传学实验时,豌豆花未开放前即进行套袋处理,依然可以结出豌豆,说明豌豆花的类型和传粉方式分别为A.单性花自花传粉B.单性花异花传粉C.两性花自花传粉D.两性花异花传粉20.牛肉炖土豆是营养丰富的美味。
把出芽的一小块土豆植入土中即可长成新马铃薯植株。
以下植物的繁殖方式与马铃薯不同的是A.葡萄用扦插的方法繁殖B.桂花用压条的方法繁殖C.苹果用嫁接的方法繁殖D.花生用种子繁殖21.青蛙生殖和发育的特点是A.雌雄同体、体外受精、体外发育B.雌雄同体、体内受精、体外发育C.雌雄异体、体外受精、体外发育D.雌雄异体、体内受精、体外发育22.母爱是伟大的。
母亲在怀孕期间,身体负担明显加重。
她要为胎儿提供所需的养料和氧气,排出胎儿产生的二氧化碳和其他废物。
母亲与胎儿之间进行的物质和气体交换发生在A.胎盘和脐带 B.子宫内膜 C.输卵管 D.卵黄23.青蛙不能成为真正的陆生动物的原因是A.体温不恒定B.生殖离不开水C.皮肤辅助呼吸D.变态发育24.“十月怀胎,一朝分娩”。
母亲在怀孕期间,身体负担明显加重。
在从受精卵到胎儿呱呱坠地前的整个过程中,其生长发育所需各种营养物质获取于①卵黄②胎盘③脐带④母体A.①③B.②④C.①④D.②③25.泰山是我国著名的旅游胜地,山上的奇石异树都是优美的风景,下面是某同学观察了“五大夫松”和“卧龙槐”后的分析,其中不科学的是A.卧龙槐具有根、茎、叶、花、果实和种子B.卧龙槐种子不裸露,五大夫松种子裸露C.五大夫松的茎坚硬,叶针形,果实可食用D.卧龙槐是异花传粉,传份媒介是昆虫A.通过无性生殖产生的后代,具有双亲的遗传特性B.通过有性生殖产生的后代,一定能保持亲代的优良性状C.果树的嫁接、农作物的播种都属于有性生殖.D植物的组织培养利用的是植物的无性生殖原理27.下图为人的生殖及胚胎发育过程示意图,以下有关分析正确的是A.如果新生儿的性别为男性,则精子中的性染色体为X,卵细胞中的性染色体为Y B.精子由父亲的睾丸产生,卵细胞由母亲的卵巢产生,过程Ⅰ发生在母亲的子宫里C.在过程Ⅱ中,细胞核内的染色体先进行复制,然后平均分配到两个新细胞中D.精子和卵细胞各含有23条染色体,经过程Ⅰ,任意配对为受精卵中的23对染色体28.国家最高科技奖获得者、小麦育种专家李振声历时20多年,通过小麦与牧草杂交实验培育出抗病、高产的小麦新品种,以下有关叙述错误的是A.这一实例体现了利用基因多样性改良作物品种B.该杂交育种过程是通过植物的无性生殖实现的C.杂交成功的关键是确保小麦与牧草进行异花传粉D.小麦新品种产生的抗病、高产等变异是可遗传的变异29.“请不要在孕妇身旁吸烟”,烟雾中的有害物质会通过孕妇影响胎儿。
孕妇和胎儿之问联系的“纽带”是A.卵巢B.胎盘C.子宫D.输卵管30.下列有关人类生殖和发育的叙述,错误的是A.睾丸和卵巢是产生生殖细胞的器官B.受精卵形成的场所是输卵管C.着床是指受精卵植入子宫内膜的过程D.胎儿发育的场所是子宫31下列关于人类生殖和发育的叙述,错误的是A、男性、女性的主要性器官分别是睾丸和卵巢B、成年男性终生有产生精子的能力,成年女性只在生育期有产生成熟卵细胞的能力C、母体血液可进入胎儿体内为其提供氧气和营养物质D、在童年期人体生殖器官的发育几乎处于停滞状态32下列关于人类性别决定的叙述,正确的是A、性别由性染色体决定,与基因无关B性染色体只存在于精子或卵细胞中C一对夫妇已经生了两个女孩,再生一个孩子是男孩的可能性明显大于50%D受精作用完成后,孩子的性别就已经确定了33 (2015·临沂)在妈妈的精心呵护下,婷婷从一个受精卵发育成青春美少女(如下图),其中说法正确的是A、a表示正在受精的卵细胞,此过程是在妈妈体内的子宫内完成的B、d是由b经分裂和分化等过程形成的,能通过自身消化系统从妈妈体内获得营养物质C、婷婷体细胞中的性染色体组成为XYD、进入青春期后,婷婷体内出现的正常生理现象是月经,这与卵巢分泌的雌性激素有关34 (2015·临沂)为了探究食品腐败的原因和细菌生存的条件,生物兴趣小组用已消毒的甲、乙、丙三个相同锥形瓶,按下表进行了实验,请分析表中包含了几组对照实验?变量分别是什么?A、2组,温度、消毒棉球B、2组,温度、空气C、3组,温度、消毒棉球、空气D、2组,温度、细菌35 (2015·临沂)以下是农业生产上常采用的繁殖方式,其中属于有性生殖的是A、用扦插方法繁殖葡萄B、以黑枣为砧木嫁接柿子树C、把大豆种子播种后长出幼苗D、用组织培养技术繁殖草莓36 2015东营)21.英国一名父亲18年坚持为女儿拍“每日一照”,演绎了天下父母大爱,也记录了“女大十八变,越变越漂亮”的过程。
与“女大十八变”直接相关的器官和物质是A.卵巢生长激素B.子宫月经C.卵巢雌性激素D.子宫雌性激素37.下列有关“细胞、染色体、DNA、基因、性状”之间关系的叙述中,错误的是A.染色体存在于细胞核中B.基因位于染色体上C.染色体就是DNAD.生物的性状一般是由基因控制的38.一对夫妇婚后生了一个漂亮的小女孩,该女孩体细胞内决定性别的是A.性染色体B.Y染色体C.细胞质D.细胞膜39.以下变异实例中,属于不遗传的变异是A.人的体细胞中若多一条21号染色体,将表现为先天愚型B.把相同的小麦种子,播种在水肥条件不同的环境里,所结子粒的饱满程度不同C.应用空间技术育种培育的太空椒D.一对有耳垂的夫妇生了一个无耳垂的孩子二、非选择题:40.(7分)天然种植的棉花大都是白色的。
偶尔在田中也会出现一两株彩色(如棕色)的棉花。
彩棉用于纺织,可以免去繁杂的印染工序,既降低生产成本,又减少化学物质对人体的伤害,是名副其实的“绿色产品”。
现有两株白色的棉花,分别让它们作父本和母本进行杂交。
结果它们的子代中有的结白色棉花,有的结棕色棉花。
请分析回答:(1)在种满白色棉花的大田中,偶尔出现的一两株彩色的棉花是生物的结果。
(2)棉花的白色和棕色在遗传学中是一对。
(3)在上述棉花颜色的遗传杂交实验中,显性性状是,隐性性状是。
(4)如果有B和b分别来表示显性基因和隐性基因,则上述杂交的子代中,结白色棉花和结红褐色棉花的基因型分别是,。
(5)农业技术人员想在短时间内将彩棉大量繁殖,比较理想的繁殖方式是()A.种子繁殖B.压条C.扦插D.组织培养41.(6分)科学家们将男性、女性体细胞内的染色体进行整理,形成了下列排序图。
请分析回答:(1)从图中可以看出,在人的体细胞中,染色体是存在的。
染色体是由蛋白质和两种物质组成的。
(2)根据染色体组成可以判断,乙为(填“男”或“女”)性的染色体组成。
乙产生的生殖细胞中含有条染色体。
(3)若甲、乙是一对夫妇,则甲产生的生殖细胞与乙产生的含有染色体的生殖细胞结合,所生后代的性别表现为女性。
(4)甲、乙的眼睑性状均表现为双眼皮,却生了一个单眼皮的孩子。
若他们再生一个孩子,表现为单眼皮的可能性是。
42.(7分)冬小麦是我市重要的粮食作物之一,栽培历史悠久,品质优良。
请根据研究冬小麦过程中所遇到的有关问题作答:(1)冬小麦茎的高矮、产量高低、成熟早晚等都是性状,生物性状的遗传一般是由DNA上的 控制的。
(2)冬小麦的高茎(A )和矮茎(a )是一对 ,将两株高茎冬小麦杂交,收集全部种子共672粒种植,后代出现部分矮茎冬小麦。
则子代中高茎冬小麦的基因组成是 ,矮茎冬小麦的基因组成是 。
假如所有种子均发育成了植株,则理论上共有矮茎冬小麦 株。